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Abstract
Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4

pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial

emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks

and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemio-

logical surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its

natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to

develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious

disease are urgently needed.
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Introduction

In February 2018, Nipah Virus (NiV) infection was listed

as a priority disease posing a public health risk by the

World Health Organization (http://www.who.int/blueprint/

en/). NiV was named after Kampung Sungai Nipah (Nipah

River Village) in Malaysia, where it was first isolated in

1998, before its subsequent spread into Singapore via

exported pigs in 1999, leading to the abattoir worker

infections (CDC 1999a, b; Paton et al. 1999; Epstein et al.

2006). In 2001, human cases of NiV infection were dis-

covered independently in India and Bangladesh, and since

then, infections have been observed annually in Bangla-

desh, and human-to-human transmission through direct

contact with infected individuals is common (Hsu et al.

2004; Chadha et al. 2006a, b). In 2007, an NiV outbreak

occurred in India, killing five people (Arankalle et al.

2011). In 2018, NiV infection was ongoing in Kerala,

India, with 16 cases succumbed (Paul 2018). In 2014, a

serious illness most probably caused by NiV was reported

in several people after contact with infected horses or

patients in the Philippines (Ching et al. 2015). NiV infec-

tion can cause fever and encephalitis in humans and a

neurological and respiratory syndrome in pigs or horses

(Lee et al. 1999; CDC 1999a, b). To date, over 600 human

cases of NiV infection have been reported in South Asia

and South-East Asia, with fatality ranging from 40% to

70%, accordingly it poses a major threat to human health

(Clayton 2017).

Belonging to the genus Henipavirus [the other patho-

genic member of the genus is Hendra virus (HeV),

reviewed in (Middleton 2014; Enchéry and Horvat 2017)]

of the family Paramyxoviridae (Chua et al. 2000), NiV is

classified as a Biosafety Level-4 (BSL-4) pathogen due to

its high pathogenicity and the lack of any effective treat-

ments or vaccines (Wit and Munster 2015; Angeletti et al.

2016). The NiV genome consists of a negative-sense, sin-

gle-stranded RNA of approximately 18.2 kb, encoding six

structural proteins, nucleoprotein (N), phosphoprotein (P),

matrix protein (M), fusion protein (F), attachment glyco-

protein (G), and the large protein or RNA polymerase

protein (L). In addition, the P gene encodes three non-

structural proteins by RNA editing (V and W proteins) or

an alternative open reading frame (C protein) (Wang et al.

2001) (Fig. 1).
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NiV has a wide range of hosts, from its natural reservoir

Pteropid bats to humans, horses, dogs, cats, cows, and pigs

(Calisher et al. 2006; Halpin et al. 2011; Weatherman et al.

2018). Close contact with infected patients (Tan and Tan

2001) or domestic animals (e.g., pigs and horses) plays an

important role in the spread of NiV (Clayton 2017). Fur-

thermore, palm sap is also currently regarded as a crucial

NiV transmission medium in Bangladesh (Luby et al.

2006; Nahar et al. 2010; Rahman et al. 2012). Intraspecific

transmission (in bats, pigs, and horses) is also possible via

saliva, urine or secretions upon high density populations of

animals (Middleton et al. 2007; Weatherman et al. 2018).

In this review, an overview of recent studies on the geo-

graphical and phylogenetic properties, transmission, and

protein structure and function of NiV is provided.

