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Summary Imaging plays a major role in the diagnosis,
treatment, and follow-up of breast cancer. Findings
that require further assessment will be detected both
at screening and curative mammography. Most find-
ings that are further worked up tend to yield benign
diagnoses. Consequently, there is an ongoing search
for new tools to reduce recalls and unnecessary biop-
sies while maintaining or improving cancer detection
rates. The clinically most promising methods in this
respect are described and discussed in this review.
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Introduction

Imaging plays a major role in the diagnosis, treat-
ment, and follow-up of breast cancers. While the
effect of secondary prevention by means of popula-
tion-based mammography screening programs is still
a matter of debate, the majority of expert societies
are clearly in favor of mammographic screening [1].
Although imaging is considered the most efficient
diagnostic test for detecting breast cancer, screen-
ing mammography does not yield perfect results. In
dense breasts, cancers that do not present as mam-
mographic microcalcifications are easily missed and
mammographic findings such asmasses, architectural
distortions, asymmetries, and microcalcifications are
not specific for breast cancer. As the aim of imaging
is to detect cancer, the reader will regularly choose
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a diagnostic decision leading to further work-up by
additional imaging, follow-up examinations, and im-
age-guided biopsies, leading to extra costs, anxiety,
and possible physical harm. Therefore, there is an
ongoing search for new diagnostic tools in breast
cancer. Key methods include three-dimensional (3D)
approaches to x-ray mammography (digital breast
tomosynthesis), contrast-enhanced mammography,
quantifiable ultrasound techniques (e. g., shear wave
elastography), and functional magnetic resonance
imaging (MRI; e. g., contrast-enhanced MRI, diffu-
sion-weighted imaging). This review focuses on these
techniques and their potential use in the breast clinic.

Digital breast tomosynthesis

Digital breast tomosynthesis (DBT) has swiftly gained
popularity since its introduction in clinical practice
in the 2000s [2]. DBT is a quasi-3D imaging modal-
ity that, through the acquisition of a limited number
of x-ray projections from a relatively narrow angular
range, allows for the reconstruction of pseudotomo-
graphic images [3].

The position of the patient during the examination
is identical to that of mammography, and the imag-
ing findings are like those of digital mammography, so
that the same diagnostic criteria apply for bothmodal-
ities. Consequently, the learning curve for becoming
accustomed to reading DBT images is rather steep,
a fact that has favored the fast increase of its use in
clinical practice. While initial DBT devices were asso-
ciated with a radiation dose approximately twice that
of digital mammography, current commercial devices
acquire DBT datasets with identical to or only slightly
higher doses than mammography [4].

The currently available evidence demonstrates that
by use of DBT the detection rate of malignant lesions
can be increased. In particular, prospective studies
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Fig. 1 A 48-year-old
woman with invasive duc-
tal breast cancer, G3. The
lesion (dashed circle)
presents as an ill-defined
hypoechogenic lesion on
B-mode ultrasound (a) that
is associated with high SWV
(4.6 m/s), coded redon
the parametric ARFI over-
lay (b). The MRI-DWI scan
of the same lesion shows
a hyperintense lesion (c)
corresponding to restricted
diffusivity (1 * 10–3 mm2/s)
that appears dark on the
quantitative ADC map (d)

performed in a screening setting showed an increased
detection rate from 4.2–6.3/1000 with mammography
to 5.4–8.9 with mammography and DBT [5], with a sig-
nificant increase in detection rates between 0.5 and
2.7/1000 [6]. Retrospective studies showed an increase
in sensitivity from borderline (2%) up to 18%, depend-
ing on the cases included and the readers’ experience
with mammography and DBT [7]. Most of the ad-
ditional cancers found with DBT, in addition, were
invasive rather than in situ carcinomas [8]. Further-
more, false-positive findings leading to unnecessary
recalls and biopsies can be reduced. The reduction
in recall rates is variable, and is strongly related to
the initial recall rate of the screening program where
DBT is introduced. In prospective studies in a screen-
ing setting, recall rates were stable or decreased by up
to 17% [5, 9]. In retrospective studies, specificity im-
proved by up to 20%, with reductions in recall rates of
up to approximately 60% [7–10].

