Skip to main content
Log in

Discovery of a RuBisCO-like Protein that Functions as an Oxygenase in the Novel d-Hamamelose Pathway

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2018

This article has been updated

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key catalyst of CO2 fixation in nature. RuBisCO forms I, II, and III catalyze CO2 fixation reactions, whereas form IV, also called the RuBisCO-like protein (RLP), is known to have no carboxylase or oxygenase activities. Here, we describe an RLP in Ochrobactrum anthropi ATCC 49188 (Oant_3067; HamA) that functions as an oxygenase in the metabolism of d-hamamelose, a branched-chain hexose found in most higher plants. The d-hamamelose pathway is comprised of five previously unknown enzymes: d-hamamelose dehydrogenase, d-hamamelono-lactonase, d-hamamelonate kinase, d-hamamelonate-2′,5-bisphosphate dehydrogenase (decarboxylating), and the RLP 3-keto-d-ribitol-1,5-bisphosphate (KRBP) oxygenase, which converts KRBP to 3-d-phosphoglycerate and phosphoglycolate. HamA represents the first RLP catalyzing the O2-dependent oxidative C–C bond cleavage reaction, and our findings may provide insights into its applications in oxidative cleavage of organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 17 January 2019

    In the 2018 issue of Biotechnology and Bioprocess Engineering (BBE), an error occurred in the research article: Suk Min Kim, Hyun Seung Lim, and Sun Bok Lee (2018) Discovery of a RuBisCO-like Protein that Functions as an Oxygenase in the Novel <Emphasis Type="SmallCaps">d</Emphasis>-Hamamelose Pathway. <Emphasis Type="Italic">Biotechnol. Bioprocess Eng.</Emphasis> 23: 490–499. In Fig. 3, <Emphasis Type="SmallCaps">l</Emphasis>-Lyxose and <Emphasis Type="SmallCaps">l</Emphasis>-Lyxonate should be replaced by <Emphasis Type="SmallCaps">d</Emphasis>-Ribose and <Emphasis Type="SmallCaps">d</Emphasis>-Ribonate, respectively.

References

  1. Griffin, K. L. and J. R. Seemann (1996) Plants, CO2 and photosynthesis in the 21st century. Chem. Biol. 3: 245–254.

    Article  CAS  PubMed  Google Scholar 

  2. Erb, T. J. and J. Zarzycki (2018) A short history of RubisCO: the rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Curr. Op. Biotechnol. 49: 100–107.

    Article  CAS  Google Scholar 

  3. Ellis, R. J. (1979) The most abundant protein in the world. Trends Biochem. Sci. 4: 241–244.

    Article  CAS  Google Scholar 

  4. Tabita, F. R., T. E. Hanson, H. Y. Li, S. Satagopan, J. Singh, and S. Chan (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71: 576–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tabita, F. R., S. Satagopan, T. E. Hanson, N. E. Kreel, and S. S. Scott (2008) Distinct form I, II, III, and IV rubisco proteins from the three kingdoms of life provide clues about RuBisCO evolution and structure/function relationships. J. Exp. Bot. 59: 1515–1524.

    Article  CAS  PubMed  Google Scholar 

  6. Ashida, H., Y. Saito, C. Kojima, K. Kobayashi, N. Ogasawara, and A. Yokota (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302: 286–290

    Article  CAS  PubMed  Google Scholar 

  7. Erb, T. J., B. S. Evans, K. Cho, B. P. Warlick, J. Sriram, B. M. Wood, H. J. Imker, J. V. Sweedler, F. R. Tabita, and J. A. Gerlt (2012) A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat. Chem. Biol. 8: 926–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, S. M., K. H. Paek, and S. B. Lee (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 16: 447–454.

    Article  CAS  PubMed  Google Scholar 

  9. Bae, J., S. M. Kim, and S. B. Lee (2015) Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to Lrhamnose metabolism in archaea. Extremophiles 19: 469–478.

    Article  CAS  PubMed  Google Scholar 

  10. Cho, S. J. and S. B. Lee (2014) Identification and characterization of 3, 6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol. Bioprocess Eng. 19: 1058–1068.

    Article  CAS  Google Scholar 

  11. Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3, 6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess Eng. 19: 866–878.

    Article  CAS  Google Scholar 

  12. Lee, S. B., J. A. Kim, and H. S. Lim (2016) Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl. Microbiol. Biotechnol. 100: 4109–4121.

    Article  CAS  PubMed  Google Scholar 

  13. Morinaga, T., H. Ashida, and K. Yoshida (2010) Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology 156: 1538–1546.