Geographical Distribution of Nipah Virus

Since it emerged in Malaysia in 1998, NiV caused a series

of outbreaks in Singapore, India, and Bangladesh (Clayton

2017; Enchéry and Horvat 2017) (Fig. 2), which has

caused hundreds of human deaths and thereby represents a

great challenge to public health. Numerous efforts have

been made to trace the origin, distribution, and probable

transmission route of NiV in nature. For example, in

Bangladesh, where humans are frequently infected by NiV,

retrospective investigations combined with the collect of

biological samples from patients or contaminated envi-

ronment have been conducted to evaluate potential risk

factors and to develop a feasible strategy for prevention

and control (Hsu et al. 2004; Gurley et al. 2007; Rahman

et al. 2012). Additionally, NiV surveillance in areas where

no NiV outbreaks have been reported is ongoing. Extensive

studies and sample collections (swabs, sera, saliva, and

urine) and analyses from bats have indicated that in addi-

tion to the countries where NiV outbreaks have occurred,

NiV is also distributed in China (Yan et al. 2008), Vietnam

(Hasebe et al. 2012), Thailand (Supaporn et al. 2005),

Cambodia (Reynes et al. 2005), Indonesia (Sendow et al.

2010), East Timor (Breed et al. 2013), Madagascar (Iehlé

et al. 2007), New Caledonia (Enchéry and Horvat 2017)

and Papua New Guinea (Breed et al. 2010; Field et al.

2013) (Fig. 2). In addition, anti-NiV neutralization anti-

body test of the serum from people involved in hunting bats

as bushmeat revealed evidence of NiV spillover (Pernet

et al. 2013), which emphasizes the significance of further

NiV monitoring.

Hosts and Transmission of Nipah Virus

Understanding susceptible hosts and routes for the spread

of viral disease raises knowledge to curb epidemics. Bats

are the second largest order of mammals after rodents

(Moratelli and Calisher 2015; Ming and Dong 2016), and

harbor in excess of 200 types of viruses, including many

highly pathogenic to humans (e.g., rabies, Ebola, severe

acute respiratory syndrome (SARS), NiV, HeV) (Li et al.

2005; Calisher et al. 2006). NiV circulates within bat

populations via close mutual contact when bats crowd

together (Middleton et al. 2007). NiV transmission from

bats to humans is through two main pathways, i.e., inter-

mediate hosts (pigs and horses) and food-borne transmis-

sion via date palm sap contaminated with the saliva or

urine of fruit bats (Enchéry and Horvat 2017) [reviewed in

(Clayton 2017)]. A retrospective study in Malaysia found

that workers show severe influenza-like symptoms after

slaughtering NiV-infected swine (Hsu et al. 2004). In the

Philippines, people were infected by butchering horses or

consuming horsemeat (Ching et al. 2015). No cases of

person-to-person spread have been found in Malaysia or

Singapore, but in the Philippines, direct human-to-human

virus transmission has been reported (Ching et al. 2015). In

India, human-to-human transmission of NiV was discov-

ered in 2001. In a case of NiV infection in a human in

2007, date palm sap contaminated by bats was considered

to mediate NiV spillover from bats to humans (Chadha

et al. 2006a, 2006b; Arankalle et al. 2011). In Bangladesh,

where people consume palm sap, frequent infection by NiV

and person-to-person NiV transmission has occurred.

Recently, it was demonstrated that Syrian hamster infection

could occur after drinking artificial palm sap mixed with

NiV (Wit et al. 2014) and infrared camera monitoring

showed that bats frequently fly around or directly contact

palm sap trees to urinate or defecate (Khan et al. 2010;
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Fig. 1 Schematic representation of the viral structure (upper panel)

and genome organization (lower panel). Different genes or proteins

are indicated in different colors.
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Rahman et al. 2012). These findings provide further sup-

port for palm sap-mediated bat-to-person transmission,

despite the lack of Nipah virus detection in natural date

palm sap until now (Fig. 3). Measures have been taken to

prevent bat access to sap using bamboo skirts or lime

smudged on date palm trees. Further steps to prevent the

transmission of NiV infection are necessary.

Viral Genomics and Phylogenetics

Genomic and amino acid differences may explain differ-

ences in viral pathogenicity and virulence between isolates in

Bangladesh and Malaysia, particularly given the contribu-

tions of the N, P and L proteins to viral replication and

transcription and the role of the nonstructural protein C in the

virulence ofNiV (see ‘‘Viral Protein Function andStructure’’

section). In sequence analyses (Harcourt et al. 2005),

nucleotide sequence identity between the genomes of NiV-

Bangladesh and NiV-Malaysia was only 91.8%, with an

uneven distribution of differences throughout the genome.

