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Abstract Whether habit stimulation is effective in DOC

patient arousal has not been reported. In this paper, we

analyzed the responses of DOC patients to habit stimula-

tion. Nineteen DOC patients with alcohol consumption or

smoking habits were recruited and 64-channel EEG signals

were acquired both at the resting state and at three

stimulation states. Wavelet transformation and nonlinear

dynamics were used to extract the features of EEG signals

and four brain lobes were selected to investigate the degree

of EEG response to habit stimulation. Results showed that

the highest degree of EEG response was from the call-

name stimulation, followed by habit and music stimula-

tions. Significant differences in EEG wavelet energy and

response coefficient were found both between habit and

music stimulation, and between habit and call-name

stimulation. These findings prove that habit stimulation

induces relatively more intense EEG responses in DOC

patients than music stimulation, suggesting that it may be a

relevant additional method for eliciting patient arousal.

Keywords EEG � Disorder of consciousness � Habit
stimulation � Wavelet transformation � Nonlinear dynam-

ics � Differential analysis

Introduction

Exploring an effective method to help the arousal of

patients suffering from disorders of consciousness (DOCs)

is an ongoing challenge [1, 2]. Sensitive stimulation

treatments, including call-name and music stimulations,

are the most commonly used methods [3, 4]. Habits such as

alcohol consumption and smoking can arouse intense

behavioral responses in normal individuals [5]. These

habits are built on patients’ specific and unique lifestyle

behaviors. The detailed neurobiological mechanisms asso-

ciated with habits remain unclear. It is still unknown

whether habit stimulation can be applied to DOC patients,

as few studies have compared patient responses to habit

with those to other types of stimulation [6].

Clinical practice indicates that habit stimulation (e.g.

smoking) arouses stronger behavioral responses than non-

habit stimulation (e.g. non-smoking) in DOC patients. For

example, there was no response when vinegar or sauce was

placed on the lips of patients who were alcoholics, but

alcohol caused their lips to start moving in a drinking

movement. Yet these behavioral responses may be subjec-

tive, and a quantitative study is needed to explain this

phenomenon. In most cases, qualitative analyses such as

neuropsychological scales [e.g. the Coma Recovery Scale –

Revised (CRS-R) score] are used to evaluate brain

functions in the clinical setting. In order to thoroughly

investigate these behavioral responses, more quantitative

analytical methods are needed to accurately evaluate the

brain responses. Diagnostic tools such as functional
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magnetic resonance imaging [7–9], positron emission

tomography [10, 11], and electroencephalogram (EEG)

analysis [12–17] have been used as auxiliary diagnostic

methods to evaluate the state of consciousness. EEG has

several advantages over the other methods, including low

cost, safety, easy access, and convenience for bedside

evaluation [18–21].

Generally, linear and nonlinear dynamic analysis meth-

ods are used to extract the features of EEG signals. In

linear analysis, one of the common methods is time-

frequency analysis, including variable-time-interval Four-

ier transformation, wavelet transformation, and Wigner–

Ville distribution. Among these, wavelet transformation is

a typical time-frequency analysis with multi-resolution and

multi-scale characteristics, which enables the conversion of

a multi-signal from coarse to fine [22]. Wavelet transfor-

mation is a mature theory which has been widely used in

the study of EEG signals [23]. Besides linear analysis,

nonlinear dynamic analysis methods have also been widely

used to extract features of EEG signals [23, 24]. Studies

have shown that the human brain is a complex, multidi-

mensional system, and the use of nonlinear dynamic

analysis might accurately reflect brain states [25–27].

In this study, to investigate the response of DOC

patients to habit stimulation, both linear and nonlinear

dynamic analysis methods were applied to measure the

response intensity of the EEG in DOC patients. In addition,

topographic maps of the brain were plotted to evaluate the

degree of response to stimulation in different regions.

