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Mid-Infrared Imaging Is Able to Characterize and Separate Cancer
Cell Lines

E. Kontsek1 & A. Pesti1 & M. Björnstedt2 & T. Üveges3 & E. Szabó3
& T. Garay1 & P. Gordon4

& S. Gergely3 & A. Kiss1

Received: 23 January 2020 /Accepted: 19 May 2020
# The Author(s) 2020

Abstract
Malignancies are still responsible for a large share of lethalities. Macroscopical evaluation of the surgical resection margins is
uncertain. Big data based imaging approaches have emerged in the recent decade (mass spectrometry, two-photon microscopy,
infrared and Raman spectroscopy). Indocianine green labelled MS is the most common approach, however, label free mid-
infrared imaging is more promising for future practical application. We aimed to identify and separate different transformed
(A-375, HT-29) and non-transformed (CCD986SK) cell lines by a label-free infrared spectroscopy method. Our approach
applied a novel set-up for label-free mid-infrared range classificationmethod. Transflection spectroscopywas used on aluminium
coated glass slides. Both whole range spectra (4000–648 cm−1) and hypersensitive fingerprint regions (1800–648 cm−1) were
tested on the imaged areas of cell lines fixed in ethanol. Non-cell spectra were possible to be excluded based on mean transmis-
sion values being above 90%. Feasibility of a mean transmission based spectra filtering method with principal component
analysis and linear discriminant analysis was shown to separate cell lines representing different tissue types. Fingerprint region
resulted the best separation of cell lines spectra with accuracy of 99.84% at 70–75 mean transmittance range. Our approach
in vitro was able to separate unique cell lines representing different tissues of origin. Proper data handling and spectra processing
are key steps to achieve the adaptation of this dye-free technique for intraoperative surgery. Further studies are urgently needed to
test this novel, marker-free approach.
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Introduction

Malignancies represent a huge burden on the society and the
costs of novel oncological therapies are ever increasing [1].
Moreover, precise, personalized and fast multidisciplinary
team decision is required to start the proper therapy [2].

Positive surgical margin (PSM) means that the resection
margin is not tumor-free. This information is delivered by
the pathology report and influences the therapeutical decision
[3]. In the operating rooms the routine pathology background
is not available on site, however, there is an urgent intraoper-
ative clinical need to gain information on resected tissues,
especially regarding the margins. In such cases intraoperative
questions are raised to be answered by the pathologist who is
situated in another location or building to where fresh tissue
samples must be presented for histopathology. Frozen sec-
tions are cut and stained in the pathology department, which
procedure takes about 15–30 min while the surgeons are
waiting for answers in order to reach clinical decision. This
procedure lengthens the operation time and the frozen sections
deliver less precise morphology due to the lack of proper
dehydration, which increases the uncertainty of diagnoses.

There are intriguing directions concerning the development
of imaging techniques that might be integrated into routine
pathology. These state of the art novel technologies include
mass spectrometry, vibrational microscopy, multi-photon
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microscopy and different applications of confocal technolo-
gies. Several devices and their applications aiming at intraop-
erative imaging and identification of tissue types have reached
the developmental stage, which allows the testing of the po-
tential of these technologies in the operating rooms.
Development of novel methods has recently entered not only
into the phase of experimental setups but also that of possible
application as diagnostic tools. Mass spectrometry analysis of
molecules gained by evaporation of tissues is a destructive
analytic method [4].

Infrared spectroscopy covers a spectral range over 780 nm.
This spectrum is conventionally divided into near-, mid- and
far infrared ranges (NIR 780–2500 nm, MIR 2500–
25,000 nm, FIR higher than 25,000 nm, respectively). The
lower the wavelength, the higher the energy of the light. In
the past decade, tumorous specimens have been increasingly
investigated by infrared spectroscopy based imaging [5–7].
The most frequently used application is still NIR, comingwith
more irradiated energy than MIR and thus deeper penetration
in tissues [8]. Labelled and label-free approaches are used.
There are known and biocompatible NIR active dyemolecules
available. Indocyanine green is the most frequently used in
animal models [9] and its human application has been tested
on liver carcinomas [10]. However, label free MIR is more
promising for future practical application.

