Skip to main content
Log in

Introduction of an AU-rich Element into the 5’ UTR of mRNAs Enhances Protein Expression in Escherichia coli by S1 Protein and Hfq Protein

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

AU-rich elements in 5’ untranslated region (UTR) are known to increase translation efficiency by recruiting S1 protein that facilitates the assembly of ribosomes. However, AU-rich elements also serve a binding site for Hfq protein, RNase E, etc. To investigate their roles in translation, mRNAs containing either an AU-rich element, originated from sodB 5’-UTR or a non-AU-rich element were constructed. The non-AU-rich elements were designed to retain the thermodynamics of the AUrich element-containing mRNAs to reduce structural effect on translation. The AU-rich element increased mRNA translation and knock-down of S1 protein decreased the translation of AU-rich element-containing mRNAs, confirming the essential role of S1 protein in translation. When their mRNA levels were measured in hfq-deleted cells, those containing a non-AU-rich element and a high AU-content N-terminal coding sequence decreased, representing an auxiliary role of Hfq in translation, specifically in mRNA protection. Interestingly, despite of decreased mRNA level in hfq-deleted cells, protein production was increased, implying the involvement of unknown factors in translation. Consequently, these results suggest that actively translating ribosomes recruited by S1 protein at an AU-rich element stabilize mRNAs from degradation. In the absence of S1 protein, Hfq protein protects mRNAs from degradation. Moreover, AU-rich elements can be used for improved protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young, C. L., Z. T. Britton, and A. S. Robinson (2012) Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotech. J. 7: 620–634.

    Article  CAS  Google Scholar 

  2. Nallamsetty, S. and D. S. Waugh (2007) A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat. Protoc. 2: 383–391.

    Article  CAS  Google Scholar 

  3. Wang, X., B. Zhou, W. Hu, Q. Zhao, and Z. Lin (2015) Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb. Cell Fact. 14: 88.

    Article  Google Scholar 

  4. Hwang, P. M., J. S. Pan, and B. D. Sykes (2014) Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett. 588: 247–252.

    Article  CAS  Google Scholar 

  5. Salis, H. M., E. A. Mirsky, and C. A. Voigt (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946–950.

    Article  CAS  Google Scholar 

  6. Na, D., S. Lee, and D. Lee (2010) Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst. Biol. 4: 71.

    Article  Google Scholar 

  7. Bonde, M. T., M. Pedersen, M. S. Klausen, S. I. Jensen, T. Wulff, S. Harrison, A. T. Nielsen, M. J. Herrgard, and M. O. A. Sommer (2016) Predictable tuning of protein expression in bacteria. Nat. Methods. 13: 233–236.

    Article  CAS  Google Scholar 

  8. Seo, S. W., J. S. Yang, I. Kim, J. Yang, B. E. Min, S. Kim, and G. Y. Jung (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 15: 67–74.

    Article  CAS  Google Scholar 

  9. Barrick, D., K. Villanueba, J. Childs, R. Kalil, T. D. Schneider, C. E. Lawrence, L. Gold, and G. D. Stormo (1994) Quantitative analysis of ribosome binding sites in E. coli. Nucleic Acids Res. 22: 1287–1295.

    Article  CAS  Google Scholar 

  10. Allert, M., J. C. Cox, and H. W. Hellinga (2010) Multifactorial determinants of protein expression in prokaryotic open reading frames. J. Mol. Biol. 402: 905–918.

    Article  CAS  Google Scholar 

  11. Na, D. and D. Lee (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics. 26: 2633–2634.

    Article  CAS  Google Scholar 

  12. Lotz, T. S. and B. Suess (2018) Small-molecule-binding riboswitches. Microbiol. Spectr. 6: 6.4.26.

    Article  Google Scholar 

  13. Kaberdin, V. R. and U. Bläsi (2006) Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol. Rev. 30: 967–979.

    Article  CAS  Google Scholar 

  14. Hook-Barnard, I. G., T. J. Brickman, and M. A. McIntosh (2007) Identification of an AU-rich translational enhancer within the Escherichia coli fepB leader RNA. J. Bacteriol. 189: 4028–4037.

    Article  CAS  Google Scholar 

  15. Van Assche, E., S. Van Puyvelde, J. Vanderleyden, and H. P. Steenackers (2015) RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front. Microbiol. 6: 141.

