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Abstract Tumor microenvironment is essential for

tumor cell proliferation, angiogenesis, invasion and

metastasis through its provision of survival signals,

secretion of growth and pro-angiogenic factors, and direct

adhesion molecule interactions. This review examines its

importance in the induction of an angiogenic response in

tumors and in multiple myeloma. The encouraging results

of pre-clinical and clinical trials in which tumors have

been treated by targeting the tumor microenvironment are

also discussed.
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Tumor growth and metastasis are angiogenesis

dependent

The current wisdom is that both solid and hematological

tumors are endowed with angiogenic capability and

their growth, invasion and metastasis are angiogenesis

dependent [1]. Judah Folkman, a highly rated pioneer

and researcher in this field wrote: ‘‘Once tumor take

has occurred, early increase in tumor cell population

must be preceded by an increase in new capillaries

that converge upon the tumor’’ [2]. Solid and hematolog-

ical tumors are endowed with angiogenic capability and

their growth, invasion and metastasis are angiogenesis

dependent.

Angiogenesis is important for supplying oxygen, nutri-

ents, growth factors, hormones, and proteolytic enzymes

which control the coagulation and fibrinolytic systems, as

well as dissemination of tumor cells to distal sites. Angi-

ogenesis is controlled by the balance between molecules

that have positive and negative regulatory activity. This

concept led to the notion of the ‘‘angiogenic switch’’,

which depends on an increased production of one or more

positive regulators of angiogenesis [3]. Endothelial cell

turnover in the healthy adult organism is low, the quies-

cence being maintained by the dominant influence of

endogenous angiogenesis inhibitors over angiogenic stim-

uli. In pathological conditions, angiogenesis may be

triggered not only by the overexpression of pro-angiogenic

factors, but also by the down-regulation of inhibitory

factors.

About 30 angiogenic factors have been identified,

including vascular endothelial growth factor (VEGF),

fibroblast growth factor-2 (FGF-2), transforming growth

factor alpha and beta (TGF-a and -b), platelet derived

growth factor (PDGF), tumor necrosis factor alpha (TNF-

a), angiogenin, interleukins (ILs), chemokines and angio-

poietins (Angs). On the other hand, several anti-angiogenic

factors have been described, such as angiostatin, endostatin

and thrombospondin.

Neoplastic cell populations can only form a clinically

observable tumor if the host produces a vascular network

sufficient to sustain their growth. Furthermore, new blood

vessels provide them with a gateway through which to

enter the circulation and metastasize distant sites.
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The importance of microenvironment in tumor growth

Studies on neoplastic transformation have focused on

events that occur within transformed cells. They have

addressed the microenvironment of tumor cells and docu-

mented its importance in supporting tumor progression.

The pathogenesis of most cancers, in fact, includes com-

plex and mutual interactions that affect the number and

phenotype of the tumor cells and various normal stromal

cells. The intricate tumor–microenvironmental interactions

are increasingly recognized as critical features of several

neoplasias.

Tumor cells are surrounded by an infiltrate of inflam-

matory cells: lymphocytes, neutrophils, macrophages and

mast cells, which communicate via a complex network

of intercellular signaling pathways, mediated by surface

adhesion molecules, cytokines and their receptors. This

infiltrate, particularly macrophages, may contribute to

tumor angiogenesis, and there are many reports of associ-

ations between macrophage infiltration, vascularity and

prognosis. Tumor-associated macrophages accumulate in

poorly vascularized hypoxic or necrotic areas [4], and

respond to experimental hypoxia by increasing the release

of VEGF and FGF-2 and a broad range of other factors,

such as TNF-a, urokinase and matrix netalloproteases

(MMPs) [5]. Moreover, activated macrophages synthesize

and release inducible nitric oxide synthase (NOS), which

increases blood flow and promotes angiogenesis [6].

The importance of microenvironment in tumor

metastasis

It has long been accepted that most malignant tumors show

an organ-specific pattern of metastasis. For example, colon

carcinomas metastasize usually to liver and lung but rarely

to bone, skin or brain and almost never to kidneys, intestine

or muscle. In contrast, other tumor entities, such as breast

carcinomas, frequently form metastases in most of these

organs. This specific formation of secondary tumors at

distant sites appears to require a number of steps which

must be successfully completed by metastazing tumor

cells [7].

