Skip to main content
Log in

Metallic Vessel with Mesh Culture Surface Fabricated Using Three-dimensional Printing Engineers Tissue Culture Environment

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Various culture devices have been developed as fundamental technologies for facilitating bioengineering studies. Culture devices are designed to prepare specific culture environments. Thus, both macrostructures and surface micromorphology should be considered in the device design. Although fabricating devices with elaborate designs incurs high production costs, disposable materials are typically used for culture devices. However, some metallic materials are strong, stable, and biocompatible. Bioengineers have not applied these materials to culture devices because of the difficulty of processing. An emerging technology using three-dimensional (3D) printing has been developed, which can produce complex designs using metal. We demonstrate the applicability and potential of metal 3D printing for fabricating culture devices toward the development of the bioengineering discipline. As a specific example, we fabricated metallic culture devices where the environment of cultured tissues can be improved. One of the biggest factors determining the culture environment is active media supply. To attain active media supply to the tissue, devices having culture surfaces with mesh structures having holes far larger than cells were proposed. Cell sheets were cultured as tissue models, realizing tissue culture with such structures. The cultured tissue showed increased metabolism, indicating enhanced media supply owing to mesh surfaces. The biocompatibility of the 3D printed metal device was confirmed by viability assays on cultured cells, and reusability of the device was confirmed by mechanical and biochemical evaluations. We believe this study serves as a reference for using metallic 3D printing as an option for fabricating culture devices, which will promote bioengineering research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsumoto, E., N. Koide, H. Hanzawa, M. Kiyama, M. Ohta, J. Kuwabara, S. Takeda, and M. Takahashi (2019) Fabricating retinal pigment epithelial cell sheets derived from human induced pluripotent stem cells in an automated closed culture system for regenerative medicine. PLoS One 14: e0212369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Broeckx, S., M. Zimmerman, S. Crocetti, M. Suls, T. Mariën, S. J. Ferguson, K. Chiers, L. Duchateau, A. Franco-Obregón, K. Wuertz, and J. H. Spaas (2014) Regenerative therapies for equine degenerative joint disease: a preliminary study. PLoS One 9: e85917.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Traister, A., R. Patel, A. Huang, S. Patel, J. Plakhotnik, J. E. Lee, M. G. Medina, C. Welsh, P. Ruparel, L. Zhang, M. Friedberg, J. Maynes, and J. Coles (2018) Cardiac regenerative capacity is age- and disease-dependent in childhood heart disease. PLoS One 13: e0200342. (Erratum published 2021, PLoS One 16: e0245808)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakao, M., C. Imashiro, T. Kuribara, Y. Kurashina, K. Totani, and K. Takemura (2019) Formation of large scaffold-free 3-D aggregates in a cell culture dish by ultrasound standing wave trapping. Ultrasound Med. Biol. 45: 1306–1315.

    Article  PubMed  Google Scholar 

  5. Ackermann, M., H. Kempf, M. Hetzel, C. Hesse, A. R. Hashtchin, K. Brinkert, J. W. Schott, K. Haake, M. P. Kühnel, S. Glage, C. Figueiredo, D. Jonigk, K. Sewald, A. Schambach, S. Wronski, T. Moritz, U. Martin, R. Zweigerdt, A. Munder, and N. Lachmann (2018) Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat. Commun. 9: 5088.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Watanabe, M., K. Yano, K. Okawa, T. Yamashita, K. Tajima, K. Sawada, H. Yagi, Y. Kitagawa, K. Tanishita, and R. Sudo (2019) Construction of sinusoid-scale microvessels in perfusion culture of a decellularized liver. Acta Biomater. 95: 307–318.

    Article  PubMed  Google Scholar 

  7. Sakaguchi, K., Y. Tobe, J. Yang, R. Tanaka, K. Yamanaka, J. Ono, and T. Shimizu (2021) Bioengineering of a scaffold-less three-dimensional tissue using net mould. Biofabrication 13: https://doi.org/10.1088/1758-5090/ac23e3.

  8. Esch, E. W., A. Bahinski, and D. Huh (2015) Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14: 248–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oyama, T., C. Imashiro, T. Kuriyama, H. Usui, K. Ando, T. Azuma, A. Morikawa, K. Kodeki, O. Takahara, and K. Takemura (2021) Acoustic streaming induced by MHz-frequency ultrasound extends the volume limit of cell suspension culture. J. Acoust. Soc. Am. 149: 4180.