MIR spectroscopy fits more into the conventional patho-
logical information, since the MIR photons contain less ener-
gy, consequently their spatial penetration is shorter, moreover,
the signal-to-noise ratio of theMIR spectra is about two orders
of magnitude higher than in case of NIR. In other words, the
analysis of diagnostic MIR spectra is more reliable.

The mid-infrared area (4000–650 cm−1) includes the so-
called fingerprint region (1800–400 cm−1) where peaks repre-
sentative for lipids, protein, amide I/II and nucleic acids [11].
As the name suggests, fingerprint region is a specific part of
the spectrum, generally containing most of the peaks.

Accordingly, the medical application of MIR is fewer than
for NIR. MIR optical fibers have been commercially available
since 2016, whereas previously laboratory tools existed only
[12–14]. In a study, breast cancer imaging of 15 patients was
carried out using mid- and long wave infrared cameras. The
tumorous regions of the breast were identified using a
QuantumWell Infrared Photodetector (QWIP) camera system
[15]. In another study, urine samples from a small cohort of
healthy women as well as female patients with gynaecological
malignancies were investigated with MIR resulting in a high
value of diagnostic accuracy using Principal Component
Analysis (PCA) with support vector machine and genetic al-
gorithm together with Linear Discriminant Analysis (LDA)
algorithms [16]. The effect of basic tissue processing of path-
ological specimens (drying, formalin fixation, ethanol dehy-
dration) onMIR spectrum was tested and an imaging protocol
was proposed by Zahdi et al. [17]. Further investigations

highlighted the pitfalls and best practices of tissue preparation
methods for FT-IR spectroscopic analysis [18].

Gaydou et al took mid infrared imaging as a tool to inves-
tigate cell lines according to their infrared signature [19]. The
cells were fixed in formalin and embedded into paraffin after
centrifugation. Slices 8 μm thick were cut and their infrared
image acquired. From their samples, 2 spectral images were
collected, one from the cell culture and another from the
paraffinized one. For data pre-processing extended multipli-
cative signal correction (EMSC) was used to correct the spec-
tra mathematically.

Mid-infrared imaging could be used to differentiate cell
lines and could be a promising technique for in vivo image
analysis of tumours in animal models. This would be a key
step to achieve the final goal to make this dye-free technique
applicable for intraoperative surgical procedures [20, 21]. This
means, that resection margins can be assessed by MIR
characteristics.

The purpose of the present study was to prove that charac-
teristic fingerprint regions are able to separate different cell
lines representing normal and tumorous tissues by using
label-free mid-infrared imaging.

Materials and Methods

Aluminium Coated Slides

Thin-film metal layers were deposited onto glass slides by
vacuum evaporation to gain mid-infrared reflective surface.
An electron-beam evaporation source was applied in a high-
vacuum chamber, in which the glass slides were fastened onto
the rotary sample holder. Aluminium was evaporated at
10−4 Pa for 20 min at an accelerating voltage of 7 kV and
beam current of 200 mA, resulting in a layer thickness of ca.
150 nm.

Cell Cultures

A-375 melanoma (Suppl. Fig.1a) and HT-29 colorectal hu-
man cancer cells (Suppl. Fig.1b) were obtained from ATCC
(Manassas, Virginia, USA). The CCD986SK fibroblasts
(Suppl. Fig.1c) (human from ATCC) were selected as a non-
neoplastic cell line for comparison. Cell media used were
Dulbecco’s modification of Eagle medium DMEM (Lonza
Group Ltd., Basel, Switzerland) supplemented with 10% fetal
bovine serum (FBS) (Euroclone Ltd., Pero, Italy) and cells
were kept in a humidified incubator at 37 °C and 5% CO2.
For infrared imaging evaluation cells were trypsinized and cell
suspension was dropped on UV sterilized aluminium coated
slides. Slides were placed in Petri dishes and immersed in
phosphate-buffered saline (PBS), Whatman paper was used
to avoid evaporation and the cells were allowed to attach
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overnight in the incubator. On the following day, cells were
fixed using ethanol (EtOH) then washed with PBS and
allowed to dry.

