Skip to main content
Log in

Bioaccumulation of Arsenic in recombinant Escherichia coli expressing human metallothionein

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The recombinant Escherichia coli (E. coli) expressing human hepatic metallothionein_IA (hMT_IA) was constructed for bioaccumulation of Arsenic (As). The gene sequence of hMT_IA was modified for codon preference of E. coli and synthesized using chemical method. The vector of pGEX_4T_1 was used and hMT_IA was expressed as the fusion protein with glutathione S-transferase (GST) tag. The bioaccumulation capability of arsenite compounds As(III) of the recombinant E. coli increased more than 3-fold from 76.3 to 319.6 µg/g dry cells compared with the control. The conditions of 50 µM of As(III) and low pHs were optimal for As(III) bioaccumulation. The heavy metals of Cd, Hg, and Zn inhibited As(III) bioaccumulation. The bioaccumulation reached 70% of the saturated value within 1 h. The recombinant E. coli will be useful in bioremediation of arsenic or other kinds of heavy metal contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macy, J. M., K. Nunan, K. D. Hagen, D. R. Dixon, P. J. Harbour, M. Cahill, and L. I. Sly (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46: 1153–1157.

    Article  CAS  Google Scholar 

  2. Kostal, J., R. Yang, C. H. Wu, A. Mulchandani, and W. Chen (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl. Environ. Microbiol. 70: 4582–4587.

    Article  CAS  Google Scholar 

  3. Han, F. X., Y. Su, D. L. Monts, M. J. Plodinec, A. Banin, and G. E. Triplett (2003) Assessment of global industrialage anthropogenic arsenic contamination. Naturwissenschaften. 90: 395–401.

    Article  CAS  Google Scholar 

  4. Merrifield, M. E., T. Ngu, and M. J. Stillman (2004) Arsenic binding to Fucus vesiculosus metallothionein. Biochem. Biophys. Res. Commun. 324: 127–132.

    Article  CAS  Google Scholar 

  5. Kessel, M., S. X. Liu, A. Xu, R. Santella, and T. K. Hei (2002) Arsenic induces oxidative DNA damage in mammalian cells. Mol. Cell. Biochem. 234-235: 301–308.

    Article  Google Scholar 

  6. Ninomiya, M., T. Kajiguchi, K. Yamamoto, T. Kinoshita, N. Emi, and T. Naoe (2006) Increased oxidative DNA products in patients with acute promyelocytic leukemia during arsenic therapy. Haematologica. 91: 1571–1572.

    CAS  Google Scholar 

  7. Karagas, M. R., T. D. Tosteson, J. Blum, J. S. Morris, J. A. Baron, and B. Klaue (1998) Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Environ. Health Perspect. 106: 1047–1050.

    Article  Google Scholar 

  8. Neff, J. M. (1997) Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem.16: 917–927.

    Article  CAS  Google Scholar 

  9. Ferguson, J. F. and J. Gavis (1972) A review of the arsenic cycle in natural water. Water Res. 6: 1259–1274.

    Article  CAS  Google Scholar 

  10. Katsoyiannis, I., A. Zouboulis, H. Althoff, and H. Bartel (2002) As(III) removal from groundwaters using fixedbed upflow bioreactors. Chemosphere 47: 325–332.

    Article  CAS  Google Scholar 

  11. Zhang, Q. L., N. Y. Gao, Y. C. Lin, B. Xu, and L. S. Le (2007) Removal of arsenic(V) from aqueous solutions using iron-oxide-coated modified activated carbon. Water Environ. Res. 79: 931–936.

    Article  CAS  Google Scholar 

  12. Malik, A. (2004) Metal bioremediation through growing cells. Environ. Int. 30: 261–278.

    Article  CAS  Google Scholar 

  13. Kuyucak, N. and B. Volesky (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett. 10: 137–142.

    Article  CAS  Google Scholar 

  14. Gadd, G. M. (1990) Metaltolerance. pp. 178–210. In C. Edwards (eds.). Microbiology of extreme environments. McGraw-Hill, NY, USA.

    Google Scholar 

  15. Gadd, G. M. and C. White (1993) Microbial treatment of metal pollution-a working biotechnology? Trends Biotechnol. 11: 353–359.

    Article  CAS  Google Scholar 

  16. Hamer, D. H. (1986) Metallothionein. Annu. Rev. Biochem. 55: 913–951.

    CAS  Google Scholar 

  17. Kapoor, A. and T. Viraraghavan (1995) Fungal biosorption- an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53: 195–206.