The amino acid sequence identity between NiV-Bangladesh

and NiV-Malaysia proteins were all greater than 92%.

Furthermore, the nucleotide sequence identity ofN,P, L, and

C genes were 94.3%, 92.0%, 93.4%, and 97.6%, respec-

tively, with corresponding amino acid sequence identity of

98.3%, 92%, 98.2%, and 95.2%, respectively (Harcourt et al.

2005) (Fig. 4A). These findings provided a basis for further

investigations of the biological characteristics of NiV.

Based on the time-scaled tree constructed using the

currently available viral genomes, the time to the most

recent common ancestor (tMRCA) of NiV could be dated

to 1356 (95% highest posterior density, 95% HPD: 482—

1884). The strains were divided into two lineages (NiV-

Bangladesh, n = 4, and NiV-Malaysia, n = 11), with dif-

ferent clinical features and transmission routes in Bangla-

desh and Malaysia (Fig. 4B). Due to the limited viral

genomes available, the detailed divergent time of Bangla-

desh and Malaysia lineages needs further investigation.

More frequent person-to-person contact and more severe

respiratory disease have been observed in Bangladesh than

in Malaysia (Goh et al. 2000; Chong et al. 2008; Hossain

et al. 2008), consistent with the higher level of viral

replication in ferrets for NiV-Bangladesh than NiV-

Malaysia (Clayton et al. 2012). However, a recent study

suggested that social and environmental factors impact the

Fig. 2 Summary of the known

geographical distribution of

Nipah virus in the world.

Yellow stars represent reported

Nipah virus outbreaks and green

star shows the likely presence of

Nipah-like virus.
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spread of NiV (Clayton and Marsh 2014; Clayton et al.

2016). In Malaysia, no person-to-person transmission was

reported when NiV emerged in 1998 and NiV strains

derived from humans were isolated in 1999–2000

(Fig. 4B), whereas, in Bangladesh, NiV has appeared

nearly annually since 2001 along with significant human-

to-human transmission. Thus, comparative genomics and

reverse genetics approaches are required to uncover the

different features between NiV-Bangladesh and NiV-

Malaysia.

Viral Protein Function and Structure

Nipah virus has an approximately 18.2 kb genome encod-

ing six structural proteins and three nonstructural proteins.

The viral ribonucleocapsid (RNP) surrounded by the viral

envelope consists of its genome and the N protein, which is

essential for the viral life cycle as a template for RNA-

dependent RNA-polymerase (RdRp), composed of poly-

merase L and a polymerase cofactor P (Diederich and

Maisner 2007; Cox and Plemper 2017). Within the RNP, N

is responsible for viral genome wrapping and facilitates

viral replication and transcription (Lee et al. 2012). The

synthesis of viral mRNA is catalyzed by L and P (Morin

et al. 2013), and the latter also inhibits interferon signaling

via host STAT-1 (Lo et al. 2012) and acts as a chaperone of

N0 (the unassembled form of N) to prevent it nonspecific

binding to host RNA (Habchi and Longhi 2012). The M

protein contributes to viral assembly and release (Dietzel

et al. 2015). G and F are two important surface glycopro-

teins of NiV; the former induces viral attachment to two

cellular receptors, ephrin-B2 and ephrin-B3, despite a lack

of hemagglutination or neuraminidase activity (Bonaparte

Philippines

India/Bangladesh

  Malaysia

Fig. 3 Schematic representation of transmission routes for Nipah

virus. In Malaysia, the fruit trees where fruit bats reside are in

proximity to pig farms and domestic pigs infected by NiV via contact

with materials contaminated by bats, and NiV is subsequently

transmitted to humans by direct contact. In India or Bangladesh,

persons infected by NiV after consuming the date palm sap

contaminated by bat saliva or urine, followed by person-to-person

transmission by close contact. In the Philippines, people were infected

by consuming horsemeat or contact with infected horses, and then

healthy individuals were infected after contact with patients.
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Fig. 4 Genomic and phylogenetic analyses of Nipah virus. A Com-