Various explanations have been proposed for the site

selectivity of blood–bone metastases, including tumor cell

surface characteristics [8, 9], response to organ derived

chemotactic factors [10], adhesion between tumor cells and

the target organ components [11, 12] and response to

specific host tissue growth factors [13]. The relative

importance of pre-existing tumor subpopulations with

specific metastatic properties and the organ environment

characteristics in determining metastatic homing have been

debated [14–16].

An alternative explanation for the different sites of

tumor growth involves interactions between the metastatic

cells and the organ environment, possibly in terms of

specific binding to endothelial cells and responses to

local growth factors. Endothelial cells in the vasculature of

different organs express different cell surface receptors

and growth factors that influence the phenotype of the

corresponding metastases. Greene and Harvey [17] first

suggested that the organ distribution patterns of metastatic

foci were dependent on the formation of sufficient adhe-

sive bonds between arrested tumor cells and endothelial

cells, and they hypothesized that these interactions were

similar to lymphocyte/endothelial cells at the sites of

inflammation.

The development of organ-derived microvascular

endothelial cell cultures has allowed more specific studies

on the preferential homing of tumor cells. Auerbach and

co-workers [18, 19] found that different tumors showed

differences in their adhesive propensity and preference for

different endothelial cells, and in a few cases preferential

adhesion was observed to the endothelial cells derived

from the organ of origin and the target organ.

The ‘‘seed and soil’’ theory

In 1889, the English surgeon Stephen Paget published his

‘‘seed and soil’’ explanation of the non-random pattern of

metastasis, and was the first to suggest that interactions

between tumor cells and host cells in the microenvironment

are critical in regulating tumorigenesis [20]. Certain

favored tumor cells (the ‘‘seed’’), he said, had a special

affinity for the growth-enhancing milieu within specific

organs (the ‘‘soil’’), and hence metastasis only occurred

when the ‘‘seed’’ and the ‘‘soil’’ were compatible.

The importance of several components of the ‘‘soil’’ in

regulating tumor growth has since been emphasised: (1) the

extracellular matrix (ECM); (2) stromal cells and their

growth factors and inhibitors; (3) microvessels and angio-

genic factors; (4) inflammatory cells. There is now

substantial evidence that tumor growth and progression

depend on the cross talk between malignant cells and their

adjacent stromal compartment.

Angiogenesis in multiple myeloma

Multiple myeloma (MM) is a B-cell neoplasm character-

ized by clonal expansion of malignant plasma cells in the

bone marrow, where they proliferate and acquire resistance

to apoptosis and eventually lead to osteolysis, renal dys-

function and anemia. It is still incurable with a median

survival of approximately 4 years.
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Bone marrow angiogenesis plays an important role in

the pathogenesis and progression of MM, as in other

hematological malignancies [21]. Growth is halted and a

dormancy state is induced in the avascular phase (such as

monoclonal gammopathy of undetermined significance

(MGUS), or non-active MM) [22], whereas with clonal

expansion and epigenetic modifications (hypoxia, shear

stress) of the microenvironment tumor plasma cell subsets

switch to an angiogenic phenotype that generates the

‘‘vascular phase’’ (active MM), and involves changes in the

local balance between pro- and anti-angiogenic factors.

The cause of induction of the vascular phase is the

subject of current investigation [23]. Several studies show

overexpression and secretion of VEGF by the clonal

plasma cells. VEGF stimulates proliferation and chemo-

taxis in both endothelial cells (EC) via VEGF receptor-2

(VEGFR-2) and stromal cells via VEGFR-1. These cells

are rapidly phosphorylated by the interaction with VEGF,

and signal via extracellular signal-related kinase-2 (ERK-

2) [24].

A murine model for MM indicates that the switch is

preceded by the expression of mRNA for VEGF and secre-

tion of the protein by plasma cells, and by a shift from CD45

positive to CD45 negative plasma cells that are the VEGF

producers [25]. Accordingly, CD45 expression (as the CD45

positive percentage) by a patient’s bone marrow plasma cells

is inversely correlated with the degree of bone marrow

angiogenesis [26]. Other studies demonstrate that the

expression levels of VEGF, FGF-2 and their receptors

overlap between MGUS, smoldering MM (SMM) and newly

diagnosed MM (NMM). However, 63% of MGUS samples

inhibit angiogenesis in vitro compared to 43% SMM and 4%

NMM. Hence the angiogenic switch from MGUS to NMM is

partly refefable to an increasing tumor burden rather than

increased expression of VEGF and/or FGF-2 and by a loss of

the MGUS anti-angiogenic activity [27].