Materials and Methods

Patients

A total of 19 patients with alcohol consumption or smoking

habits were examined in this study, including 9 MCS

(minimally conscious state) and 10 VS (vegetative state)

cases assessed by neurologists based on the CRS-R. These

patients were recruited from the Rehabilitation Center of

Wu Jing Hospital in Zhejiang Province, China. Patients

were out of the clinically acute phase, had been in a DOC

state for[ 1 month, exhibited spontaneous breathing, and

had no history of cardiopulmonary resuscitation or neuro-

logical disease. The inclusion criteria were as follows:

(a) inability to follow commands; (b) inability to clearly

express words; (c) inability to open eyes even with

stimulation or achieve eye tracking, not due to paralysis;

(d) inability to move arms and legs in a non-directed

fashion; and (e) having a Glasgow coma scale [28] score

B 8 points, and with a score for each item\ 4-5-6-3-2-3

according to the CRS-R [29]. If the total score was C 8, the

patient was diagnosed as MCS; if it was\ 8, the patient

was diagnosed as VS. The exclusion criteria were as

follows: (a) drug interventions (which could affect the

assessment of brain function) prior to data collection such

as nerve-muscle blockers, depressants, or anesthetics; and

(b) a coexisting disorder such as metabolic disease,

poisoning, or shock that could affect brain activity.

The state of consciousness was diagnosed by experi-

enced clinicians from Wu Jing Hospital using the CRS-R

scale. The regional Review Board approved the use of

human participants in this study. Family members of

patients and the attending doctor gave consent for EEG

acquisition. Patient information is summarized in Table 1.

EEG Acquisition

EEG signals were recorded in single-electrode channel

mode with an Active Two EEG system (BioSemi, Ams-

terdam, Netherlands). Electrodes were placed over the

entire head according to the 10–20 general international

standard lead system. Signals were recorded from 64

channels; the left and right earlobes were used as

references.

The EEG recording was initiated when the signal had

been stable for at least 2 min. Signals were digitized at a

sampling rate of 256 Hz, a bandwidth range from 0.5 Hz to

70 Hz, and an electrode impedance\ 5 KX.
In the music stimulation, a piece of Chinese classical

music ‘‘Jasmine’’ was truncated into voice fragments and

played for 90 s. In the call-name stimulation, the patient’s

name was called by relatives for 90 s. In the habit

stimulation, patients were stimulated either by wiping

alcohol on the lips for 36 s for alcoholic patients, or by

introducing the smell of cigarette smoke for 36 s for

smoking patients (Fig. 1). The entire process was repeated

three times.

EEG Signal Preprocessing

A time-window of 12 s was truncated from the acquired

EEG data for analysis. IIR filter, an EEGLAB processing

tool (University of California San Diego), was used to

remove interference from the 50-Hz power frequency [30].

A wavelet soft threshold de-noising algorithm was applied

to remove noise [31].

Wavelet De-noising of EEG

Studies have shown that the process of wavelet de-noising

often uses a given threshold for the de-noising paradigm.

The most reliable threshold method is calculated based on

trials and errors [31]. There are several classical threshold

methods: (a) The VisuShrink threshold, also known as the

general threshold, was the first wavelet threshold de-
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noising method developed. The probability that the coef-

ficient is greater than the threshold is close to zero, so it is

the optimal threshold method based on the minimum

maximum estimation. (b) The Sureshrink threshold, also

known as the Stein unbiased risk threshold, is close to the

ideal threshold. This is an adaptive threshold selection

based on Stein’s unbiased likelihood estimation criterion.

(c) In the Heursure threshold, also known as the Heuristic

Sure threshold, the threshold is chosen as the optimal

predictor threshold, and is a synthesis of the first two

thresholds. (d) The Minmax threshold uses a fixed thresh-

old according to the minimum criteria to select the

threshold.

In order to choose the most suitable threshold estimation

method to analyze the data, Gaussian white noise was

added to the original signal, and wavelet threshold de-

noising and hard threshold de-noising were performed on

the mixed signal. The VisuShrink, Sureshrink, Heursure,

and Minmax methods were used for threshold estimation.

The signal-to-noise ratio and the root-mean-square error

were introduced as reference indicators (Table 2).

The signal-to-noise ratio was maximal and the root-

mean-square error was minimal in the processing methods

of Sureshrink and Heursure threshold estimation. These

results indicated that these two methods were equal and

superior to the others. Therefore, both methods were used

to analyze all our data.

Wavelet Energy Extraction

The signal was decomposed into eight layers, and a db3

wavelet base was chosen. As the eight-layer decomposition

was complex, 0 Hz–32 Hz three-layer decomposition was

taken as an example for the following wavelet decompo-

sition corresponding band diagram (Fig. 2).

The energy value of a certain wavelet coefficient can be

used to represent the energy value of a signal in a band.