Infrared Imaging

The wavelength range of NIR is defined from 780 to 2500 nm
(12820–4000 cm−1 – since due to the dispersed Fourier-
transform (FT) spectrophotometers the wavenumber is typically
measured in units of cm−1), thewavelengths ofMIR are between
2500 nm and 25,000 nm (4000–400 cm−1) and the FIR range is
between 25 and 1000 μm (400–10 cm−1). The higher the wave-
number, the higher the energy of the light. NIR and MIR pho-
tons elevate the chemical bonds to higher energy level, causing
deformation motions (e.g. angular changes).

Fourier transform mid-infrared imaging was used for
collecting spectra with transflection optical setup. Spotlight
400 mic roscope (Perk in E lmer Inc . , Wa l tham,
Massachusetts, USA) was connected to Spectrum 400 spec-
trophotometer used for scanning images. The Mercury
Cadmium Tellurite (MCT) detector collected spectra with
4000–648 cm−1 wavelength range using step 4 cm−1, resolu-
tion 8 cm−1. The 300 μm× 550 μm images were scanned by
pixel size 6.25 μm× 6.25 μm and 32 scans per pixel. A single
image contained 48 × 88 pixels and resulted 4224 spectra. The
same size areas were selected to image the three cell lines
attached on three separate slides.

Data Processing

Principal Component Analysis

Principal component analysis is an unsupervised variable-
reduction technique. The different effects of the variables
can be visualized through loadings and the scores represent
the samples. A total of 12 PCA models were built to analyse
our data. The obtained spectra can be collected into a table,
where the rows can be referred to as samples and the columns
as variables. In case of a whole range of measured IR spectra
there are 838 wavenumbers (4000–648 cm−1) considered as

variables. An infrared image contains a large amount of data:
x and y set pixel location and each optical frequency band is
described by a variable. This multidimensional dataset can be
processed via data/dimension reduction to keep the variability.
Every spectrum is represented by principal component scores
and can be visualized by plots. Colouring the points makes
human understanding easier. Unscrambler X 10.4 (CAMO
Software AS, Oslo, Norway) software was applied to perform
the PCAs and LDAs.

Atmospheric Correction and Noise Reduction

The presence of H2O and CO2 are mid-infrared absorbing
molecules, hindering the identification of some analytes
[22]. The acquired images were treated with two built-in al-
gorithms of the SpectrumIMAGE R1.6.5.0396 software
(Perkin Elmer Inc., Waltham, Massachusetts, USA) for atmo-
spheric correction and noise reduction. The atmospheric CO2/
H2O suppression by the least square fitting of the algorithm
effected the atmospheric correction of the spectra [23]. The
noise reduction was based on a 20-factor PCA. Since the noise
has lower weights, the 20-factor based reconstructed spectrum
is noise reduced. This method does not lead to the broadening
of the spectrum peaks, unlike smoothing.

Linear Discriminant Analysis

Linear Discriminant Analysis is a supervised classification
method. 12 LDA models were also created and run for further
analysis of our data. LDA is the simplest of all possible classi-
fication methods that are based on Bayes’ formula [24]. It is
based on the normal distribution assumption as well as on the
assumption that the covariance matrices of the two (or more)
groups are identical. The linear method is used when the differ-
ence between two groups can be represented by a linear func-
tion. The confusion matrix is a matrix used for visualization of
classification results from supervised methods such as linear
discriminant analysis classification. It carries information about
the predicted and actual classifications of samples, with each
row showing the instances in a predicted class, and each column

Fig. 1 Intensity of the scattering
light while travelling through
more cells. a: principle of
transflectance b: transflectance of
single cell layer c: overlapping
cells resulting in weak signal (low
mean T%). Spectra of a and c
were removed and final analyses
were done on single cell layer b
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representing the instances in an actual class. The projected spec-
tra can be visualised using two-dimensional spaces. The points
lying close to zero for a class are associated with the class.