The importance of microenvironment in regulating

MM angiogenesis

Since MM mainly progresses in the bone marrow, signals

from this microenvironment play a critical role in main-

taining plasma cell growth, migration and survival. The

pathogenesis of most cancers includes complex and mutual

interactions that affect the number and phenotype of the

tumor cells and host stromal cells [28]. Reciprocal positive

and negative interactions between plasma cells and bone

marrow stromal cells (BMSC), namely hematopoietic stem

cells, fibroblasts, osteoblasts/osteoclasts, chondroclasts,

EC, EC progenitor cells, T lymphocytes, macrophages and

mast cells, are mediated by an array of cytokines, recep-

tors, and adhesion molecules. The MM microenvironment

is formed by clonal plasma cells, ECM proteins and

BMSC, which are intimately involved in all biological

stages of intramedullary growth [29]. Interactions between

these components determine the proliferation, migration

and survival of plasma cells, as well as their acquisition of

drug resistance and the development of diseases [30–32].

Receptors expressed by plasma cells, such as aVb3 integrin,

are crucial for their relationships with each other (homo-

typic interrelationships) and with ECM proteins [33]. Very

late activating antigen-4 (VLA-4), leukocyte function-

associated antigen (LFA-1), mucin-1 antigen (MUC-1)

expressed by plasma cells, and vascular cell adhesion

molecule-1 (VCAM-1) and intercellular adhesion mole-

cule-1 (ICAM-1) expressed by BMSC mediate their

heterotypic and homotypic interactions. All these interac-

tions result in enhanced expression and release of cytokines

and growth factors needed for the plasma cell survival [34].

Plasma cells in the bone marrow microenvironment

secrete cytokines, such as TNF-a [35], TGF-b, VEGF,

FGF-2 [36], hepatocyte growth factor/scatter factor (HGF/

SF) [37], Ang-1 and MMPs [36, 38]. Moreover, binding of

plasma cells to BMSC triggers transcription and secretion

by the latter of cytokines, such as IL-6 [39], insulin-like

growth factor (IGF-1) [40] and VEGF [41] and CXCL12/

stromal cell derived factor-1a (SDF-1a) [42], that mediate

cell growth (IL-6, IGF-1, VEGF), survival (IL-6, IGF-1),

drug resistance (IL-6, IGF-1, VEGF), migration (IGF-1,

VEGF, MMPs, SDF-1a) and angiogenesis (VEGF) in the

bone marrow. MM endothelial cells (MMEC) differ from

umbilical vein EC (HUVEC). They produce growth and

invasive factors for plasma cells, including VEGF, FGF-2,

MMP-2, and MMP-9 [43].

Bone marrow MMEC express more mRNA and secrete

larger amounts of the CXC-chemokines CXCL8/IL-8,

CXCL11/interferon-inducible T-cell alpha chemoattractant

(I-TAC), CXCL12/SDF-1a and CCL2/monocyte chemo-

tactic protein-1 (MCP-1) than HUVEC, and paired plama

cells express cognate receptors to a variable extents, which

suggests that paracrine loops between MMEC and plasma

cells involving CXC-chemokines and their receptors are

operative in MM patients and mediate plasma cell prolif-

eration and chemotaxis [42].

This tumor–host interplay highlights a reciprocal rela-

tionship that sustains and promotes the progression of MM

by inducing pathological developments, such as angio-

genesis and osteolysis [29].

How the pro-angiogenic activity of the cytokines in bone

marrow microenvironment may be counteracted

Since the cytokine network between plasma cells and

BMSC in the bone marrow milieu promotes plasma cell
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growth, survival and migration, and plasma cells in the

bone marrow are resistant to conventional agent treatment,

targeting this network constitute a rationale to the treatment

of MM.