In particular, DBT improves the evaluation of soft
tissue lesions, while allowing for an adequate evalu-
ation of microcalcifications [11]. Although DBT pro-
vides 3D insight into the breast, the community agrees
on the necessity of two-dimensional (2D) images to
facilitate comparison with previous examinations and
the evaluation of microcalcifications. To reduce the

radiation exposure from the two examinations (DBT
and mammography), the acquired DBT data are used
to calculate synthetic 2D mammograms. The syn-
thetic mammogram, despite having a lower image
quality than mammography – e. g., due to motion
artifacts [12] – allows for a diagnostic performance
comparable to that of mammography if read in as-
sociation with DBT [13, 14]. In a screening setting,
the cancer detection rate was above 7.4 per 1000
screenings for DBT with either synthetic 2D mammo-
grams or standard mammograms, with no significant
difference [13].

While the acquisition of both standard mam-
mographic views (craniocaudal and mediolateral
oblique) is required in the clinical setting [15], the
acquisition of a single view has been suggested in the
screening setting, yielding promising results [16].

Therefore, DBT has already been suggested as an al-
ternative to mammography in organized population-
based breast screening programs. Further analysis, on
the other hand, showed that recall rates are not de-
creased in screening programs with already low recall
rates [9, 16]. Data on the effect of DBT on the rate of
interval cancers are still limited [17], and thus its im-
plementation in screening programs is still a matter
of debate.
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Fig. 2 Breast imaging workflow.Boxes represent typical steps
in the breast imaging workflow, logical steps are connected
byarrows.Circles indicate where the new imaging tools dis-
cussed in this article can be of help.ARFIacoustic radiation
force impulse,DBTdigital breast tomosynthesis,DWIdiffusion-
weighted imaging

Contrast-enhanced mammography

The ongoing technological development of dual-en-
ergy technology facilitated the introduction of con-
trast-enhanced mammography. As for DBT, images
are acquired in the same position in which a standard
mammogram is performed.

Before the examination, an iodine-based contrast
medium is injected intravenously. Approximately
2min after the examination, a standard mammogra-
phy examination is performed. The device acquires
two images during the same compression, a low- and
a high-energy image. The low-energy image is used
as standard mammography, while the high-energy
image is post-processed in order to obtain an image
in which only the enhancing lesions are visible [18].

The empirical evidence regarding the use of con-
trast-enhancedmammography is still limited. Ameta-
analysis of the available data demonstrated high sen-
sitivity (91–100%) but heterogeneous and rather low
specificity (32–88%) [19]. In a recent multi-reader
analysis of 178 cancer patients [20], the performance
of contrast-enhanced mammography was found to
be better than mammography alone (area under the
curve 0.84 vs. 0.76) and as good as MRI (0.85).

The examination is well tolerated by patients [21]
and is of only minor risk to patients when guidelines
on the use of iodinated contrast media are followed.

Suggested clinical applications currently overlap
with those of breast MRI, ranging from staging, eval-
uation of inconclusive findings, and even screening
of high-risk patients [18, 19]. Despite the initial pos-
itive results, the available evidence is not sufficient
to recommend a broader use of contrast-enhanced
mammography in breast cancer diagnosis and staging
if mammography, ultrasound, and MRI are available.

Acoustic radiation force impulse imaging

Acoustic radiation force impulse (ARFI) is a relatively
new development in the field of ultrasound elastog-
raphy, aiming to evaluate tissue stiffness. A short-
duration, high-intensity acoustic “pushing pulse” is
transmitted by the probe, which causes subtle dis-
placement of tissue in a perpendicular plane (shear
waves). This is then followed by a series of diagnos-
tic intensity pulses used to track these displacements
[22]. The velocity of the generated shear waves de-
pends on tissue stiffness and is generally higher in
stiffer tissue. ARFI technology enables the qualita-
tive as well as quantitative evaluation of shear wave
velocity (SWV) in vivo with the use of either color-
coded maps or quantification regions of interest. SWV
is measured in meters per second (m/s). Since no
manual compression is necessary, this technique has
proven to be relatively user-independent and repro-
ducible compared with usual strain elastography [22,
23].

Several studies have shown that ARFI can aid to dis-
tinguish benign from malignant breast lesions, using
different reconstruction algorithms. Malignant lesions
are usually stiffer than benign ones and different, yet
quite divergent, cut-off values have been proposed.
In our experience, using the most recent reconstruc-
tion algorithm (Virtual Touch IQ–VTIQ) and very low
precompression (to avoid artificial tissue stiffening),
a cut-off value of 3.23m/s shows a high area under
the receiver operating characteristic (ROC) curve of
0.853 [22]. Other studies using VTIQ proposed in part
similar, in part different cut-off values [23, 24]. It is
evident that more standardization is necessary, espe-
cially regarding the degree of precompression applied.
Currently a large-scale, multicentric trial is underway
to establish generally accepted cut-off values (https://
clinicaltrials.gov/ct2/show/NCT02638935).

