
REVIEW

Measurement of dietary exposure: a challenging problem
which may be overcome thanks to metabolomics?
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Abstract The diet is an important environmental exposure,

and its measurement is an essential component of much

health-related research. However, conventional tools for

measuring dietary exposure have significant limitations being

subject to an unknown degree of misreporting and dependent

upon food composition tables to allow estimation of intakes

of energy, nutrients and non-nutrient food constituents. In

addition, such tools may be inappropriate for use with certain

groups of people. As an alternative approach, the recent

techniques of metabolite profiling or fingerprinting, which

allows simultaneous monitoring of multiple and dynamic

components of biological fluids, may provide metabolic

signals indicative of food intake. Samples can be analysed

through numerous analytical platforms, followed by multi-

variate data analysis. In humans, metabolomics has been

applied successfully in pharmacology, toxicology and medi-

cal screening, but nutritional metabolomics is still in its

infancy. Biomarkers of a small number of specific foods and

nutrients have been developed successfully but less targeted

and more high-throughput methods, that do not need prior

knowledge of which signals might be discriminatory, and

which may allow a more global characterisation of dietary

intake, remain to be tested. A proof a principle project (the

MEDE Study) is currently underway in our laboratories to test

the hypothesis that high-throughput, non-targeted metabolite

fingerprinting using flow injection electrospray mass spec-

trometry can be applied to human biofluids (blood and urine)

to characterise dietary exposure in humans.
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Introduction

The diet is an important environmental exposure, and many

dietary factors (nutrients and non-nutrients) are associated

with disease prevention or causation [5]. The measurement

of habitual dietary intake is thus an essential component of

much health-related research, which must be both accurate

and applicable to very large numbers of free-living indi-

viduals. This makes measurement of dietary exposure one

of the most challenging problems in nutrition.

Problems with measuring dietary exposure

Conventional tools for collecting quantitative information

on dietary exposure, such as diet diaries, food frequency

questionnaires and 24 h recalls can be unreliable methods

for characterising and quantifying eating behaviour. These

tools are associated with both random and systematic errors

arising from the assessment of the nature and frequency of

food consumption and of portion size, daily variation in

intake, the failure to report usual diet (due to changes in

habits whilst taking part in an investigation or misreporting

of food choice or amount) and the use of food tables to
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convert intakes of foods to intakes of energy, nutrients and

other food components [5]. Bingham and collaborators

investigated the accuracy of several dietary assessment

methods in the UK arm of the European Prospective

Investigation of Cancer and Nutrition (EPIC) by comparing

16 days of weighed records, a food frequency question-

naire (FFQ), a 24-h recall method and a 7-day food diary

[6]. Their data showed that, when compared with weighed

records, the FFQ tended to over-estimate almost all intakes

whereas the 24-h recall under-estimated carbohydrates,

vitamin C and alcohol intakes and the food diary over-

estimated fat intake but under-estimated intakes of carbo-

hydrates and calcium [6]. In addition, such conventional

tools are inappropriate and/or unreliable for certain groups

such as the obese or elderly people, whose self-reported

energy intakes tend to be underestimated, as assessed by

energy expenditure measurements using the doubly label-

led water method [50, 63].

Inaccurate measurement of dietary exposure may make

it difficult or even impossible to detect correlations

between dietary exposure and disease risk. The follow-up

study of markers of aflatoxin exposure in relation to liver

cancer undertaken by Qian and collaborators is a good

example. The relative risk (RR) of cancer, from aflatoxin

consumption for individuals with high dietary exposure,

was only 0.9 and was not significant when exposure was

assessed by frequency of consumption of 45 foods, but the

RR was 59.4 (and highly significant) when exposure was

measured using biomarkers in urine samples [46]. Limi-

tations in the accuracy and/or precision of measurements of

dietary intake may help explain the conflicting results

about the protective effect of micronutrients such as anti-

oxidant vitamins in respect of risk of cancers or of

cardiovascular disease. For example, the associations

between breast cancer risk and dietary carotenoids, retinol,

vitamin C and tocopherols remain uncertain, as demon-

strated by inconsistent results from studies using, even

validated, FFQ [59].