Inhibition of NF-kB activity by specific IkB kinase

inhibitor down-regulates IL-6 secretion in BMSC and rela-

ted plasma cell growth [44]. Furthermore, inhibition of either

p38MAPK or TFG-b by specific inhibitors down-regulates

IL-6 secretion in BMSC [45, 46]. Targeting inhibition of

Ras/Raf/MEK/ERK signaling by using the farnesyltrans-

ferase inhibitors (FTI) SCH66336 and R115777 abrogates

plasma cell growth [47]. The proteasome inhibitor bort-

ezomib (formerly PS-341) can overcome the protective

effect of IL-6 against dex-induced apoptosis in MM by

inducing caspase-8, -9, -3 activation, which results in cas-

pase-dependent gp130 cleavage [48, 49]. Moreover,

bortezomib inhibits DNA repair and may restore the sensi-

tivity of MM cells to DNA damaging chemotherapeutic

agents, suggesting that its combination with conventional

chemotherapy may augment clinical effectiveness and

overcome resistance in patients with relapsed or refractory

MM [50].

VEGF and VEGFR inhibitors may offer therapeutic

promise. Thalidomide directly inhibits the growth and

survival of MM cells and/or BMSC, modulates adhesive

interactions between them, and alters the secretion and

bioactivity of cytokines they release into the bone marrow

milieu [51]. Treatment with two classes of thalidomide

analogs, namely selected cytokine inhibitory drugs (Sel-

CiDs) and immunomodulatory drugs (IMiDs), may alter

MM adhesion to BMSC and fibronectin, and abrogate the

up-regulation of IL-6 and VEGF induced by tumor cell

binding. Ongoing studies are evaluating the efficacy of a

humanized monoclonal antibody against VEGF, bev-

acizumab (Avastatin) in patients with relapsed or refractory

MM (with or without thalidomide) [52].

PTK 787/ZK222584 is an oral tyrosine-kinase inhibitor

that also binds VEGFR-1. Hence it acts directly on MM

plasma cells and inhibits the autocrine VEGF/VEGFR-1-

induced plasma cell growth and migration and the para-

crine (IL-6-mediated) growth. PTK/ZK (1.25 mg/day) is

currently being evaluated in clinical phase I trials [53]. The

indazolypyrimidine GW654652 inhibits all three VEGF

receptors with similar potency and the VEGF-triggered

migration activity and proliferation of MM cell lines,

including those sensitive and resistant to conventional

therapy [54]. GW654652 also acts in the bone marrow

milieu, since it inhibits both IL-6 and VEGF secretion, as

well as proliferation of plasma cells induced by their

binding to BMSC; it is anti-angiogenic too since blocks

HUVEC proliferation [54].

The therapeutic action of bortezomib-induced inhibition

of the proteasome in MM is probably a result of direct

cytotoxicity and effects on the bone marrow milieu [49].

The anti-angiogenic effect of bortezomib is another

potential mechanism of its anti-MM activity [55, 56].

Moreover, bortezomib down-regulates caveolin-1 expres-

sion and inhibits caveolin-1 tyrosine phosphorylation,

which are required for VEGF-mediated MM cell migration

on fibronectin, and blocks VEGF-induced tyrosine phos-

phorylation of caveolin-1 in HUVEC, thereby inhibiting

ERK-dependent EC proliferation [52].

High local VEGF concentration in the MM bone mar-

row milieu suppresses the anti-proliferative effect of

several chemotherapeutic agents, hence promoting multi-

drug resistance [57]. Combination of these agents along

with drugs that block VEGF signaling may enhance anti-

MM efficacy by normalizing and sensitizing the tumor

vasculature and improving oxygenation and delivery of

such agents to tumor cells and EC.

Inhibition of wild-type and constitutively activated

FGFR-3 autophosphorylation in human MM cell lines by

the FGFR-specific tyrosine kinase inhibitors SU5402,

SU10991, PD173074 or CHIR258 is associated with

decreased viability and tumor cell growth arrest, both in

vitro and in vivo in a murine model [58–60].

IGF-1 receptor (IGF-1R) inhibition whether by neu-

tralizing anti-IGF-1R specific monoclonal antibodies,

antagonistic peptides, or selective IGF-1R kinase inhibitors

prevents MM cell proliferation by blocking the Ras/Raf/

MAPK and Pl3K/AKT-1 pathways; induces phosphoryla-

tion of proapoptotic FKHR; down-regulates intracellular

anti-apoptotic proteins, and also increases telomerase

activity [40, 61–65].
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