    Article  PubMed  Google Scholar 

  10. van Duinen, V., D. Zhu, C. Ramakers, A. J. van Zonneveld, P. Vulto, and T. Hankemeier (2019) Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis 22: 157–165.

    Article  CAS  PubMed  Google Scholar 

  11. Park, H. J., Z. Fan, Y. Bai, Q. Ren, Y. Rbaibi, K. R. Long, M. L. Gliozzi, N. Rittenhouse, J. D. Locker, A. C. Poholek, and O. A. Weisz (2020) Transcriptional programs driving shear stress-induced differentiation of kidney proximal tubule cells in culture. Front. Physiol. 11: 587358.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Imashiro, C., B. Kang, Y. Lee, Y. H. Hwang, S. Im, D. E. Kim, K. Takemura, and H. Lee (2021) Propagating acoustic waves on a culture substrate regulate the directional collective cell migration. Microsyst. Nanoeng. 7: 90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anggayasti, W. L., C. Imashiro, T. Kuribara, K. Totani, and K. Takemura (2020) Low-frequency mechanical vibration induces apoptosis of A431 epidermoid carcinoma cells. Eng. Life Sci. 20: 232–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lam, R. H. W., Y. Sun, W. Chen, and J. Fu (2012) Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab. Chip. 12: 1865–1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Talò, G., C. Turrisi, C. Arrigoni, C. Recordati, I. Gerges, M. Tamplenizza, A. Cappelluti, S. A. Riboldi, and M. Moretti (2018) Industrialization of a perfusion bioreactor: prime example of a non-straightforward process. J. Tissue Eng. Regen. Med. 12: 405–415.

    Article  PubMed  Google Scholar 

  16. Imashiro, C., Y. Tokuoka, K. Kikuhara, T. G. Yamada, K. Takemura, and A. Funahashi (2020) Direct cell counting using macro-scale smartphone images of cell aggregates. IEEE Access 8: 170033–170043.

    Article  Google Scholar 

  17. Kato, R., D. Iejima, H. Agata, I. Asahina, K. Okada, M. Ueda, H. Honda, and H. Kagami (2010) A compact, automated cell culture system for clinical scale cell expansion from primary tissues. Tissue Eng. Part C Methods 16: 947–956.

    Article  CAS  PubMed  Google Scholar 

  18. Olmer, R., A. Lange, S. Selzer, C. Kasper, A. Haverich, U. Martin, and R. Zweigerdt (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng. Part C Methods 18: 772–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tauchi, H., C. Imashiro, T. Kuribara, G. Fujii, Y. Kurashina, K. Totani, and K. Takemura (2019) Effective and intact cell detachment from a clinically ubiquitous culture flask by combining ultrasonic wave exposure and diluted trypsin. Biotechnol. Bioprocess Eng. 24: 536–543.

    Article  CAS  Google Scholar 

  20. Fukuma, Y., T. Inui, C. Imashiro, Y. Kurashina, and K. Takemura (2020) Homogenization of initial cell distribution by secondary flow of medium improves cell culture efficiency. PLoS One 15:e0235827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hung, P. J., P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee (2005) A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab. Chip. 5: 44–48.

    Article  CAS  PubMed  Google Scholar 

  22. Yamashita, T., P. Kollmannsberger, K. Mawatari, T. Kitamori, and V. Vogel (2016) Cell sheet mechanics: how geometrical constraints induce the detachment of cell sheets from concave surfaces. Acta Biomater. 45: 85–97.

    Article  CAS  PubMed  Google Scholar 

  23. Sakaguchi, K., T. Shimizu, S. Horaguchi, H. Sekine, M. Yamato, M. Umezu, and T. Okano (2013) In vitro engineering of vascularized tissue surrogates. Sci. Rep. 3: 1316.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Carter, S. S. D., L. Barbe, M. Tenje, and G. Mestres (2020) Exploring microfluidics as a tool to evaluate the biological properties of a titanium alloy under dynamic conditions. Biomater. Sci. 8: 6309–6321.