In an attempt to overcome the problems with measuring

dietary exposure with self-reported methods, a number of

biomarkers have been developed which can be used to

validate intake estimates or to act as surrogates for intake

measurements. Such biomarkers include the use of urinary

output of potassium for potassium intakes. The correlation

between intake and excretion can be very good (at least

0.7), even when dietary intakes are calculated from food

tables rather than analysed, as long as sufficient 24 h urine

samples are obtained [5]. Similarly, there are good corre-

lations between individual estimates of protein intake and

the 24-h urine nitrogen output provided, that, the com-

pleteness of the urine collection is checked using an

independent marker e.g. p-aminobenzoic acid [5]. Further,

the fatty acid composition of blood lipids or of adipose

tissue can act as a biomarker of fatty acid intakes. Good

correlations exist between concentrations of pentadecanoic

acid (C15:0) and intake estimates of fats from milk or dairy

products [51, 66]. When total fatty acid intakes were esti-

mated [44], the correlation with the fatty acid composition

of subcutaneous tissue remained good (R = 0.50) for poly-

unsaturated fatty acids, but not for mono-unsaturated or

saturated fatty acids (R = 0.22 and 0.24, respectively)

probably because the latter can be synthesised in the tissues

as well as being obtained from the diet. Whilst such indi-

vidual biomarkers are valuable, they are not suitable for

describing dietary exposure as a whole because they reflect

only a very small range of food constituents. Thus, there is

an urgent need to develop an alternative, non-subjective

tool that can be used to assess the totality of dietary

exposure and which could be applied to relatively large

numbers of individuals at relatively low cost.

Advent of metabolomics approaches

Foods contain thousands of compounds which, upon

digestion and metabolism, give rise to the metabolites

present in body fluids such as blood and urine. In theory, it

should be possible to distinguish which foods have been

eaten and in what amounts from an assessment of the

metabolites in these fluids. However, digestion, transport,

storage, metabolism and excretion of food constituents is a

complex and dynamic process resulting in a myriad of

different metabolites present in a very wide range of con-

centrations. Until very recently, this complexity has meant

that it was virtually impossible to design a strategy for

assessing dietary exposure which would have the techno-

logical reach to address the heterogeneity of metabolites

and have sufficient capacity to cope with large numbers of

samples. Through developments in both technology and in

bioinformatics to support metabolomics approaches, this

situation is changing rapidly [20].

Metabolomics refers to comprehensive and non-selective

analytical chemistry approaches aiming to provide a global

description of all the metabolites present in a biofluid at a

given time [7, 14, 23, 29, 55]. Metabolite contents of

biofluids may be assessed through vibrational spectrometry

platforms, including nuclear magnetic resonance (NMR),

infrared spectroscopy (IR) or Fourier Transform IR (FT-

IR) or by capillary electrophoresis coupled either to ultra-

violet absorbance detection (CE-UV) or to laser induced

florescence detection (CE-LIF). In addition, there are a

range of mass spectrometry (MS) based approaches, some

without any chromatography e.g. flow injection electro-

spray ionisation MS (FIE-MS) and direct infusion MS

(DIMS) and others coupled with a chromatographic step to

first attempt to separate metabolites before detection such
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as gas chromatography (GC–MS), liquid chromatography

(LC-MS) or high pressure liquid chromatography (HPLC-

MS). Any of these chromatographic steps may be followed

by tandem MS or both NMR and MS [55]. The selection of

the most suitable technology is generally a compromise

between speed, selectivity and sensitivity.

Metabolomics datasets have specific characteristics

which require appropriate statistical tools for their analysis.

