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Abstract The apolipoprotein E (APOE) genotype is an

important risk factor for ageing and age-related diseases.

The APOE4 genotype (in contrast to APOE3) has been

shown to be associated with oxidative stress and chronic

inflammation. Metallothioneins (MT) exhibit antioxidant

and anti-inflammatory activity, and MT overexpression has

been shown to increase lifespan in mice. Interactions

between APOE and MT, however, are largely unknown.

Hence, we determined the effect of the APOE4 versus

APOE3 genotype on MT levels in targeted gene replace-

ment mice. APOE4 versus APOE3 mice exhibited signifi-

cantly lower hepatic MT1 and MT2 mRNA as well as

lower MT protein levels. The decrease in hepatic MT

protein levels in APOE4 as compared to APOE3 mice was

accompanied by lower nuclear Nrf1, a protein partly con-

trolling MT gene expression. Cell culture experiments

using hepatocytes identified allyl-isothiocyanate (AITC) as

a potent MT inductor in vitro. Therefore, we supplemented

APOE3 and APOE4 mice with AITC. However, AITC

(15 mg/kg b.w.) could only partly correct for decreased

MT1 and MT2 gene expression in APOE4 mice in vivo.

Furthermore, cholesterol significantly decreased both Nrf1

and MT mRNA levels in Huh7 cells indicating that dif-

ferences in MT gene expression between the two genotypes

could be related to differences in hepatic cholesterol con-

centrations. Overall, present data suggest that the APOE

genotype is an important determinant of tissue MT levels in

mice and that MT gene expression may be impaired by the

APOE4 genotype.
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Introduction

Apolipoprotein E (APOE) is a 34-kDa protein, containing

299 amino acids, which is mainly synthesized by the liver

but also in brain and macrophages (Newman et al. 1985;

Williams et al. 1985; Basu et al. 1981). The APOE gene is

polymorphic with three common alleles, coding for three

major APOE isoforms designated APOE2, APOE3 and

APOE4. The APOE isoforms differ in the amino acids at

positions 112 and 158 of the mature protein (Weisgraber

et al. 1981). APOE2 has two cysteines, APOE3 has Cys-

112 and Arg-158, and APOE4 has two arginines in these

positions. The three alleles differ in their frequencies:

APOE3 represents 65–70%, while APOE4 carriers account

for up to 15–20% of the Caucasian population (Mahley

et al. 2009). Presence of the APOE4 allele is associated

with a significantly higher risk of age-related chronic dis-

eases including coronary heart disease (CHD) (Humphries

et al. 2001; Stephens et al. 2008) and Alzheimer’s disease

(AD) (Corder et al. 1993). Cohort studies revealed that the

E4 allele of APOE was significantly less frequent in cen-

tenarians than in younger controls (Schachter et al. 1994).

There is increasing evidence demonstrating that APOE4

may be associated with elevated oxidative stress (Dietrich

et al. 2005) and chronic inflammation (Jofre-Monseny et al.

2007), which may in turn contribute to the increased CHD

and AD risk in this subgroup of the population.
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Metallothioneins (MT) are low molecular weight cys-

teine-rich intracellular proteins with a high binding affinity

for essential transition metals, such as zinc and copper.

Metallothioneins exist in different isoforms characterized

by the length of amino acid chain (MT1–MT4), but MT1

and MT2 are the most widely distributed MT isoforms

(Swindell 2011). MT1 and MT2 are expressed in numerous

tissues including liver, kidney, heart and lung. MT gene

transcription is rapidly induced by transition and heavy

metals as well as by oxidative stress (Dalton et al. 1994;

Palmiter 1987). MT exhibit antioxidant properties (Miles

et al. 2000) and may play a role in the prevention of ath-

erosclerosis (Giacconi et al. 2008). MT might prevent high

fat diet-induced cardiac dysfunction (Dong et al. 2007),

and overexpression of MT in the heart has been demon-

strated to increase lifespan in mice (Yang et al. 2006).

Furthermore, overexpression of metal responsive tran-

scription factor 1 (Mtf1) ameliorated lifespan reductions

associated with oxidative stress in Drosophila melano-

gaster (Bahadorani et al. 2010). Nevertheless, the func-

tional role of MT in the ageing process still remains to be

elucidated (Mocchegiani et al. 2011).