Accuracy and Cohen’s Kappa Method

The performance of classification models are most often de-
scribed by their confusion matrix – also known as error ma-
trix. Sensitivity and specificity are interpretable with a 2 × 2
table (binary classifier). Our model has three classes of data,
the three cell lines. Diagonal elements are correctly classified,
the off-diagonal elements represent the number of
misclassified spectra. To compare the performance of the
models, Cohen’s Kappa and accuracy are the two indicators.
The higher the value the better the model performance. The
overall accuracy answers the question how often the classifier
is correct? Cohen’s Kappa is a metric describing the relation
between observed and expected accuracy. It presents the per-
formance of the classification. Landis and Koch consider 0–
0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–
0.80 as substantial, and 0.81–1 as almost perfect [25].

Results

Our novel method used cancer cell line MIR spectra, which
were pre-processed with atmospheric correction and noise re-
duction and were divided into 6 groups according to their
mean transmittance (T%) value, calculated from the whole
4000–648 cm−1 range. These groups of spectra are observable
in Suppl. Fig.2. First, the large amount of measured spectra
had to be prefiltered to eliminate the spectra from cell free
pixels showing too high mean T%, this was then followed
by removing spectra from pixels containing too thick cell
layers (i.e. overlapping cells) resulting in too low mean T%
(Fig. 1). Therefore, the finally analysed population represent-
ed a systematically reduced number of spectra.

In case of HT-29 carcinoma cells some regions were cell-
free (Fig. 2a, the pink areas), some were absorbing too much
light (Fig. 2a, the blue areas).

The final analysis of acquired images was filtered by the
mean transmittance. In case of A375 melanoma cells, the first
group comprised the 0–50% mean T% range, which was
followed by increasing 10% steps till 100% (Suppl. Fig.2).
The spectra with lower than 50 T% were not useful because
the peaks were deformed (e.g. ‘U’ shape of NH bond instead
of typical ‘V’ shape at 3500–3300 cm−1 range). These same
groups of the cell images will be packed together for further
analyses. The remaining 50–80% range was divided into 6
pieces of 5 T% narrow groups (i.e. 50–55%, …, 75–80%).
For each group, PCAs and LDAs were performed on all com-
binations of the spectral range. The reflecting cell-free surface
showed high transmittance (>80%).

Analysing the 5% ranges of human cancer and normal cell
spectra with PCA the 50–55 T% range (out of 6 systematically
tested 5% ranges of spectra) resulted in the best separation
(Suppl, Fig. 3). The 1800–648 cm−1 region performed better
than the whole spectrum range. The fingerprint region (1800–
648 cm−1) absorption bands represented the biological complex-
ity of samples in a more pronounced manner and allowed better
separation. The purpose of PCA discrimination in our method is
the visual testing of the separation, to present qualitative results.
The number of misclassifications must be interpreted with the
actual classes. For this reason, LDA is the chosen supervised
method to classify the cells. Figure 3a shows the confusion
matrix of the whole region 65–70 T% range results. Only 19
non-transformed cell representing data were misclassified.
Figure 3b–d display the spectra points on two-dimension plots.
The tumour representing groups mingled with each other, these
moderated the accuracy, which was 93.92%. Fingerprint region
analysis always resulted in higher accuracy thenwhole spectrum
analysis. The supervised LDAmodels showed satisfying results
on all mean transmittance datasets, both concerning accuracy
and Cohen’s Kappa values, which were high. The exact values
are listed in Table 1 and visualized on Suppl. Fig. 4. The best
separation was reached in the fingerprint region with 70–75 T%
range resulting 99.84% accuracy. All LDA model confusion
matrices are shown in Suppl. Table 1.

Discussion

Complete resection of solid tumours is usually associated with
the best quality of life and possible long term survival of

Fig. 2 Representative images of ethanol fixed HT-29 cells. a: The
complete measured area showing cell-free areas in pink, cells in green
and the thick high absorbing regions as blue b: visible light microscopy
image of the marked area on panel a
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tumour patients. Precise evaluation of the tumour extent and
surgical resection margins requires not only intraoperative
macroscopical observation but histological verifications as
well. Routinely, this is achieved by frozen section technology.
There is a constant need for intraoperative on site method to
assess the resection margins, however, so far no reliable meth-
od gained acceptance in the daily practices of surgical routine.
Jansen-Winkeln et al demonstated a promising dye-free
hyperspectral imaging feasibility study involving 20 patients
who underwent colorectal surgery to determine the resection
margin [26].