Indeed, where the intention is to measure simultaneously

the entire metabolite content of biofluid samples collected

from highly complex organisms (humans), the data

produced by metabolomics experiments have enormous

dimensionality (from 200 to 300 signals using GC–MS

with time of flight detectors to about 2,000 using FIE-MS)

and large biological variability [13, 30]. Such dimension-

ality and variance demand the use of powerful, multivariate

data analysis tools for sample classification or discrimina-

tion [13, 21, 23, 30]. One of the best-known of these is

principal component analysis (PCA), an unsupervised

method which assesses natural clustering of sample classes

and can be used to identify extreme outliers. For supervised

analysis, typical multivariate algorithms used to separate

treatment classes are linear discriminant analysis (LDA),

partial least squares (PLS-DA), both discriminant analyses,

and orthogonal projection to latent structures (OPLS), a

form of regression analysis.

To date, metabolomics pipelines, which provide guide-

lines for all the steps from sample collection (with an

appropriate study design), to the identification of two or

more significantly different groups using pattern recogni-

tion statistics, has been applied to microbes, plants and

some rodent models. Investigations with microbes have

included the development of chemical taxonomy approa-

ches to investigate the genetic diversity of fungal

contaminants in food [52] or identity of bacterial species in

mixed populations [57]. In plants, for example, metabolo-

mics has been used to investigate possible unintended

consequences in plants genetically engineered to exhibit

novel enzyme activity [10]. In rodents, metabolomics

approaches have been used in physiological evaluation,

drug safety assessment, characterisation of genetically

modified animal models of disease, and drug therapy

monitoring [8, 34].

Metabolomics approaches applied to measurement

of dietary exposure

In humans, metabolomics has been used mainly in studies

focusing on diagnosis of disease [9, 11, 15, 25, 32, 39, 40, 56,

58], mode of drug/toxin action [4, 31, 36, 42, 47], and

characterisation of novel foods [10, 48]. However, several

recent commentary articles have suggested that metabolomics

will have great value for nutritional studies [12, 16–20, 38,

62, 65] and thus it is timely to exploit this technology plat-

form to assess dietary exposure.

The first published study in which a metabolomics

approach was described in a human nutrition experiment

used NMR technology to monitor the effect of supple-

menting the diet with soy [53]. Only a small number of

plasma samples were available and there was considerable

inter-person variability but, despite these limitations,

careful data pre-processing in combination with powerful

discriminatory analysis grouped the samples into two main

classes that reflected the dietary intervention.

Since then there have been a few studies using the power

of metabolomics to link metabolite contents in human

biofluids to acute or chronic dietary exposure. The study of

urine samples obtained from healthy British and Swedish

subjects revealed characteristic dietary and cultural fea-

tures between the subjects of both countries, such as high

trimethylamine-N-oxide (TMAO)-excretion in the Swedish

population and high taurine-excretion, due to the Atkins

diet [33]. Urine samples have also been used to investigate

responses to ingestion of chamomile (Matricaria recutita)