The MT promoter comprises several response elements

that regulate its transcription, including the metal response

elements (MRE), which are activated by Mtf1 in the

presence of dietary zinc and copper (Radtke et al. 1993;

Bittel et al. 1998). Furthermore, the antioxidant response

element (ARE) mediates MT expression in response to

reactive oxygen species and may act synergistically with

MRE (Dalton et al. 1994; Andrews 2000). The nuclear

factors erythroid-derived 2-related factor 1 (Nrf1) and

factor 2 (Nrf2), both members of the Cap ‘n’ collar (CNC)

subfamily of basic leucine zipper (ZIP) transcription fac-

tors, bind to ARE (Biswas and Chan 2010; Venugopal and

Jaiswal 1996; Brigelius-Flohe and Flohe 2011). Recent

data indicate that the expression of MT1 and MT2 genes is

largely dependent on Nrf1 (Ohtsuji et al. 2008). Both Nrf1

and Nrf2 bind to ARE, but only Nrf1 may form a complex

that activates transcription of the MT1 gene. Little is

known about the interaction between APOE and MT, both

proteins centrally involved in the ageing process. There-

fore, we investigated the effect of the APOE genotype on

MT levels in APOE3 and APOE4 targeted gene replace-

ment mice.

Allyl-isothiocyanate (AITC) belongs to the family of

isothiocyanates and occurs in many cruciferous vegetables

such as cauliflower, Brussels sprouts, cabbage and kale

(Kushad et al. 1999; Rungapamestry et al. 2006). AITC is

derived from its precursor sinigrin (a glucosinolate) fol-

lowing myrosinase-catalysed hydrolysis (Krul et al. 2002;

Bhattacharya et al. 2010). AITC directly interacts with

sulfhydryl groups (Zhang et al. 2005) and predominantly

conjugates with cysteine residues (Zhang et al. 2010).

AITC has been shown to induce several phase II and

antioxidant enzymes, including GST, HO-1 and NQO1

(Zhang and Talalay 1998; Ye and Zhang 2001; Tang and

Zhang 2004; Jeong et al. 2005; Bogaards et al. 1990;

McWalter et al. 2004). Since AITC has been suggested to

be less cytotoxic than sulforaphane (Wagner et al. 2011),

another isothiocyanate that has been recently reported to

induce MT in human hepatocytes (Hu et al. 2004; Yeh and

Yen 2005), we investigated whether dietary AITC may

induce MT levels in Huh7 cells and could correct for

decreased hepatic MT and Nrf1 mRNA levels in APOE4

mice.

Materials and methods

Mice and diets

Female homozygous APOE3 and APOE4 targeted

replacement mice (6–8 weeks old) ‘humanized’ for the

APOE gene were purchased from Taconic Europe (Ry,

Denmark). In order to verify respective APOE genotypes

of the humanized targeted replacement mice, the two sin-

gle-nucleotide polymorphisms in the APOE gene

(rs429358, rs7412) were determined using TaqMan� SNP

genotyping assays by Applied Biosystems according to

manufacturer’s instructions (Carlsbad CA, USA). In brief,

409 TaqMan� SNP genotyping assay was diluted 1:2 in

TE buffer. Subsequently, the 209 TaqMan� SNP geno-

typing assay was mixed with 29 TaqMan� Universal

Mastermix, bidest. water and DNA to a 19 dilution and a

final reaction volume of 10 ll. For each reaction, 20 ng

DNA was implemented. Control samples with known

APOE genotypes were included. PCR was performed using

a Rotor Gene 3000 thermal cycler (Corbett research). Liver

APOE levels of the two isoproteins were not different

between the two genotypes. Mice were kept in macrolon

cages (3–4 animals per cage) at 21–25�C with a 12-h day–

night cycle and according to the German Regulations for

Animal Welfare approved by the local authority (MLUR,

Kiel, Germany, No. V312-72241.121-33 (88-7/09)). Semi-

synthetic diets (‘Western-type diets’), based on corn starch

(14.5%), casein (17.1%), sucrose (32.8%) and butter fat

(21.2%), containing 48 mg iron, 39 mg zinc and 11 mg

copper per kg diet were purchased from Ssniff Special

Diets (Soest, Germany). Diets and water were provided

ad libitum. Study 1 was conducted using eight APOE3 and

eight APOE4 mice per group, respectively. Study 1 lasted

6 weeks. Samples of study 1 were used for MT, Nrf1, Mtf1

as well as zinc, copper and iron analysis in response to the

APOE genotype. Study 2 was carried out with a two-fac-

torial experimental design. One group of each APOE

genotype was supplemented with either 15 mg AITC/kg
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body weight (Sigma-Aldrich, Steinheim, Germany) or