Since the wavelet function is an orthogonal basis function

with energy conservation characteristics, the sum of the

wavelet energy values of each band can represent the

energy value of the signal, that is, the wavelet energy value

of the signal:

En ¼
X

k

d
j;n
l

�� ��2

where both n and k are natural numbers and d
j;n
i are wavelet

packet coefficients.

Wavelet transformation was used to calculate EEG

signal features under resting and stimulation states (music,

habit, and call-name). The resting state was considered as

the unified normalized standard of response coefficients.

Therefore, the ratio between the wavelet transform value of

the stimulation state and the wavelet transform value of the

resting state was defined as the wavelet energy value. This

ratio reflected the change of wavelet energy before and

after stimulation. The EEG wavelet energy was calculated

as:

Wavelet energy value ratioð Þ
¼ wavelet energy value of stimulation state=

wavelet energy value of resting state:

Table 1 Patient information.

Disease status Number of patients CRS-R score Average age (years) Time after injury (months) Sex

Male Female

MCS 9 13.7 ± 2.61 39.3 ± 11.9 3.10 ± 1.92 8 1

VS 10 6.2 ± 1.90 51.1 ± 10.2 4.05 ± 1.38 7 3

CRS-R, Coma Recovery Scale – Revised; MCS, minimally conscious state; VS, vegetative state.

Fig. 1 Time-course of EEG

acquisition.

Table 2 Comparison of four

threshold estimation methods.
Threshold estimation method VisuShrink Sureshrink Heursure Minmax

SNR 42.541 72.890 72.890 50.997

RSME 1.217 0.037 0.0370 0.460

SNR, signal-to-noise ratio; RSME, root-mean-square error.
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Nonlinear Dynamic Feature Extraction

Correlation dimension, complexity, entropy, and Lyapunov

exponents are common nonlinear features in EEG signal

analysis. Of these, entropy is the most suitable because of

its small dataset demand and high computation speed,

whereas correlation dimension and Lyapunov exponent

require large datasets and strict dimensions (features that

are unsuitable for EEG analysis). Therefore, in this study,

approximate entropy (ApEn) [32], sample entropy (Sam-

pEn) [33], and permutation entropy (PmEn) [34], were

used to determine the patients’ state of consciousness.

A nonlinear dynamic method was used to calculate EEG

signal features (ApEn, SampEn, and PmEn) under the

resting and stimulation states (music, habit, and call-name)

[7]. During feature extraction, ApEn, SampEn, and PmEn

were computed for the EEG data in each time-window

(12 s signal truncated from the EEG data). For each

nonlinear characteristic, the mean of the values from all

time-windows was considered as a feature of the EEG data.

The feature value was extracted and calculated from each

channel. The means of single features were the average

value of all 64 channel features of the EEG data.

The resting state was considered as the unified normal-

ized standard of response coefficients (Rc). Therefore, the

ratio between the nonlinear dynamic feature of the

stimulation state and the nonlinear dynamic feature of the

resting state was defined as the Rc. Rc values are the EEG

nonlinear dynamic feature response coefficients of the

stimulation value, which reflect the changes of a nonlinear

dynamic feature before and after stimulation. The Rc

values were calculated as:

Rc value ratioð Þ ¼ feature of stimulation state / feature of resting state:

RcA, RcS, and RcP refer to the Rc values for the three

features ApEn, SampEn, and PmEn, respectively.

Statistical Analysis

Wavelet energy and Rc values were analyzed using the

paired-samples t-test, independent-sample t-test, and one-

way ANOVA, using SPSS v.19 software (SPSS Inc.,

Chicago, IL). P\ 0.05 was considered statistically

significant.

Results

EEG Wavelet Energy Values for MCS and VS

Under Different Stimulations

We first investigated the degree of EEG response to various

kinds of stimulation by comparing the differences in

wavelet energy. The highest wavelet energy of the cases

(including MCS and VS) was for call-name stimulation,

followed by habit and music stimulation (Table 3).

To verify the differences among the three stimulations,

statistical analysis of the wavelet energy values between

the different stimulations were performed. First, differ-

ences were analyzed between habit and music stimulation,

then between habit and call-name stimulation, using the

paired-samples t-test. In all cases, there were significant

differences in the wavelet energy both for habit versus

music (P = 0.0065) and for habit versus call-name stimu-

lation (P = 0.0089). In MCS cases, the wavelet energy

differed significantly (P = 0.0074) between habit and

music, but not between habit and call-name stimulation.

However, the VS cases showed no significant differences

in wavelet energy either between habit and music, or

between habit and call-name stimulation (Fig. 3).