    Article  CAS  PubMed  Google Scholar 

  25. Time to revise the Sustainable Development Goals. (2020) Nature 583: 331–332.

  26. Sachs, J., G. Schmidt-Traub, and G. Lafortune (2020) Speaking truth to power about the SDGs. Nature 584: 344.

    Article  CAS  PubMed  Google Scholar 

  27. Wu, X., S. Liu, K. Chen, F. Wang, C. Feng, L. Xu, and D. Zhang (2021) 3D printed chitosan-gelatine hydrogel coating on titanium alloy surface as biological fixation interface of artificial joint prosthesis. Int. J. Biol. Macromol. 182: 669–679.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, X., Y. Zhang, and Z. Jin (2022) A review of the biotribology of medical devices. Friction 10: 4–30.

    Article  CAS  Google Scholar 

  29. Enomoto, J., N. Mochizuki, K. Ebisawa, T. Osaki, T. Kageyama, D. Myasnikova, T. Nittami, and J. Fukuda (2016) Engineering thick cell sheets by electrochemical desorption of oligopeptides on membrane substrates. Regen. Ther. 3: 24–31.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Imashiro, C., H. Takeshita, T. Morikura, S. Miyata, K. Takemura, and J. Komotori (2021) Development of accurate temperature regulation culture system with metallic culture vessel demonstrates different thermal cytotoxicity in cancer and normal cells. Sci. Rep. 11: 21466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Imashiro, C., Y. Kurashina, and K. Takemura (2016) Cell patterning method using resonance vibration of a metallic cell cultivation substrate. Adv. Biomed. Eng. 5: 142–148.

    Article  Google Scholar 

  32. Kurashina, Y., M. Hirano, C. Imashiro, K. Totani, J. Komotori, and K. Takemura (2017) Enzyme-free cell detachment mediated by resonance vibration with temperature modulation. Biotechnol. Bioeng. 114: 2279–2288.

    Article  CAS  PubMed  Google Scholar 

  33. Imashiro, C., Y. Ida, S. Miyata, and J. Komotori (2022) Titanium culture vessel capable of controlling culture temperature for evaluation of cell thermotolerance. Mater. Trans. 63: 373–378.

    Article  CAS  Google Scholar 

  34. Buchanan, C. and L. Gardner (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng. Struct. 180: 332–348.

    Article  Google Scholar 

  35. Bou-Ghannam, S., K. Kim, D. W. Grainger, and T. Okano (2021) 3D cell sheet structure augments mesenchymal stem cell cytokine production. Sci. Rep. 11: 8170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imashiro, C. and T. Shimizu (2021) Fundamental technologies and recent advances of cell-sheet-based tissue engineering. Int. J. Mol. Sci. 22: 425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, Y. S., S. E. Noh, S. M. Lim, and D. Kim (2010) Optimization of ex vivo hematopoietic stem cell expansion in intermittent dynamic cultures. Biotechnol. Lett. 32: 1969–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haraguchi, Y., T. Shimizu, T. Sasagawa, H. Sekine, K. Sakaguchi, T. Kikuchi, W. Sekine, S. Sekiya, M. Yamato, M. Umezu, and T. Okano (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat. Protoc. 7: 850–858.

    Article  CAS  PubMed  Google Scholar 

  39. Heidemann, R., D. Lütkemeyer, H. Büntemeyer, and J. Lehmann (1998) Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. Cytotechnology 26: 185–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowler, E., S. Porazinski, S. Uzor, P. Thibault, M. Durand, E. Lapointe, K. M. A. Rouschop, J. Hancock, I. Wilson, and M. Ladomery (2018) Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells. BMC Cancer 18: 355.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tristan, C., N. Shahani, T. W. Sedlak, and A. Sawa (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell. Signal. 23: 317–323.

    Article  CAS  PubMed  Google Scholar 

  42. Colell, A., D. R. Green, and J. E. Ricci (2009) Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 16: 1573–1581.

    Article  CAS  PubMed  Google Scholar 

  43. Corrêa-Giannella, M. L. and U. F. Machado (2013) SLC2A4gene: a promising target for pharmacogenomics of insulin resistance. Pharmacogenomics 14: 847–850.

    Article  PubMed  Google Scholar 

  44. Cairns, R. A., I. S. Harris, and T. W. Mak (2011) Regulation of cancer cell metabolism. Nat. Rev. Cancer 11: 85–95.

    Article  CAS  PubMed  Google Scholar 

  45. Imashiro, C., K. Yamasaki, R. Tanaka, Y. Tobe, K. Sakaguchi, and T. Shimizu (2021) Perfusable system using porous collagen gel scaffold actively provides fresh culture media to a cultured 3D tissue. Int. J. Mol. Sci. 22: 6780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coletti, C., M. J. Jaroszeski, A. Pallaoro, A. M. Hoff, S. Iannotta, and S. E. Saddow (2007) Biocompatibility and wettability of crystalline SiC and Si surfaces. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2007: 5850–5853.