In our study, label-free mid infrared imaging was used to
acquire spectra from three human cell lines after ethanol fix-
ation: two different cancer cell lines and one fibroblast cell
line as control. The informative spectra with good signal-to-
noise ratio were selected according to the mean T% of the
whole measured wavenumber region (4000–648 cm−1).

In the present study, we approached the problem from a
general point of view that narrowed the whole image spectra
into an informative subgroup. Mean T% based selection is not
common, since mostly manual selection is used. The advan-
tage of the applied T% selection is its objectivity and repro-
ducibility. This basic mathematical approach allowed us to get
rid of the aluminium background with small T% as well as of
the deformed spectra, owing to e.g. overlapping cells, there-
fore, we were finally able to select the appropriate spectra of
cells. The spectrum with the fingerprint region might be spe-
cific for different normal tissues as well as for different path-
ological alterations including benign and malignant tumours.
This depends on the characteristics of the fingerprint region
and might identify the tissue type or lesion.

The data analysis of Gaydou et al is in contrast with our
approach since we filtered the spectra instead of correcting
them [19]. Due to filtering, the number of spectra was

Fig. 3 a: Confusion matrix of the whole region 65–70 T% LDA. b, c and d are the two dimension plots of projected scores coloured by the cell lines
(A-375 – blue, HT-29 – red, CCD986SK – green)

Table 1 Accuracy and Cohen’s Kappa values of the built LDA models

50_55 T% 55_60 T% 60_65 T% 65_70 T% 70_75 T% 75_80 T%

LDA accuracy(%)

Whole region 4000-650 cm−1 89,220 89,160 92,150 93,920 92,650 91,260

Fingerprint region 1800-650 cm−1 99,400 99,510 97,970 99,250 99,840 99,790

Cohen’s kappa

Whole region 4000-650 cm−1 0,827 0,825 0,872 0,899 0,880 0,858

Fingerprint region 1800-650 cm−1 0,990 0,992 0,967 0,988 0,997 0,997

2405Mid-Infrared Imaging Is Able to Characterize and Separate Cancer Cell Lines



reduced, however, the number of spectra remained unchanged
during correction, while some wavelength values were modi-
fied by the EMSC algorithm. Quality input spectra for the
analysis could be reached by either filtering or correction ap-
proaches. Our novel idea was to calculate the mean T% value
from each spectrum and test this value during the filtering.

The limitation of our model was the transflectance imaging
set-up using aluminium coated glass slides. A possible diag-
nostic tool with a built in endoscope could be based on atten-
uated total reflection [27] or simple transmission by
encompassing the tissue.

PCAs were performed on all the investigated sub-
groups on both the whole (i.e. 4000–648 cm−1) and fin-
gerprint (1800–648 cm−1) regions. As a visual result the
50–55 mean T% range, 1800–648 cm−1 spectra obtained
from ethanol fixed cells presented the best grouping. We
successfully demonstrated the feasibility of our infrared
method to separate different human cell types by their
filtered mid-infrared spectra with highlighted range.
Non-linear supervised computation intensive models
(e.g. artificial neural networks) have spread fast, however,
it is not easy to interpret the results and effects of the
variables. In addition, the risk of overfitting is much
higher than by using PCA [28]. The first two factors de-
scribed for the spectra points for the grouping were sim-
ilar in the majority of our cases, with some overlaps ob-
served in our cases too. In conclusion, our recommenda-
tion is to use the 1800–648 cm−1 MIR spectral range for
diagnostic applications. Based on our results mean T%
based selection should be considered as a spectrum pre-
treatment before analysis.

LDA was chosen as supervised classification method,
which performed satisfactorily on all investigated mean trans-
mittance ranges. The fingerprint region accuracy and Cohen’s
kappa values were constantly higher than the whole region
model results. These indicators of the LDAmodel have shown
an excellent power of classification.

The tumour microenvironment and the normal cell-free
matrix were not investigated, since only tumour cells and nor-
mal cells were compared to each other. As a next step, numer-
ous different normal and transformed cell type spectra should
be collected into a spectra library. The challenging issue is to
identify and image the tumour-infiltrating immune cells in the
stroma of the tumour [29].