solvent (PBS) by oral gavage for 7 days. Study 2 was

conducted to determine whether dietary AITC may correct

for decreased hepatic MT and Nrf1 mRNA levels in

APOE4 mice. The experimental designs of mouse study 1

and 2 are summarized in Table 1.

At the end of the experimental trial, mice were fasted for

12 h prior anaesthesia with carbon dioxide and killed by

decapitation. In both mouse studies, food intake (recorded

daily) and final body weights (recorded weekly) were not

significantly different between groups.

Tissue preparation

Liver, heart, kidney and lung were excised and dissected,

one part was stored in RNAlater
TM

(Qiagen, Hilden, Ger-

many), and the remainder was snap-frozen in liquid

nitrogen and stored at -80�C prior usage.

Cell culture

Human hepatoma cells (Huh7; Institute of Applied Cell

Culture, Munich, Germany) were maintained in Dulbecco’s

modified Eagle’s medium containing 4.5 g/l glucose,

4 mmol/l L-glutamine, 1 mmol/l sodium pyruvate, 10%

foetal calf serum (FCS), 100 U/ml penicillin and 100 lg/

ml streptomycin (all PAA, Coelbe, Germany). Cells were

grown in 5% CO2 at 37�C under a humidified atmosphere.

AITC was dissolved in DMSO, and cholesterol was dis-

solved in ethanol. Final solvent concentrations in cell

culture medium were \0.1%.

RNA isolation and real-time PCR

Huh7 cells were seeded at an initial density of 250,000

cells/well in 12-well plates and incubated with medium

supplemented with either AITC (10, 25 lmol/l) or 20 mg/

ml cholesterol for 6 h. RNA from Huh7 cells as well as

from liver, heart, kidney and lung of APOE3 and APOE4

transgenic mice (20–30 mg) was isolated with TRIsure

following the manufacturer’s instructions (Bioline, Luc-

kenwalde, Germany) and quantified photometrically

(Spectrophotometer DU800; Beckman Coulter, Krefeld,

Germany). Primers for murine and human MT1, MT2,

Nrf1, GAPDH and b-actin (Table 2) were designed by

standard tools (Spidey, Primer3, NCBI Blast) and pur-

chased from MWG (Ebersberg, Germany). Quantitative

real-time PCR was performed as one-step procedure using

Sensi-Mix
TM

one-step kit (Quantace, Berlin, Germany) with

SybrGreen detection using the Rotorgene 6000 cycler

(Corbett Life Science, Sydney, Australia). Quantitation

was done by the use of a standard curve. Transcription

levels of target genes were related to transcription of the

housekeeping gene GAPDH or b-actin.

Western blot analysis

Liver nuclear extracts for Western blotting were prepared

as described in Wagner et al. (Wagner et al. 2010).

Membranes were probed with antibodies against Nrf1 and

Mtf1 (1:500; Santa Cruz Biotechnology, Heidelberg, Ger-

many). Target band densities were normalized to the

Table 1 Experimental design of mouse studies 1 and 2

Group n Genotype

Mouse study 1

I 8 APOE3

II 8 APOE4

Group n Genotype AITC (15 mg/kg b.w.)

Mouse study 2

I 6 APOE3 -

II 6 APOE3 ?

III 6 APOE4 -

IV 6 APOE4 ?