Fig. 2 Correspondence of wavelet decomposition band diagram.

Table 3 Comparison of wavelet energy values in different stimula-

tion states.

Stimulation Total (MCS ? VS) MCS VS

Music 1.124 ± 0.147 1.139 ± 0.158 1.107 ± 0.116

Habit 1.346 ± 0.198 1.391 ± 0.215 1.296 ± 0.115

Call-name 1.423 ± 0.314 1.489 ± 0.343 1.349 ± 0.128

Fig. 3 Difference of wavelet energy values in total cases (n = 19),

MCS cases (n = 9), and VS cases (n = 10) in the three stimulations

(music, habit, and call-name) (error bars, 95% confidence intervals;

**P\ 0.01).
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Further investigations of the differences of wavelet

energy values between VS and MCS cases for the three

stimulations were performed using the independent-sam-

ples t-test. There was a significant difference in these

values for habit (P = 0.023) and call-name stimulation

(P = 0.016) between MCS and VS cases, but not for music

stimulation (Fig. 4).

EEG Rc Values for MCS and VS Under Different

Stimulations

We then investigated the degree of EEG response to

various kinds of stimulation by comparing the nonlinear

entropy values in DOC patients. The Rc values (RcA, RcS,

and RcP) of the three different stimulations are shown in

Table 4. The results indicated that the highest Rc values

among all the cases corresponded to call-name stimulation,

followed by habit and music stimulation.

In order to verify the statistical differences between the

three stimulations, statistical analysis of the Rc values for

habit versus music, and for habit versus call-name stim-

ulation was performed using the paired-samples t-test. In

Fig. 4 Analysis of EEG wavelet energy value differences between

VS and MCS cases for the three stimulations (error bars, 95%

confidence intervals; *P\ 0.05).

Table 4 EEG entropy values in different stimulation states.

Sample Rc values

RcA RcS RcP

Total (MCS?VS)

Music 1.044 ± 0.13 1.071 ± 0.12 1.004 ± 0.01

Habit 1.262 ± 0.05 1.234 ± 0.09 1.254 ± 0.31

Call-name 1.446 ± 0.24 1.254 ± 0.21 1.394 ± 0.32

MCS

Music 1.025 ± 0.15 1.067 ± 0.15 1.004 ± 0.02

Habit 1.413 ± 0.07 1.377 ± 0.13 1.413 ± 0.23

Call-name 1.668 ± 0.21 1.644 ± 0.19 1.602 ± 0.28

VS

Music 1.061 ± 0.13 1.074 ± 0.08 1.003 ± 0.004

Habit 1.127 ± 0.09 1.105 ± 0.06 1.111 ± 0.36

Call-name 1.247 ± 0.17 1.211 ± 0.15 1.206 ± 0.24

Fig. 5 Rc values of A the total patient population (n = 19), B MCS

cases (n = 9), and C VS cases (n = 10) in response to the three

stimulations (error bars, 95% confidence intervals; *P\ 0.05,

**P\ 0.01).
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all cases, there were significant differences in the three Rc

values between habit versus call-name stimulation (RcA,

P = 0.029; RcS, P = 0.034; RcP, P = 0.041). Moreover,

two Rc values (RcA and RcP) remarkably differed between

habit and music stimulations (P = 0.0082, P = 0.0096)

(Fig. 5A). In MCS cases, there were significant differences

in the three Rc values between habit and music stimula-

tions (RcA, P = 0.0097; RcS, P = 0.037; RcP,

P = 0.0088); but only RcS differed (P = 0.038) between

habit and call-name stimulations (Fig. 5B). In VS cases,

there were no differences in the three Rc values either

between habit and music or between habit and call-name

stimulations (Fig. 5C).

Further comparison of the Rc values between VS and

MCS cases was performed using the independent-samples

t-test. RcA and RcS differed significantly (RcA, P = 0.006;

RcS, P = 0.004) between MCS and VS cases for habit

stimulation; all three differed significantly (RcA,

P = 0.007; RcS, P = 0.001; RcP, P = 0.003) between

MCS and VS cases for call-name stimulation; and none

was significantly different between MCS and VS cases for

music stimulation (Table 5).

EEG Response in Different Brain Lobes Under

Different Stimulations

Since different stimulations may activate distinct brain

areas, we finally investigated the degree of EEG responses

in the frontal, temporal, parietal, and occipital lobes at

different regions elicited by various types of stimulation.