Our novel approach showed that after using a generalized
spectra filtering the proper supervised or unsupervised math-
ematical analysis enables the separation of normal and tumor-
ous samples even in case of partially overlapping spectra. This
novel, marker-free approach and the fiber development will
facilitate the spread of new diagnostic in vivo applications of
mid-infrared imaging tools. Our in vitro data suggests that this
novel method can be further developed into an in vivo testing
system which requires further investigations.

Acknowledgments This work was supported by the Higher Education
Excellence Program of the Ministry of Human Capacities in the frame
of Biotechnology research area of Budapest University of Technology
and Economics (BME FIKP-BIO) and grant EFOP-3.6.3-VEKOP-16-
2017-00009.

Funding Information Open access funding provided by Semmelweis
University (SE).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Dolgin E (2018) Bringing down the cost of cancer treatment.
Nature 555(7695):S26–S29. https://doi.org/10.1038/d41586-018-
02483-3

2. Prades J, Remue E, van Hoof E, Borras JM (2015) Is it worth
reorganising cancer services on the basis of multidisciplinary teams
(MDTs)? A systematic review of the objectives and organisation of
MDTs and their impact on patient outcomes. Health Policy 119(4):
464–474. https://doi.org/10.1016/j.healthpol.2014.09.006

3. Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C,
Lippman SM,Messer K,Molinolo A,Murphy JD, Pang J, SaccoA,
Tringale KR, Wallace A, Nguyen QT (2018) Positive surgical mar-
gins in the 10 Most common solid cancers. Sci rep-Uk 8. Doi:
ARTN 5686 10.1038/s41598–018–23403-5

4. Jones EA, Simon D, Karancsi T, Balog J, Pringle SD, Takats Z
(2019) Matrix assisted rapid evaporative ionization mass spectrom-
etry. Anal Chem 91(15):9784–9791. https://doi.org/10.1021/acs.
analchem.9b01441

5. Bunaciu AA, Hoang VD, Aboul-Enein HY (2017) Vibrational
micro-spectroscopy of human tissues analysis: review. Crit Rev
Anal Chem 47(3):194–203. https://doi.org/10.1080/10408347.
2016.1253454

6. Haque A, Faizi MS, Rather JA, Khan MS (2017) Next generation
NIR fluorophores for tumor imaging and fluorescence-guided sur-
gery: a review. Bioorg Med Chem 25(7):2017–2034. https://doi.
org/10.1016/j.bmc.2017.02.061

7. Wolthuis R, Travo A, Nicolet C, Neuville A, Gaub MP, Guenot D,
Ly E, Manfait M, Jeannesson P, Piott O (2008) IR spectral imaging
for histopathological characterization of Xenografted human colon
carcinomas. Anal Chem 80(22):8461–8469. https://doi.org/10.
1021/ac801191x

8. Silva JSF, Silva JYR, de Sa GF, Araujo SS, Filho MAG, Ronconi
CM, Santos TC, Junior SA (2018) Multifunctional system
polyaniline-decorated ZIF-8 nanoparticles as a new chemo-

2406 E. Kontsek et al.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/d41586-018-02483-3
https://doi.org/10.1038/d41586-018-02483-3
https://doi.org/10.1016/j.healthpol.2014.09.006
https://doi.org/10.1021/acs.analchem.9b01441
https://doi.org/10.1021/acs.analchem.9b01441
https://doi.org/10.1080/10408347.2016.1253454
https://doi.org/10.1080/10408347.2016.1253454
https://doi.org/10.1016/j.bmc.2017.02.061
https://doi.org/10.1016/j.bmc.2017.02.061
https://doi.org/10.1021/ac801191x
https://doi.org/10.1021/ac801191x


Photothermal platform for cancer therapy. ACS Omega 3(9):
12147–12157. https://doi.org/10.1021/acsomega.8b01067

9. Oh Y, Quan YH, Choi Y, Kim CK, Kim H, Kim HK, Kim BM
(2013) Intraoperative combined color and fluorescent images-based
sentinel node mapping in the porcine lung: comparison of indocy-
anine green with or without albumin premixing. J Thorac Cardiov
Sur 146(6):1509–1515. https://doi.org/10.1016/j.jtcvs.2013.02.044

10. Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki
T, Hasegawa K, Beck Y, Fukayama M, Kokudo N (2009) Real-
time identification of liver cancers by using Indocyanine green
fluorescent imaging. Cancer 115(11):2491–2504. https://doi.org/
10.1002/cncr.24291

11. Balan V, Mihai CT, Cojocaru FD, Uritu CM, Dodi G, Botezat D,
Gardikiotis I (2019) Vibrational spectroscopy fingerprinting in
medicine: from molecular to clinical practice. Materials 12 (18).
Doi: ARTN 2884 10.3390/ma12182884.