Table 2 Primer sequences of

the murine (mm) and human

(hs) primers for PCR analyses

Gene Forward primer Reverse primer

mmMT1 ACCTCCTGCAAGAAGAGCTG GCTGGGTTGGTCCGATACTA

mmMT2 CAAACCGATCTCTCGTCGAT AGGAGCAGCAGCTTTTCTTG

mmNrf1 GGGGACAGAATCACCATTTG GATGCAGGCTGACATTCTGA

mmGAPDH CCGCATCTTCTTGTGCAGT GGCAACAATCTCCACTTTGC

mmb-actin GACAGGATGCAGAAGGAGATTACT TGATCCACATCTGCTGGAAGGT

hsMT1 GCCTCTCAACTTCTTGCTTG ACTTCTCTGATGCCCCTTTG

hsMT2 AAGAAAAGCTGCTGCTCCTG ATCCAGGTTTGTGGAAGTCG

hsNrf1 GGGAGAATGCTGAGTTTCCA ATGAGATCTTGCCACTGCTG

hsGAPDH CAATGACCCCTTCATTGACC GATCTCGCTCCTGGAAGATG

hsb-actin GGATGCAGAAGGAGATCACTG CGATCCACACGGAGTACTTG
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loading control TATA-binding protein (TBP) (1:500; Santa

Cruz Biotechnology, Heidelberg, Germany).

109Cd affinity assay

Total MT was estimated indirectly with the 109Cd-hae-

moglobin binding assay and gamma counting as described

previously (Eaton and Toal 1982).

ICP-AES

Zinc, copper and iron concentrations in liver were deter-

mined by inductively coupled plasma atomic emission

spectrometry (ICP-AES, Unicam 701) as described previ-

ously (Rimbach and Pallauf 1997).

Promoter DNA methylation analysis

The presence of CpG islands within the MT1 and MT2

gene was predicted using the EMBL-EBI Open Software

Suite CpGplot (http://www.ebi.ac.uk/Tools/emboss/cpg

plot/). Quantitative methylation analysis of the two genes

was performed with the MassARRAY� system (Seque-

nom, Hamburg, Germany) at Bioglobe (Hamburg,

Germany) as described previously (Fischer et al. 2010).

The murine H19 gene region served as control (data not

shown).

Statistical analysis

The statistical analysis was performed with SPSS Ver-

sion 15.0 (SPSS GmbH Software, Munich, Germany).

For the comparison of two groups, tissue (Study 1) and

cell culture data were tested for normal distribution

(Kolmogorow-Smirnov and Shapiro-Wilk test) and ana-

lysed by Student’s t-test. For the comparison of cell

culture and mice data (Study 2) with more than two

experimental groups, one-way ANOVA was performed

following post hoc tests (Dunnett-T or Games-Howell).

In the case of non-parametric data, Mann-Whitney U-test

was performed. Results are expressed as means with

standard errors (SEM), and significance was accepted at

p \ 0.05.

Results

In study 1, we determined the effect of the APOE genotype

on tissue metallothionein, Nrf1 and Mtf1 levels as well as

hepatic zinc, copper and iron concentrations in APOE3 and

APOE4 targeted gene replacement mice.

Effect of APOE genotype on hepatic metallothionein

We found significantly lower mRNA steady-state levels of

MT1 and MT2 in the liver of APOE4 in comparison with

APOE3 mice (Fig. 1a, b). The hepatic MT protein level as

measured by the 109Cd affinity assay was significantly

decreased in APOE4 versus APOE3 mice (Fig. 1c). Inter-

estingly, MT1 and MT2 exhibit CpG islands in their pro-

moter regions, suggesting putative regulatory functions

through methylation in these areas. Since we found lower

hepatic mRNA levels of MT1 and MT2 in APOE4 com-

pared to APOE3 mice, we quantified the methylation status

of MT1 and MT2 CpG islands in the liver of APOE4 versus

APOE3 mice. The resulting epigrams revealed that all

samples exhibited similar methylation patterns. We found

no quantitative differences in the promoter methylation of

the MT1 and MT2 gene between APOE4 and APOE3 mice

(Fig. 1d).

Effect of APOE genotype on hepatic Nrf1 and Mtf1

Since gene expression of MT1 and MT2 is, at least partly,

controlled by the transcription factors Nrf1 and Mtf1, we

determined both mRNA and nuclear protein levels of Nrf1

and Mtf1 in the liver of both APOE genotypes. We found

significantly lower Nrf1 mRNA levels (Fig. 2a) and lower

nuclear Nrf1 protein levels in the liver of APOE4 versus

APOE3 mice (Fig. 2b). However, no significant differences

in Mtf1 mRNA and nuclear protein levels of Mtf1 were

found between APOE4 and APOE3 mice (data not shown).