As a potential imaging biomarker, an interesting ap-
plication of ARFI may be in “ruling in” or “ruling out”
malignancy (Fig. 1). Initial data show that it is feasi-
ble to downgrade suspicious breast lesions according
to B-mode features without missing any invasive can-
cers or intermediate-to-high-grade in situ carcinomas
if they are associated with a very low SWV. Thus, un-
necessary breast biopsiesmay be avoided in up to 15%
of cases [25]. On the other hand, a lesion demonstrat-
ing a very high SWV is highly likely to be malignant,
irrespective of its B-mode features and re-biopsy may
be indicated in the case of a benign histological result.

Finally, elastography techniques in general have
been shown to aid in the early evaluation of response
to neoadjuvant chemotherapy with progressive tumor
softening in responders. While there is yet no evi-
dence on ARFI in this regard, it can be expected to
provide readily available and quantifiable information
in this setting.
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Diffusion-weighted magnetic resonance imaging

Contrast-enhanced MRI of the breast is the most
sensitive method for detection of breast cancer, in
particular of noncalcified lesions [26, 27]. The high
sensitivity of contrast-enhanced MRI, however, comes
at a price: Many enhancing lesions are not malignant
but benign. Interpretation of breast MRI is experi-
ence-dependent, and inexperienced readers will in
the case of doubt identify a lesion as positive, thus
causing unnecessary biopsies and follow-up exami-
nations [28]. To distinguish benign from malignant
lesions, a variety of diagnostic criteria can be applied
and evidence-based classification rules have been
suggested [29]. Incorporating functional perfusion
and morphological criteria, this algorithm may im-
prove inexperienced reader performance to the level
of experienced radiologists, thereby decreasing inter-
reader variation [30]. In addition, the same formal
algorithm has the potential to decrease unnecessary
biopsies by more than 25% [31]. However, there still is
a need for further simple and, if possible, quantitative
diagnostic criteria.

Diffusion-weighted imaging (DWI) is an MRI tech-
nique that does not require intravenous contrast
medium injection. DWI measures water diffusion
and thus allows conclusions to be drawn about tis-
sue microstructure [32] (Fig. 1). The microstructural
changes that influence water diffusion in neoplastic
breast tissue are still poorly understood: In general,
neoplastic tissues are characterized by changes in cel-
lularity, proteolytic activity, and reactive desmoplastic
induration leading to restricted extracellular water
diffusion. DWI sequences qualitatively assess the
molecular diffusion, which presents as a high signal
when water movements are restricted [32]. Diffusion
can be quantified by calculating the apparent diffu-
sion coefficient (ADC) from raw DWI images. High
ADC values (>1.4 × 10–3mm/s) correspond to high dif-
fusivity, a finding that generally rules out malignancy.
It has been shown that by using a high ADC thresh-
old, unnecessary biopsies may be omitted in different
clinical settings [33, 34]. In addition, quantitative ADC
measurements used as an imaging biomarker allow
invasive breast cancer to be distinguished from in situ
breast cancer with a sensitivity of 78% and a speci-
ficity of 90% (with a threshold of 1.01 × 10mm/s)
[35]. Finally, quantitative ADC is a promising marker
to assess response to neo-adjuvant treatment as it is
sensitive to variations in tumor cellularity and necro-
sis that appear as an increase in ADC values before
changes in lesion size and morphology [36].

Conclusion

In this short review, we described four new techni-
cal developments that aid in breast imaging. While
DBT is expected to improve breast cancer screen-
ing, ARFI and DWI aid in the assessment of breast

lesions (Fig. 2). Contrast-enhanced mammography
would potentially fit in, but the necessity of iodi-
nated contrast media, the non-negligible radiation
exposure, and limited evidence limit its use as basi-
cally all indications would be covered by breast MRI.
The potential of all these techniques lies in avoiding
unnecessary breast biopsies and in functional as-
sessment of response to pharmacological treatment.
Currently, there are still limitations regarding routine
application of these techniques: While DBT has not
yet shown improved screening outcomes, such im-
provements are already conceivable considering the
evidence so far. Both quantitative techniques (ARFI
and DWI) – in particular DWI – have been shown to
have diagnostic value; however, there are unresolved
issues of standardization that currently preclude the
proposal of general thresholds [37]. It is already con-
ceivable that such thresholds need to be established
for each center, leading to new challenges regarding
quality control procedures [38].
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