12. Bogomolov A, Belikova V, Zabarylo UJ, Bibikova O, Usenov I,
Sakharova T, Krause H, Minet O, Feliksberger E, Artyushenko V
(2017) Synergy effect of combining fluorescence and mid infrared
fiber spectroscopy for kidney tumor diagnostics. Sensors (Basel)
17(11). https://doi.org/10.3390/s17112548

13. Sojka L, Tang Z, Furniss D, Sakr H, Fang Y, Beres-Pawlik E,
Benson TM, Seddon AB, Sujecki S (2017) Mid-infrared emission
in Tb3+−doped selenide glass fiber. J Opt Soc Am B 34(3):A70–
A79. https://doi.org/10.1364/Josab.34.000a70

14. Nallala J, Lloyd GR, Hermes M, Shepherd N, Stone N (2017)
Enhanced spectral histology in the colon using high-magnification
benchtop FTIR imaging. Vib Spectrosc 91:83–91. https://doi.org/
10.1016/j.vibspec.2016.08.013

15. Joro R, Laaperi AL, Dastidar P, Soimakallio S, Kuukasjarvi T,
Toivonen T, Saaristo R, Jarvenpaa R (2008) Imaging of breast
cancer with mid- and long-wave infrared camera. J Med Eng
Techno l 32 ( 3 ) : 189–197 . h t t p s : / / d o i . o r g / 10 . 1080 /
03091900701234358

16. Paraskevaidi M, Morais CLM, Lima KMG, Ashton KM,
Stringfellow HF, Martin-Hirsch PL, Martin FL (2018) Potential
of mid-infrared spectroscopy as a non-invasive diagnostic test in
urine for endometrial or ovarian cancer. Analyst 143(13):3156–
3163. https://doi.org/10.1039/c8an00027a

17. Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black
MJ (2015) Importance of tissue preparation methods in FTIR
micro-spectroscopical analysis of biological tissues: 'traps for new
users'. PLoS One 10(2):e0116491. https://doi.org/10.1371/journal.
pone.0116491

18. Sreedhar H, Varma VK, Nguyen PL, Davidson B, Akkina S,
Guzman G, Setty S, Kajdacsy-Balla A, Walsh MJ (2015) High-
definition Fourier transform infrared (FT-IR) spectroscopic imag-
ing of human tissue sections towards improving pathology. J Vis
Exp 95:52332. https://doi.org/10.3791/52332

19. Gaydou V, Polette M, Gobinet C, Kileztky C, Angiboust JF,
ManfaitM, Birernbaut P, Piot O (2016)Vibrational analysis of lung
tumor cell lines: implementation of an invasiveness scale based on
the cell infrared signatures. Anal Chem 88(17):8459–8467. https://
doi.org/10.1021/acs.analchem.6b00590

20. Grosserueschkamp F, Kallenbach-Thieltges A, Behrens T, Bruning
T, Altmayer M, Stamatis G, Theegarten D, Gerwert K (2015)
Marker-free automated histopathological annotation of lung tumour

subtypes by FTIR imaging. Analyst 140(7):2114–2120. https://doi.
org/10.1039/c4an01978d

21. Petersen D, Mavarani L, Niedieker D, Freier E, Tannapfel A,
Kotting C, Gerwert K, El-Mashtoly SF (2017) Virtual staining of
colon cancer tissue by label-free Raman micro-spectroscopy.
Analyst 142(8):1207–1215. https://doi.org/10.1039/c6an02072k