Among the nonlinear EEG features (ApEn, SampEn,

and PmEn), PmEn measures the complexity of a signal,

with the advantages of being simple, fast, and having a

strong anti-noise property. Therefore, PmEn was used to

measure the nonlinear dynamic feature responses of the

different areas. The differences of entropy values in the

different areas during the three stimulations were evaluated

using one-way ANOVA.

The resulting EEG responses in the different lobes under

different stimulations are shown in Table 6. During habit

stimulation, the RcP values in the frontal lobe were

significantly higher than those in any other areas in VS

cases (P\ 0.05), MCS cases (P\ 0.01), and VS ? MCS

cases (P\ 0.01). During music stimulation, the RcP values

in the temporal lobe were significantly higher (P\ 0.05)

than those in any other areas for VS ? MCS and VS cases,

but not for MCS cases. During call-name stimulation, the

RcP values in the temporal lobe were significantly higher

than those in any other areas for VS ? MCS (P\ 0.05),

VS (P\ 0.05), and MCS (P\ 0.01).

To visualize the results of brain responses under

different stimulations, we used the topographic map

visualization method. Three VS cases and 4 MCS cases

were chosen to plot the maps using the mean PmEn

(Fig. 6). These patients did not suffer from traumatic brain

injury, but from other conditions such as subarachnoid

hemorrhage or diffuse axonal injury. Indeed, in these cases,

Table 5 Analysis of EEG Rc differences (P values) between VS and

MCS for the three stimulations.

Feature value Music Habit Call-name

RcA 0.177 0.006 0.007

RcS 0.894 0.004 0.001

RcP 0.871 0.032 0.003

Table 6 EEG entropy values in

different stimulation states.
Sample Brain area

Frontal lobe Temporal lobe Parietal lobe Occipital lobe

Total (MCS?VS)

Music 0.986 ± 0.097 1.048 ± 0.105* 1.003 ± 0.079 0.985 ± 0.103

Habit 1.452 ± 0.132** 1.116 ± 0.097 1.179 ± 0.099 1.294 ± 0.154

Call-name 1.378 ± 0.112 1.530 ± 0.101* 1.315 ± 0.101 1.393 ± 0.145

MCS

Music 1.014 ± 0.059 1.024 ± 0.062 1.005 ± 0.050 0.972 ± 0.057

Habit 1.664 ± 0.163** 1.215 ± 0.099 1.280 ± 0.104 1.492 ± 0.138

Call-name 1.601 ± 0.068 1.730 ± 0.110** 1.447 ± 0.126 1.631 ± 0.162

VS

Music 0.973 ± 0.122 1.072 ± 0.135* 0.967 ± 0.101 0.998 ± 0.135

Habit 1.240 ± 0.103* 1.018 ± 0.100 1.077 ± 0.099 1.096 ± 0.165

Call-name 1.155 ± 0.139 1.331 ± 0.092* 1.183 ± 0.064 1.154 ± 0.099

*P\ 0.05, **P\ 0.01.
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the brain integrity was conserved and the mapping was not

influenced by injury of the lobes.

With the music stimulation, in both MCS and VS cases,

the darkest area was located in the temporal cortex,

denoting a significantly more intense EEG response than in

other regions. Furthermore, the EEG responses in MCS

cases were more intense than those of VS cases. The results

of music stimulation showed that, in the selected cases, the

temporal region was the most responsive.

With the habit stimulation, in both MCS and VS cases,

the darkest area was located in the prefrontal region, which

had significantly more intense EEG responses than other

regions. The EEG responses of the MCS cases were more

intense than those of the VS cases. The results of habit

stimulation demonstrated that, for the selected cases, the

frontal brain region was the most responsive area.

With the call-name stimulation, in the MCS cases, the

darkest areas were in the left temporal and right occipital

areas, which had significantly more intense EEG responses

than other regions. In the VS cases with call-name

stimulation, the darkest area was in the temporal area,

which had significantly more intense EEG responses than

other regions. The EEG responses of MCS cases were more

intense than those of VS cases.

Discussion

In this study, using EEG wavelet transformation and

nonlinear dynamics analysis, we studied the EEG

responses of DOC patients under different stimulations to

determine whether habit stimulation is clinically useful.