Hepatic zinc, copper and iron concentrations

Since transition metals, including zinc and copper, may

induce metallothionein expression, we determined zinc and

copper levels in the liver of our mice in response to the

APOE genotype. Furthermore, zinc and copper may affect

liver iron levels. However, under our study conditions,

neither zinc nor copper or iron concentrations in the liver

were significantly affected by the APOE genotype

(Fig. 2c–e).

Effect of APOE genotype on metallothionein and Nrf1

levels in heart, kidney and lung

As differences in hepatic gene expression between APOE4

and APOE3 mice were evident, we determined MT1, MT2

and Nrf1 mRNA levels also in heart, kidney and lung in

response to the APOE genotype. In contrast to APOE3

mice, MT1, MT2 and Nrf1 mRNA levels were significantly

lower in heart (Fig. 3a–c), kidney (Fig. 3d–f) and lung

(Fig. 3g–i) of APOE4 animals.
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Effect of AITC on MT and Nrf1 mRNA level in Huh7

cells and liver of APOE transgenic mice

Isothiocyanates are potent inducers of metallothioneins

both in cultured cells (Ernst et al. 2011) and in laboratory

rodents (Hu et al. 2004). As shown in Fig. 4a, allyl-iso-

thiocyanate (AITC) treatment of Huh7 cells at non-cyto-

toxic concentrations resulted in a dose-dependent increase

in MT2 levels. Based on our cell culture data, we per-

formed an additional mouse study (study 2) investigating

whether dietary AITC may correct for decreased hepatic

MT1, MT2 and Nrf1 mRNA levels in APOE4 mice. In

agreement with mouse study 1, APOE4 mice exhibited

lower hepatic MT1, MT2 and Nrf1 mRNA levels as

compared to APOE3 mice in study 2 (Fig. 4b–d). Dietary

AITC could only partly counteract decreased Nrf1 and

MT2 but not MT1 gene expression in our APOE4 mice.

Effect of cholesterol on metallothionein and Nrf1 levels

in Huh7 cells

Treatment of Huh7 cells with cholesterol (at a non-cyto-

toxic concentration) significantly decreased MT2 as well as

Nrf1 levels in Huh7 hepatocytes as summarized in Fig. 5.

Discussion

An important finding of our study is that the APOE4

genotype, in contrast to APOE3, is associated with

decreased MT levels in mice liver, heart, kidney and lung.

MT exhibits antioxidant (Miles et al. 2000) and anti-

inflammatory properties (Inoue et al. 2009). We have

previously shown that the APOE4 genotype is associated

with an altered inflammatory response (Jofre-Monseny

et al. 2007) and differences in the cellular oxidant/antiox-

idant status (Dietrich et al. 2005; Jofre-Monseny et al.

2008a; Huebbe et al. 2007) in cultured cells, mice and

humans. These differences in the inflammatory and oxi-

dant/antioxidant status between the two genotypes may be

partly related to differences in metallothionein levels.

The underlying cellular and molecular mechanisms by

which APOE isoforms may affect tissue metallothionein

levels are largely unknown. Our promoter DNA methyla-

tion analyses suggest that differences in MT gene expres-

sion between APOE3 and APOE4 mice are most likely not

related to differences in the methylation status of both the

MT1 and MT2 promoter. Furthermore, we did not observe

differences in hepatic zinc and copper concentrations, both

known inducers of MT, between the two genotypes. In this

(a)

1.2

(c)(b)

0.0

0.4

0.8

N
rf

1/
G

A
P

D
H

 m
R

N
A

*

*

0.0

0.4

0.8

1.2

M
T

1/
β -

ac
ti

n
 m

R
N

A

*

0.0

0.4

0.8

1.2

M
T

2/
β-

ac
ti

n
 m

R
N

A

0.0

0.4

0.8

1.2

N
rf

1/
β -

ac
ti

n
 m

R
N

A

*

(d) (f)(e)

0.0

0.4

0.8

1.2

M
T

1/
β -

ac
ti

n
 m

R
N

A

0.0

0.4

0.8

1.2
M

T
2/

β-
ac

ti
n

 m
R

N
A

*

(g) (i)(h)