tea. Despite substantial inter-subject variation in metabolite

profiles, clear differentiation between the samples obtained

before and after chamomile ingestion was achieved with

urinary excretion of hippurate and glycine being important

discriminatory metabolites [60]. The effects of three

experimental diets described as ‘‘vegetarian’’, ‘‘low meat’’,

and ‘‘high meat’’ on urinary metabolite contents were also

investigated [54]. PCA allowed differentiation of the

characteristic metabolic signatures of the diets with crea-

tine, carnitine, acetylcarnitine, and TMAO being elevated

during the high-meat consumption period. Application of

OPLS discriminant analysis allowed the low-meat diet

and vegetarian diet signatures to be characterised, and

p-hydroxyphenylacetate (a microbial-mammalian co-meta-

bolite) was higher in the vegetarian than meat diet samples,

signalling an alteration of the bacterial composition or

metabolism in response to diet [54]. More recently, using

urine samples from the large (4,630 participants) INTER-

MAP epidemiological study, involving 17 population

samples in China, Japan, UK and USA, Holmes and col-

laborators have shown that a metabolomics approach can

be used to distinguish East Asian from Western popula-

tions. In this study novel associations between urinary

metabolites and blood pressure were discovered which

suggested that both dietary factors per se and also altered

gut microbial metabolism may be related to raised blood

pressure [26]. Besides NMR-based technology, reports

describing metabolite analysis using MS-based techniques

in nutrition studies are emerging. For example, studies

of polyphenol concentrations in human urine (using

HPLC-tandem MS) after consumption of six different
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polyphenol-rich beverages showed that concentrations of

chlorogenic acid, gallic acid, epicatechin, naringenin and

hesperetin could be used as specific biomarkers to evaluate

the consumption of coffee, wine, tea, cocoa and citrus

juices, respectively [27].

Selection of metabolomics approaches for

characterising dietary exposure in humans

The nutritional metabolomics studies undertaken in

humans in the last 5–10 years have already demonstrated

the ability of these techniques to measure known, or to

discover new, compounds whose presence in blood or urine

can be correlated with dietary exposure. This biomarker

approach, which focuses on assessing specific biomarkers

in biofluids to reveal the consumption of specific foods

(e.g. TMAO, b-carotene or eicosapentanoic acid concen-

trations to identify high meat, vegetable or oily fish intakes,

respectively), has limitations. Firstly, biomarker assays for

a particular dietary component normally consists of the

measurement of the concentration of one, or a few, blood/

urine metabolites using pure standards as a reference.

Establishment of such assays presupposes sufficient back-

ground knowledge both of the areas of chemistry involved

and the spectrum of metabolic responses to be expected

from ingestion of the target food or food constituent to

allow identification of the appropriate biomarker. For

compounds such as anthocyanins for example, there is little

reliable information on their absorption and metabolism in

human subjects, and available studies have reported con-

tradictory results [28]. Secondly, such approaches may

demand specific extraction/purification procedures and use

detailed, targeted, often low-throughput analytical proce-

dures bespoke for each biomarker.

These targeted metabolomics analyses have been suc-

cessfully applied in pharmacology, toxicology and medical

screening [11, 15, 25, 32, 40, 42, 58], but are not entirely

suitable for the characterisation of dietary exposure. The

problem centres on the fact that currently well over 60% of

the natural metabolites in raw food material have yet to be

structurally characterised [14, 55] and, in consequence, the

fate of such metabolites post-consumption are poorly

understood. In addition, standards for many metabolites

that potentially might be used as biomarkers are simply not

available. With this lack of prior knowledge, the generation

of hypotheses for the development of biomarkers indicative

of exposure to specific food constituents is difficult [43,

45]. Further, any potential bioassays have to cope with

the dynamic nature of metabolite concentrations in body

fluids following food consumption. A logical approach to

work within these limitations is to utilise metabolite

‘‘profiling’’ or ‘‘fingerprinting’’ techniques which allow the

simultaneous monitoring of multiple components of blood/

urine whose, collective, relative behaviour may provide

metabolic signals indicative of food intake. Such profiling/

fingerprinting assays should (1) be sensitive enough to

survey signals from as many metabolites as possible in a

non-biased way to allow the derivation of global metabolite

profile/fingerprint patterns associated with specific features

of diet, (2) not require any direct metabolite identification

to develop a consistent metabolite fingerprint, (3) use

metrics of relative signal ratios, rather than absolute con-

centration, to allow ‘‘normalisation’’ of fingerprints, (4) use

data mining procedures that not only can discriminate

between metabolite fingerprints but which can determine

the most important signals responsible for the differences,

(5) use analytical chemistry procedures in which the rele-

vant fingerprint signals can be linked easily to specific

metabolites.