22. Perez-Guaita D, Kuligowski J, Quintas G, Garrigues S, de la
Guardia M (2013) Atmospheric compensation in Fourier transform
infrared (FT-IR) spectra of clinical samples. Appl Spectrosc 67(11):
1339–1342. https://doi.org/10.1366/13-07159

23. Hoult RA (2003) Angle of rotation sensor having a rotating annular
magnet and two ferritic stator halves United States Patent

24. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statis-
tical learning : data mining, inference, and prediction. Springer
series in statistics,, 2nd edn. Springer, New York, NY

25. Landis JR, Koch GG (1977) The measurement of observer agree-
ment for categorical data. Biometrics 33(1):159–174

26. Jansen-Winkeln B, Holfert N, Kohler H,Moulla Y, Takoh JP, Rabe
SM, Mehdorn M, Barberio M, Chalopin C, Neumuth T, Gockel I
(2019) Determination of the transection margin during colorectal
resection with hyperspectral imaging (HSI). Int J Color Dis 34(4):
731–739. https://doi.org/10.1007/s00384-019-03250-0

27. ChanKLA, Kazarian SG (2016)Attenuated total reflection Fourier-
transform infrared (ATR-FTIR) imaging of tissues and live cells.
Chem Soc Rev 45(7):1850–1864. https://doi.org/10.1039/
c5cs00515a

28. Smialowski P, Frishman D, Kramer S (2010) Pitfalls of supervised
feature selection. Bioinformatics 26(3):440–443. https://doi.org/10.
1093/bioinformatics/btp621

29. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B,
Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI,
Sanders M, Solomon B, Solinas C, Van den Eynden G, Allory Y,
Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S,
Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S,
Kim SR, Schnitt S, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis
M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F,
Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang
Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt
V,Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen
F, Watson PH, Nelson BH, Criscitiello C, O'Toole S, Larsimont D,
de Wind R, Curigliano G, Andre F, Lacroix-Triki M, van de Vijver
M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos
Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N,
Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A,
Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F,
Koeppen H, Lo A, Giltnane J, Rebelatto MC, Steele KE, Zha J,
Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, Fox SB
(2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a
practical review for pathologists and proposal for a standardized
method from the international Immunooncology biomarkers work-
ing group: part 1: assessing the host immune response, TILs in
invasive breast carcinoma and ductal carcinoma in situ, metastatic
tumor deposits and areas for further research. Adv Anat Pathol
24(5):235–251. https://doi.org/10.1097/PAP.0000000000000162

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2407Mid-Infrared Imaging Is Able to Characterize and Separate Cancer Cell Lines

https://doi.org/10.1021/acsomega.8b01067
https://doi.org/10.1016/j.jtcvs.2013.02.044
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s17112548
https://doi.org/10.1364/Josab.34.000a70
https://doi.org/10.1016/j.vibspec.2016.08.013
https://doi.org/10.1016/j.vibspec.2016.08.013
https://doi.org/10.1080/03091900701234358
https://doi.org/10.1080/03091900701234358
https://doi.org/10.1039/c8an00027a
https://doi.org/10.1371/journal.pone.0116491
https://doi.org/10.1371/journal.pone.0116491
https://doi.org/10.3791/52332
https://doi.org/10.1021/acs.analchem.6b00590
https://doi.org/10.1021/acs.analchem.6b00590
https://doi.org/10.1039/c4an01978d
https://doi.org/10.1039/c4an01978d
https://doi.org/10.1039/c6an02072k
https://doi.org/10.1366/13-07159
https://doi.org/10.1007/s00384-019-03250-0
https://doi.org/10.1039/c5cs00515a
https://doi.org/10.1039/c5cs00515a
https://doi.org/10.1093/bioinformatics/btp621
https://doi.org/10.1093/bioinformatics/btp621
https://doi.org/10.1097/PAP.0000000000000162

	Mid-Infrared Imaging Is Able to Characterize and Separate Cancer Cell Lines
	Abstract
	Introduction
	Materials and Methods
	Aluminium Coated Slides
	Cell Cultures
	Infrared Imaging
	Data Processing
	Principal Component Analysis
	Atmospheric Correction and Noise Reduction
	Linear Discriminant Analysis
	Accuracy and Cohen’s Kappa Method


	Results
	Discussion
	References