    Article  Google Scholar 

  16. Nakagawa, S., Y. Niimura, K. Miura, and T. Gojobori (2010) Dynamic evolution of translation initiation mechanisms in prokaryotes. Proc. Natl. Acad. Sci. USA. 107: 6382–6387.

    Article  CAS  Google Scholar 

  17. Valentin-Hansen, P., M. Eriksen, and C. Udesen (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51: 1525–1533.

    Article  CAS  Google Scholar 

  18. Hoekzema, M., C. Romilly, E. Holmqvist, and E. G. H. Wagner (2019) Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation. EMBO J. 38: e101199.

    Article  Google Scholar 

  19. Na, D., S. M. Yoo, H. Chung, H. Park, J. H. Park, and S. Y. Lee (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.

    Article  CAS  Google Scholar 

  20. Schmittgen, T. D. and K. J. Livak (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101–1108.

    Article  CAS  Google Scholar 

  21. Komarova, A. V., L. S. Tchufistova, E. V. Supina, and I. V. Boni (2002) Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA. 8: 1137–1147.

    Article  CAS  Google Scholar 

  22. Komarova, A. V., L. S. Tchufistova, M. Dreyfus, and I. V. Boni (2005) AU-rich sequences within 5’ untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J. Bacteriol. 187: 1344–1349.

    Article  CAS  Google Scholar 

  23. Geissmann, T. A. and D. Touati (2004) Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J. 23: 396–405.

    Article  CAS  Google Scholar 

  24. Folichon, M., V. Arluison, O. Pellegrini, E. Huntzinger, P. Régnier, and E. Hajnsdorf (2003) The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res. 31: 7302–7310.

    Article  CAS  Google Scholar 

  25. Baek, Y. M., K. J. Jang, H. Lee, S. Yoon, A. Baek, K. Lee, and D. E. Kim (2019) The bacterial endoribonuclease RNase E can cleave RNA in the absence of the RNA chaperone Hfq. J. Biol. Chem. 294: 16465–16478.

    Article  CAS  Google Scholar 

  26. Park, H. S., Y. Ostberg, J. Johansson, E. G. H. Wagner, and B. E. Uhlin (2010) Novel role for a bacterial nucleoid protein in translation of mRNAs with suboptimal ribosome-binding sites. Genes Dev. 24: 1345–1350.

    Article  CAS  Google Scholar 

  27. Mitta, M., L. Fang, and M. Inouye (1997) Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol. Microbiol. 26: 321–335.

    Article  CAS  Google Scholar 

  28. Massé, E. and S. Gottesman (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA. 99: 4620–4625.

    Article  Google Scholar 

  29. Večerek, B., I. Moll, T. Afonyushkin, V. Kaberdin, and U. Bläsi (2003) Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli. Mol. Microbiol. 50: 897–909.

    Article  Google Scholar 

  30. Gold, L., D. Pribnow, T. Schneider, S. Shinedling, B. S. Singer, and G. Stormo (1981) Translational initiation in prokaryotes. Annu. Rev. Microbiol. 35: 365–403.

    Article  CAS  Google Scholar 

  31. Moll, I., T. Afonyushkin, O. Vytvytska, V. R. Kaberdin, and U. Bläsi (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA. 9: 1308–1314.

    Article  CAS  Google Scholar 

  32. McDowall, K. J., S. Lin-Chao, and S. N. Cohen (1994) A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J. Biol. Chem. 269: 10790–10796.

    Article  CAS  Google Scholar 

  33. Markham, N. R. and M. Zuker (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453: 3–31.

    Article  CAS  Google Scholar 

  34. Kerpedjiev, P., S. Hammer, and I. L. Hofacker (2015) Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics. 31: 3377–3379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A5A1025077), and this research was also supported by the Chung-Ang University Research Grants in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dokyun Na.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HM., Ren, J., Kim, W.Y. et al. Introduction of an AU-rich Element into the 5’ UTR of mRNAs Enhances Protein Expression in Escherichia coli by S1 Protein and Hfq Protein. Biotechnol Bioproc E 26, 749–757 (2021). https://doi.org/10.1007/s12257-020-0348-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0348-3

Keywords

Navigation