Non-targeted metabolite profiling, using sensitive ‘‘time

of flight’’ detectors, was used to analyse extracts of raw

food materials [10, 64] and has utility for the detection of

drug metabolites [45]. By attempting to profile all metab-

olite peaks detected automatically by instrument software,

this approach is able to find metabolite differences between

samples without any prior knowledge of which signals

might be discriminatory. However, the use of a chro-

matographic step, to first attempt to separate metabolites

before detection, requires exquisite control over the chro-

matographic process to obtain reproducibility and demands

rigorous approaches to pre-process data to deconvolve,

align and annotate peaks correctly [35].

A more ‘‘global’’ overview of total metabolite compo-

sition can be obtained from much more rapid and

reproducible metabolite fingerprinting techniques which do

not incorporate a chromatographic step. For example,

FT-IR [22] and NMR [37, 61] generate global chemical

fingerprints with little need for specialised sample prepa-

ration [23, 24]. However, these methods are less sensitive

than FIE-MS [3] and, generally, require a further level of

directed analysis to link any differences in wavenumber

(FT-IR) or chemical shifts (NMR) to specific chemistry

[23]. In contrast, fingerprinting techniques based on MS

such as FIE–MS or DIMS offer the advantage that the

measured ‘‘variables’’ [mass-to-charge (m/z) ratios] can be

linked more directly to an individual metabolite using

additional information on atomic mass [1, 2, 10, 42, 49, 52,

58];). FIE-MS fingerprints are developed following ‘‘soft’’

ionisation of the sample during injection over a period of

1–2 min and can be regarded as simplified images of total

sample composition in that the m/z ratios are compiled by

integrating the levels of more than one metabolite (e.g. for

isomers) that give a stable ion from each m/z. During soft

ionisation the main products are charged versions of the

parent molecule; fragmentation products are relatively rare
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and thus the identity of molecules producing signal at a

specific m/z can be investigated directly based on the pre-

dicted mass of the metabolite. The high throughput nature

of FIE-MS is also apparent following data acquisition as

fingerprint data require little, if any, pre-processing prior to

analysis. The ability to analyse rapidly a large number of

samples with minimal data processing provides desirable

attributes for first pass sample analysis in large scale epi-

demiological studies.

Perspectives

Such high-throughput, non-targeted metabolite finger-

printing using FIE-MS has been successfully applied and

validated in the context of the dynamic interaction between

a pathogen and its host, where a time series of leaf tissues

were collected from Brachypodium leaves after infection

with the fungal pathogen Magnaporthe grisea [3, 13, 41].

We are now applying this analytical approach to charac-

terise dietary exposure in humans through measurements

on blood and urine. In the MEDE Study (MEtabolomics to

characterise Dietary Exposure), blood and urine samples

have been collected from healthy volunteers in the fasted

state and after consumption of carefully designed test

meals. The results from the first phase of the MEDE Study

are promising showing that generated metabolite finger-

prints (1) were reproducible within individuals, (2)

discriminated clearly between fasting and fed samples, and

(3) displayed an overall variance dominated by sample

treatment class and not by gender or individual (Favé et al.

Unpublished data). The next phase of the MEDE Study will

investigate the metabolite fingerprints in biofluids from

volunteers exposed to specific test foods including an oily

fish, a wholegrain cereal product, a green vegetable and a

fruit. The MEDE Study is designed to provide proof of

principle that metabolomics approaches can be used to

generate novel biomarkers of dietary intake in circum-

stances where the biofluids have been collected at

3–4 times over a few hours after consumption of the test

meal. Metabolomics might also be useful in characterising

habitual dietary exposure but here the challenge is likely to

be considerably greater. This will require additional sys-

tematic research including investigation of the kinetics of

metabolite transfers between available biofluid pools (e.g.

blood, urine and saliva) and sites of storage or sequestra-

tion e.g. adipose tissue or bone of the metabolites to

identify metabolites with long whole body half-lives which

will be candidates for assessment of sustained (habitual)

exposure.
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