    CAS  PubMed  Google Scholar 

  47. Bonaventura, G., R. Iemmolo, V. La Cognata, M. Zimbone, F. La Via, M. E. Fragalà, M. L. Barcellona, R. Pellitteri, and S. Cavallaro (2019) Biocompatibility between silicon or silicon carbide surface and neural stem cells. Sci. Rep. 9: 11540.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, H. and T. Okano (2015) Cell sheet-based tissue engineering for organizing anisotropic tissue constructs produced using microfabricated thermoresponsive substrates. Adv. Healthc. Mater. 4: 2388–2407.

    Article  CAS  PubMed  Google Scholar 

  49. Plutoni, C., E. Bazellieres, M. Le Borgne-Rochet, F. Comunale, A. Brugues, M. Séveno, D. Planchon, S. Thuault, N. Morin, S. Bodin, X. Trepat, and C. Gauthier-Rouvière (2016) P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J. Cell Biol. 212: 199–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Imashiro, C., M. Hirano, T. Morikura, Y. Fukuma, K. Ohnuma, Y. Kurashina, S. Miyata, and K. Takemura (2020) Detachment of cell sheets from clinically ubiquitous cell culture vessels by ultrasonic vibration. Sci. Rep. 10: 9468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurashina, Y., C. Imashiro, M. Hirano, T. Kuribara, K. Totani, K. Ohnuma, J. Friend, and K. Takemura (2019) Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves. Commun. Biol. 2: 393.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kasai, K., Y. Kimura, and S. Miyata (2017) Improvement of adhesion and proliferation of mouse embryonic stem cells cultured on ozone/UV surface-modified substrates. Mater. Sci. Eng. C Mater. Biol. Appl. 78: 354–361.

    Article  CAS  PubMed  Google Scholar 

  53. Haraguchi, Y., Y. Kagawa, K. Sakaguchi, K. Matsuura, T. Shimizu, and T. Okano (2017) Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae. Sci. Rep. 7: 41594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Castro Monsores, K. G., A. O. da Silva, S. de Sant’ Ana Oliveira, R. P. Weber, P. F. Filho, and S. N. Monteiro (2021) Influence of ultraviolet radiation on polystyrene. J. Mater. Res. Technol. 13: 359–365.

    Article  Google Scholar 

  55. Zhao, X., W. Fu, X. Yang, and T. G. Langdon (2008) Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature. Scr. Mater. 59: 542–545.

    Article  CAS  Google Scholar 

  56. Takada, T., D. Sasaki, K. Matsuura, K. Miura, S. Sakamoto, H. Goto, T. Ohya, T. Iida, J. Homma, T. Shimizu, and N. Hagiwara (2022) Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials 281: 121351.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (20J00337). The authors gratefully acknowledge Dr. Takahiro G. Yamada (Department of Biosciences and Informatics, Keio University) for his assistance with the statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CI, JK, and KS. Data Curation: CI, SM, AE, and TS. Formal Analysis: CI, TM, and MH. Funding Acquisition: CI. Investigation: CI, TM, MH, and AE. Methodology: CI and KS. Project Administration: KS and TS. Resources: JK, SM, KS, and TS. Supervision: KS and TS. Validation: TS. Visualization: CI, TM, MH, and AE. Writing - Original Draft Preparation: CI, TM, MH, and AE. Writing - Review & Editing: JK, SM, KS, and TS

Corresponding authors

Correspondence to Katsuhisa Sakaguchi or Tatsuya Shimizu.

Ethics declarations

T.S. is a stockholder of CellSeed, Inc. Tokyo Women’s Medical University received research funds from CellSeed, Inc.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imashiro, C., Morikura, T., Hayama, M. et al. Metallic Vessel with Mesh Culture Surface Fabricated Using Three-dimensional Printing Engineers Tissue Culture Environment. Biotechnol Bioproc E 28, 181–191 (2023). https://doi.org/10.1007/s12257-022-0227-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0227-1

Keywords

Navigation