*

0.0

0.4

0.8

1.2

M
T

1/
G

A
P

D
H

 m
R

N
A

APOE3 APOE4

APOE3 APOE4

APOE3 APOE4 APOE3 APOE4

APOE3 APOE4

0.0

0.4

0.8

1.2

M
T

2/
G

A
P

D
H

 m
R

N
A

*

APOE3 APOE4 APOE3 APOE4

APOE3 APOE4

0.0

0.4

0.8

1.2

N
rf

1/
β-

ac
ti

n
 m

R
N

A

*

APOE3 APOE4

Fig. 3 Effect of APOE

genotype on metallothionein 1

(MT1) and 2 (MT2) and Nrf1

mRNA levels (n = 8) as

determined by real-time PCR in

the heart (a–c), kidney (d–f) and

lung (g–i) of APOE3 (open
bars) as compared to APOE4

mice (solid bars). Data are

means ? SEM. Asterisks (*)

indicate significant differences

between APOE3 and APOE4

mice (study 1)

252 Genes Nutr (2012) 7:247–255

123



study, total liver zinc was determined by ICP-AES. How-

ever, we did not measure the free zinc pool in our mice. A

recent study suggests that APOE may affect the free zinc

pool since the level of histochemically reactive zinc was

reduced in the brain of APOE-deficient mice compared to

wild-type animals (Lee et al. 2010). Thus, future studies

are warranted to test the hypothesis whether the free zinc

pool may be differentially regulated in response to the

APOE genotype.

We observed lower nuclear Nrf1 levels in APOE4 ver-

sus APOE3 mice. Nrf1 is an important molecular switch

regulating tissue MT concentration (Ohtsuji et al. 2008).

The decreased Nrf1 and MT levels in APOE4 versus

APOE3 may be due to differences in hepatic cholesterol

concentrations between APOE3 and APOE4 mice. We

have previously shown that APOE4 as compared to

APOE3 mice exhibit elevated liver cholesterol levels

(Graeser et al. 2011). Higher hepatic cholesterol levels in

APOE4 mice may be due to a defective cholesterol reup-

take into the hepatic tissue (Carvalho-Wells et al. 2010).

Therefore, we supplemented Huh7 cells with cholesterol

and determined Nrf1 and MT2 levels, which are highly

expressed in this cell line. Interestingly, cholesterol sig-

nificantly decreased both Nrf1 and MT2 mRNA levels

(Fig. 5), indicating that differences in MT gene expression

between the two genotypes could be partly related to dif-

ferences in hepatic cholesterol concentrations.

Since APOE4 versus APOE3 mice exhibited lower tis-

sue MT levels, we asked the question whether this could be

corrected by dietary factors. Yeh and Yen (Yeh and Yen

2005) reported that the isothiocyanate sulforaphane (SFN)

induces MT in HepG2 hepatocytes. Our recent cell culture

data suggest that allyl-isothiocyanate (AITC) is less cyto-

toxic than SFN but almost equally potent than SFN as far

its anti-inflammatory properties and the induction of stress

response genes are concerned (Wagner et al. 2011). Thus,

we tested AITC for its ability to induce MT2 in Huh7

hepatocytes. Similar to the effects described for SFN (Yeh

and Yen 2005), we observed a dose-dependent induction of

MT2 by AITC in the present cell culture study. However,

in our mouse study, AITC could only partly correct for
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decreased gene expression in APOE4 versus APOE3 mice.

In the present study, mice were supplemented with AITC

only for 1 week and only one AITC concentration was

chosen. It needs to be established if long-term adminis-

tration and higher doses of AITC may be more effective for

inducing MT gene expression in APOE4 mice. Overall,

APOE4 mice appear to be not very responsive towards

Nrf1 and MT induction by AITC. This is in accordance

with our previous findings in mice using flavonoids, indi-

cating that APOE4 versus APOE3 mice exhibited lower

paraoxonase-1 levels that could be better induced by die-

tary quercetin in APOE3 as compared to APOE4 mice

(Boesch-Saadatmandi et al. 2010).

APOE4 affects both morbidity and mortality in humans

(Mahley et al. 2009; Jofre-Monseny et al. 2008b). A dys-

regulation in MT homoeodynamics may adversely affect

age-related chronic diseases (Swindell 2011). Here, we

showed for the first time, a significant interaction between

APOE genotype and MT levels in mice. Future studies are

needed to investigate how this APOE/MT interaction

affects stress response, chronic disease risk and longevity.
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