Fig. 6 EEG topographic maps

of the mean PmEn under the

three stimulations. The colors

reflect the intensity of the EEG

response. MCS and VS results

for music stimulation (upper

panels), habit stimulation (mid-

dle panels), and call-name

stimulation (lower panels).
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We found that, with the three types of stimulation (music,

habit, and call-name), the EEG response under habit

stimulation was higher than that under music stimulation,

but lower than that under call-name stimulation. In

different consciousness states, the MCS response to habit

stimulation was more pronounced than that for VS patients.

These results provide preliminary evidence for the effec-

tiveness of habit stimulation. Concerning the spatial

distribution of EEG responses, the brain maps showed a

more intense response in the frontal lobe during habit

stimulation and in the temporal lobe during music and call-

name stimulation. These results may reflect positive neural-

related activity evoked by the stimulations.

Results from current studies suggest that habit stimula-

tion can arouse brain responses; however, the detailed

neurobiological mechanism underlying habit remains

unclear but could be involved in the addiction mechanism.

Existing research shows that the mesolimbic dopamine

system (MLDS) is the neurobiological basis of the addiction

mechanism [35]. The MLDS is a pathway by which

dopamine is carried from one area to another. Dopamine

is the major molecule released by the brain’s reward centers.

Dopaminergic neurons are mainly located in the ventral

tegmental area, and also have projections into several parts

of the brain, including the nucleus accumbens, prefrontal

cortex, hippocampi, and amygdala. The MLDS is the

common neural pathway of the reward mechanism, and is

involved in the physiological process of addiction [36]. In

nicotine habit stimulation, the MLDS is thought to be the

key site of its action. However, nicotine also increases the

extracellular dopamine concentration by stimulating

dopaminergic neurons. In alcohol habit stimulation, it has

been reported that alcohol stimulates addiction, triggers

dopamine release, enhances brain activity, and stimulates

the reward system. Rose [37] proposed that nicotine and

alcohol have positive reinforcement in the MLDS. The

specific neural mechanisms involved in habit stimulation

need to be further clarified using imaging techniques such as

fMRI combined with EEG, as well as neuropsychological

scale methods. Future investigations need larger samples.
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16. Lehembre R, Marie-Aurélie B, Vanhaudenhuyse A, Chatelle C,

Cologan V, Leclercq Y, et al. Resting-state EEG study of

comatose patients: a connectivity and frequency analysis to find

differences between vegetative and minimally conscious states.

Funct Neurol 2012, 27: 41–47.

17. Rosanova M, Gosseries O, Casarotto S, Boly M, Casali AG,

Bruno MA, et al. Recovery of cortical effective connectivity and

recovery of consciousness in vegetative patients. Brain 2012,

135: 1308–1320.

698 Neurosci. Bull. August, 2018, 34(4):691–699

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


18. Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernández-

Espejo D, Pickard JD, et al. Bedside detection of awareness in the

vegetative state: a cohort study. Lancet 2011, 378: 2088–2094.

19. Fellinger R, Klimesch W, Schnakers C, Perrin F, Freunberger R,

Gruber W, et al. Cognitive processes in disorders of conscious-

ness as revealed by EEG time-frequency analyses. Clin Neuro-

physiol 2011, 122: 2177–2184.

20. Li Y, Liu XP, Ling XH, Li JQ, Yang WW, Zhang DK, et al.

Mapping brain injury with symmetrical-channels’ EEG signal

analysis–a pilot study. Sci Rep 2014, 4: 5023.

21. Jin B, So NK, Wang S. Advances of intracranial electroen-

cephalography in localizing the epileptogenic zone. Neurosci

Bull 2016, 32: 493–500.

22. Fraiwan L, Lweesy K, Khasawneh N, Wenz H, Dickhaus H.

Automated sleep stage identification system based on time-

frequency analysis of a single EEG channel and random forest

classifier. Comput Methods Progr Biomed 2012, 108: 10–19.

23. Mirzaei A, Ayatollahi A, Gifani P, Salehi L. EEG analysis based

on wavelet-spectral entropy for epileptic seizures detection.

IEEE. 2010. https://doi.org/10.1109/BMEI.2010.5639894.

24. Gosseries O, Schnakers C, Ledoux D, Vanhaudenhuyse A, Bruno

MA, Demertzi A, et al. Automated EEG entropy measurements

in coma, vegetative state/unresponsive wakefulness syndrome

and minimally conscious state. Funct Neurol 2011, 26: 25–30.

25. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review

of an emerging field. Clin Neurophysiol 2005, 116: 2266–2301.
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