    Article  CAS  PubMed  Google Scholar 

  14. Johnsen, U., M. Dambeck, H. Zaiss, T. Fuhrer, J. Soppa, U. Sauer, and P. Schonheit (2009) D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 284: 27290–27303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geddes, B. A., B. S. Pickering, N. J. Poysti, H. Collins, H. Yudistira, and I. J. Oresnik (2010) A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti. Microbiology 156: 2970–2981.

    Article  CAS  PubMed  Google Scholar 

  16. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  17. Hricovíniová, Z., M. Hricovíni, and L. Petruš (1998) Stereospecific molybdic acid-catalyzed isomerization of D-fructose to branched-chain aldose. The synthesis of D-hamamelose. Chem. Papers 52: 692–698.

    Google Scholar 

  18. Moore, S. and K. P. Link (1940) Carbohydrate Characterization I. The oxidation of aldoses by hypoiodite in methanol, II. The identification of seven aldo-monosaccharides as benzimidazole derivatives. J. Biol. Chem. 133: 293–311.

    CAS  Google Scholar 

  19. Weimberg, R. (1959) L-2-Keto-4,5-dihydroxyvaleric acid: an intermediate in the oxidation of L-arabinose by Pseudomonas saccharophila. J. Biol. Chem. 234: 727–732.

    CAS  PubMed  Google Scholar 

  20. Wu, J. T., L. H. Wu, and J. A. Knight (1986) Stability of NADPH: effect of various factors on the kinetics of degradation. Clin. Chem. 32: 314–319.

    CAS  PubMed  Google Scholar 

  21. Kim, S. and S. B. Lee (2006) Characterization of Sulfolobus solfataricus 2-keto-3-deoxy-D-gluconate kinase in the modified Entner-Doudoroff pathway. Biosci. Biotechnol. Biochem. 70: 1308–1316.

    Article  CAS  PubMed  Google Scholar 

  22. Gutteridge, S., M. A. J. Parry, S. Burton, A. J. Keys, A. Mudd, J. Feeney, J. C. Servaites, and J. Pierce (1986) A nocturnal inhibitor of carboxylation in leaves. Nature 324: 274.

    Article  CAS  Google Scholar 

  23. Ulrich, E. L., H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin, M. Livny, S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie, R. Kent Wenger, H. Yao, and J. L. Markley (2007) BioMagResBank. Nucleic Acids Res. 36: D402–D408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beck, E., H. Stransky, and M. Fürbringer (1971) Synthesis of hamamelose-diphosphate by isolated spinach chloroplasts. FEBS Lett. 13: 229–234.

    Article  CAS  PubMed  Google Scholar 

  25. Sellmair, J., E. Beck, O. Kandler, and A. Kress (1977) Hamamelose and its derivatives as chemotaxonomic markers in the genus Primula. Phytochemistry 16: 1201–1204.

    Article  CAS  Google Scholar 

  26. Yoshimura, J. (1984) Synthesis of branched-chain sugars. Carbohydr. Chem. Biochem. 42: 69–134.

    Article  CAS  Google Scholar 

  27. Zhang, X., M. S. Carter, M. W. Vetting, B. San Francisco, S. Zhao, N. F. Al-Obaidi, J. O. Solbiati, J. J. Thiaville, V. de Crecy-Lagard, M. P. Jacobson, S. C. Almo, and J. A. Gerlt (2016) Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113: E4161–4169.

    Article  CAS  PubMed  Google Scholar 

  28. Logue, M. W., R. M. Pollack, and V. P. Vitullo (1975) Nature of the transition state for the decarboxylation of ß-keto acids. J. Am. Chem. Soc. 97: 6868–6869.

    Article  CAS  Google Scholar 

  29. Lorimer, G. H., T. J. Andrews, and N. E. Tolbert (1973) Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry 12: 18–23.

    Article  CAS  PubMed  Google Scholar 

  30. Hartman, F. C. and M. R. Harpel (1994) Structure, function, regulation, and assembly of D-ribulose-1, 5-bisphosphate carboxylase/ oxygenase. Annu. Rev. Biochem. 63: 197–232.

    Article  CAS  PubMed  Google Scholar 

  31. Tcherkez, G. (2016) The mechanism of rubisco-catalysed oxygenation. Plant Cell Environ. 39: 983–997.

    Article  CAS  PubMed  Google Scholar 

  32. Portis, A. R. and M. A. Parry (2009) rubisco. In Encyclopedia of Life Sciences; John Wiley, Chichester, DOI: 10.1002/9780470015902.a0001293.pub2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Lim, H.S. & Lee, S.B. Discovery of a RuBisCO-like Protein that Functions as an Oxygenase in the Novel d-Hamamelose Pathway. Biotechnol Bioproc E 23, 490–499 (2018). https://doi.org/10.1007/s12257-018-0305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0305-6

Keywords

Navigation