    Article  CAS  Google Scholar 

  18. Yanish-Perron, C., J. Vieira, and J. Messing (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene. 33: 103–119.

    Article  Google Scholar 

  19. Zhao, Q., X. M. Liu, Y. Zhan, J. Q. Lin, W. M. Yan, J. Bian, and Y. Liu (2005) Construction of an engineered Acidithiobacillus caldus with high-efficiency arsenic resistance. Wei Sheng Wu Xue Bao. 45: 675–679.

    CAS  Google Scholar 

  20. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., pp. 1175–1182. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  21. Ru, B. G., A. H. Pan, B. Q. Huang, and J. Y. Zhang (1991) Metallothionein. Adv. Biochem. Biophys. 4: 254–259, 289.

    Google Scholar 

  22. Jiang, G., Z. Gong, X. F. Li, W. R. Cullen, and X. C. Le (2003) Interaction of trivalent arsenicals with metallothionein. Chem. Res. Toxicol. 16: 873–880.

    Article  CAS  Google Scholar 

  23. Duncan, K. E. R., T. T. Ngu, J. Chan, M. T. Salgado, M. E. Merrifield, and M. J. Stillman (2006) Peptide folding, metal-binding mechanisms, and binding site structures in metallothioneins. Exp. Biol. Med. 231: 1488–1499.

    CAS  Google Scholar 

  24. Liu, J., Y. Liu, R. A. Goyer, W. Achanzar, and M. P. Waalkes (2000) Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol. Sci. 55: 460–467.

    Article  CAS  Google Scholar 

  25. Chen, S. and D. B. Wilson (1997) Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation 8: 97–103.

    Article  CAS  Google Scholar 

  26. Tian, K. L., J. Q. Lin, X. M. Liu, Y. Liu, C. K. Zhang, and W. M. Yan (2003) Conversion of an obligate autotrophic bacteria to heterotrophic growth: expression of a heterogeneous phosphofructokinase gene in the chemolithotroph Acidithiobacillus thiooxidans. Biotechnol. Lett. 25: 749–754.

    Article  CAS  Google Scholar 

  27. Lin, J. Q., J. B. Peng, and W. M. Yan (2001) Progress of the studies on gene transfer system of Thiobacillus Ferrooxidans. Chinese J. Appl. Environ. Biology 193-196.

  28. Tripathi, R. D., S. Srivastava, S. Mishra, N. Singh, R. Tuli, D. K. Gupta, and F. J. M. Maathuis (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol. 25: 158–165.

    Article  CAS  Google Scholar 

  29. Valls, M., R. Gonzalez-Duarte, S. Atrian, and V. De Lorenzo (1998) Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs. Biochimie. 80: 855–861.

    Article  CAS  Google Scholar 

  30. Kao, W. C., Y. P. Chiu, C. C. Chang, and J. S. Chang (2006) Localization Effect on the Metal Biosorption Capability of Recombinant Mammalian and Fish Metallothioneins in Escherichia coli. Biotechnol. Prog. 22: 1256–1264.

    CAS  Google Scholar 

  31. Bae, W., A. Mulchandani, and W. Chen (2002) Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J. Inorg. Biochem. 88: 223–227.

    Article  CAS  Google Scholar 

  32. Kim, S. K., B. S. Lee, D. B. Wilson, and E. K. Kim (2005) Selective cadmium accumulation using recombinant Escherichia coli. J. Biosci. Bioeng. 99: 109–114.

    Article  CAS  Google Scholar 

  33. Xiong, Y. and B. Ru (1997) Purification and characteristics of recombinant mouse metallothionein-I from Escherichia coli. J. Biochem. 121: 1102–1106.

    CAS  Google Scholar 

  34. Chen, S. and D. B. Wilson (1997) Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg(2+)-contaminated environments. Appl. Environ. Microbiol. 63: 2442–2445.

    CAS  Google Scholar 

  35. Takeuchi, M., H. Kawahata, L. P. Gupta, N. Kita, Y. Morishita, Y. Ono, and T. Komai (2007) Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 127: 434–442.

    Article  CAS  Google Scholar 

  36. Teclu, D., G. Tivchev, M. Laing, and M. Wallis (2008) Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res. 42: 4885–4893.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Qun Lin or Jian-Qiang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, YJ., Lin, JQ., Lin, JQ. et al. Bioaccumulation of Arsenic in recombinant Escherichia coli expressing human metallothionein. Biotechnol Bioproc E 14, 565–570 (2009). https://doi.org/10.1007/s12257-008-0197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0197-y

Keywords

Navigation