parisons of both nucleotide sequence and amino acid sequence

identity between NiV-Bangladesh and NiV-Malaysia. B Maximum

clade credibility (MCC) tree of Nipah virus genomes. The tree was

performed by using BEAST package 2.4.8 with the HKY SRD06

model, under an uncorrelated relaxed clock, and the exponential

growth demographic model. NiV-Bangladesh is represented in pink

and NiV-Malaysia is in brown. The purple bars represent the 95%

highest posterior density intervals of the estimation of the dates.

Fig. 5 Crystal structures of P

and the N0-P complex.

A Cartoon representation of

NiV-P (Protein Data Bank

accession number 4N5B). Four

chains are indicated in four

different colors. N and C

termini are shown. B Structure

of three heterodimers of the N0-

P complex (PDB: 4CO6). P50 is

shown in cyan and N0 is in

green.
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et al. 2005; Negrete et al. 2005, 2006; Bishop et al. 2007).

And this subsequently triggers F-mediated membrane

fusion between virus and host cells (Bossart et al. 2002;

Tamin et al. 2002). The nonstructural protein C participates

in the host immune response and serves as a virulence

factor (Mathieu et al. 2012).

Elucidating the viral structure is regarded as a promising

approach for antiviral drug design, and several crystal

structures of NiV proteins have been reported. The crystal

structure of the P protein is a tetramer with a parallel coiled

coil (Fig. 5A), while the N0-P complex, whose binding site

is located in residues 1–50 (P50) of the N-terminal domain

of P, is characterized by an asymmetric pea-like form

composed of three heterodimers. N0 remains an open

conformation in the complex due to P-mediated inhibition

of the polymerization of N (Bruhn et al. 2014; Yabukarski

et al. 2014) (Fig. 5B).

The extracellular region of the attachment glycoprotein

G, which is a tetrameric type II membrane protein, is a

disk-like b-propeller with six blades (B1–B6) encircling

the center in its receptor-unbound status and changes its

form in the G/Ephrin-B3 complex. Each blade module in

the b-propeller enhanced by a disulfide bond (C181–C601)

contains a four-stranded (strands S1–S4) antiparallel b-
sheet (Fig. 6A). The structure of the G/Ephrin-B3 complex

is elongated with a heterodimeric assembly compared to G

(Xu et al. 2008). Ephrin-B3 attaches to the upper face of

the G b-propeller and their interaction is mediated by

HR1

N

HR2

C
N

C

CN

C

N

Ephrin-B3

NiV-G

NiV-G

Ephrin-B2

Residues 107–125

B1

B2

B3

B4

B5

B6

C
N

A B

C

D E

Fig. 6 Crystal structures of G and F protein. A Cartoon representation

of NiV-G (PDB: 3D11) in the receptor-unbound state. Six blades are

represented as follows: B1 in red, B2 in green, B3 in yellow, B4 in

cyan, B5 in gray and B6 in magenta. N and C termini are shown in the

figure. The disulfide bond (C181–C601) is not shown. B Structure of

the G/Ephrin-B3 complex (PDB: 3D12). The upper Ephrin-B3 is

labeled in cyan and the lower G is in green. Four G loops are

indicated as following, B1S2–B1S3 in red, B3H2–B3H3 in blue,

B4S4–B5S1 in magenta, and B5S2–B5S3 in orange. C An overview

of the G/Ephrin-B2 complex structure (PDB: 2VSM). NiV-G and

Ephrin-B2 are shown in green and cyan, respectively, and residues

107–125 is in green. D The structure of NiV-F pre-fusion (PDB:

5EVM). Three chains of F trimers are indicated in green, yellow, and

cyan, and the hexamer form of F trimers is not represented. E Cartoon

representation of the fusion core (PDB: 1WP7). HR1 is indicated in

green and HR2 is in lemon with N and C termini.
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several G loops, including B1S2–B1S3, B3H2–B3H3,

B4S4–B5S1, and B5S2–B5S3 (Fig. 6B). The crystal

structure of the G/Ephrin-B2 complex is characterized by a

capacious protein–protein interface containing crucial

residues 107–125 on Ephrin-B2 (Bowden et al. 2008)

(Fig. 6C). F, a typical trimeric class I membrane protein, is

synthesized as an immature precursor (called F0) and is

then cleaved by cellular protease into F1 and F2 subunits

linked by a disulfide bond. Two heptad-repeat regions

(HR1 and HR2) in F1 contribute to the membrane merger

(Michalski et al. 2000; Tamin et al. 2002). In the pre-

fusion form of the ectodomain of F, six copies of F trimers

assemble a hexamer around a central axis (Xu et al. 2015),

which confers the stability of pre-fusion F (Fig. 6D).

During subsequent membrane fusion, the conformation of

two HR domains changes and a six-helix bundle, called a

fusion core, takes shape to facilitate viral penetration after

the merger, characterized by three parallel HR1 domains

surrounded by three anti-parallel HR2 domains (Xu et al.

2004; Lou et al. 2006) (Fig. 6E). Given that only sup-

portive treatments are available in hospital setting for NiV

[detailed information about viral tropism, vaccines and

antiviral strategies of NiV was reviewed in references

(Broder et al. 2016; Ang et al. 2018)], these results provide

potential targets for drug or vaccine design.

Conclusion

Knowing the geographic distribution and transmission of a

virus is the priority for the control of infection and

resolving the structure and function of viral protein is the

basis for anti-viral drug development. In this review, we

are focusing on these aspects of the NiV. As a huge natural

reservoir of viruses, including NiV, bats have been under

renewed interest. Bats appear asymptomatic when infected

by many viruses and play a pivotal role in viral spillover.

Continually emerging and reemerging viruses from bats

have been reported. In 2012, a novel rubula-like

paramyxovirus from fruit bats was found to be responsible

for a series of severe clinical symptoms appearing on a

female wildlife biologist who performed a 6-week field

exploration in South Sudan and Uganda (Albariño et al.

2014). In 2017, a huge gene pool of SARS-like coron-

aviruses was found in horseshoe bats in a cave in Yunnan

province, China, which indicated the close relationship

between those isolates and SARS coronavirus (Hu et al.

2017). Recently, a novel bat-originated coronavirus, swine

acute diarrhea syndrome coronavirus (SADS-CoV), which

led to more than 24,000 piglet deaths at four pig farms in

Guangdong province, China was reported (Zhou et al.

2018). In particular, a similar transmission pathway

between SADS-CoV and NiV (bats to pigs) occurs,

although no human infection was found. More exposure to

areas of bat movement augments extremely risk of infect-

ing bat-derived viral diseases. Unfortunately, human

activities are altering the frequency of contact with bats.

For instance, deforestation in tropical zones forces bats to

migrate from their habitats to human areas (Daszak et al.

2001) and many bats are hunted for consumption or so-

called harmfulness (Enchéry and Horvat 2017). Therefore,

continuous surveillance, reducing human activities that

promote contact with bats, and enhancing scientific

research will help the prevention and control of bat-derived

viral infectious disease. Given limited viral genomes

available, restrictions on investigating the origin and evo-

lution of Nipah virus have been imposed; therefore, con-

tinuous epidemiological surveillance must be strengthened

in the future. In addition, several structures of viral proteins

remain unknown; accordingly, it is necessary to increase

basic research efforts on protein structures and functional

analyses of viral proteins to provide data for antiviral drug

and vaccine development.
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