Skip to main content
Log in

Effect of Curcumin-Hydroxypropyl-\(\beta\)-Cyclodextrin Complex and the Complex Loaded Gelatin Carrageenan Microparticles on the Various Chemical and Biological Properties

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Curcumin was modified with 2-hydroxypropyl-\(\beta\)-cyclodextrin (HP\(\beta\)CD) to enhance its bioavailability. The modified curcumin was loaded into gelatin-carrageenan microparticles to control the drug release behavior. The different analytical techniques like Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) indicated the formation of the samples. The solubility of the modified curcumin was checked visibly and by using UV-VIS spectroscopy & optical microscopy as well. The effect of surfactant on process yield, drug loading & encapsulation efficiency, swelling and drug release from the microparticles was checked. The samples exhibited more swelling and hence drug release was more in basic compared to acidic medium and the percentage increased with increase in time. The modified curcumin, on examining in both breast and lung cancer cell lines, manifested better anticancer activity compared to curcumin as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, clonogenic assay and apoptosis assay. However, the microparticles didn’t reveal better anticancer activities compared to curcumin and modified curcumin. Further, all the prepared samples were found to be non-toxic to human peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available due to some pending research work using the data

References

  1. Gholibegloo E, Mortezazadeh T, Salehian F, Ramazani A, Amanlou M, Khoobi M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to \(\beta\)-cyclodextrin. Carbohydr Polym. 2019;213:70–8.

    Article  CAS  PubMed  Google Scholar 

  2. Mujokoro B, Madani F, Esnaashari SS, Khosravani M, Adabi M. Combination and co-delivery of methotrexate and curcumin: preparation and in vitro cytotoxic investigation on glioma cells. J Pharm Innov. 2019:1–10.

  3. Bakre LG, Sarvaiya JI, Agrawal YK. Synthesis, characterization, and study of drug release properties of curcumin from polycaprolactone/organomodified montmorillonite nanocomposite. J Pharm Innov. 2016;11(4):300–7.

    Article  Google Scholar 

  4. Youssouf L, Bhaw-Luximon A, Diotel N, Catan A, Giraud P, Gimié F, Koshel D, Casale S, Bénard S, Meneyrol V, et al. Enhanced effects of curcumin encapsulated in polycaprolactone-grafted oligocarrageenan nanomicelles, a novel nanoparticle drug delivery system. Carbohydr Polym. 2019;217:35–45.

    Article  CAS  PubMed  Google Scholar 

  5. Wathoni N, Motoyama K, Higashi T, Okajima M, Kaneko T, Arima H. Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-\(\gamma\)-cyclodextrin in sacran hydrogel film. Int J Biol Macromol. 2017;98:268–76.

    Article  CAS  PubMed  Google Scholar 

  6. Kaur K, Uppal S, Kaur R, Agarwal J, Mehta SK. Energy efficient, facile and cost effective methodology for formation of an inclusion complex of resveratrol with hp-\(\beta\)-cd. New J Chem. 2015;39(11):8855–65.

    Article  CAS  Google Scholar 

  7. Sun J, Hong H, Zhu N, Han L, Suo Q. Spectroscopic analysis and dissolution properties study of tosufloxacin tosylate/hydroxypropyl-\(\beta\)-cyclodextrin inclusion complex prepared by solution-enhanced dispersion with supercritical co 2. J Pharm Innov. 2019:1–14.

  8. Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed Res Int. 2015.

  9. Kantner I, Erben RG. Long-term parenteral administration of 2-hydroxypropyl-\(\beta\)-cyclodextrin causes bone loss. Toxicol Pathol. 2012;40(5):742–50.

    Article  CAS  PubMed  Google Scholar 

  10. Gould S, Scott RC. 2-hydroxypropyl-\(\beta\)-cyclodextrin (hp-\(\beta\)-cd): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Cui L, Li F, Shi N, Li C, Yu X, Chen Y, Kong W. Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. Int J Pharm. 2016;513(1–2):191–210.

    Article  CAS  PubMed  Google Scholar 

  12. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  CAS  PubMed  Google Scholar 

  13. Yang Y, Anvari M, Pan CH, Chung D. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions. Food Chem. 2012;135(2):555–61.

    Article  CAS  PubMed  Google Scholar 

  14. Sathuvan M, Thangam R, Gajendiran M, Vivek R, Balasubramanian S, Nagaraj S, Gunasekaran P, Madhan B, Rengasamy R. \(\kappa\) \(\kappa\)-carrageenan: An effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydr Polym. 2017;160:184–93.

    Article  CAS  PubMed  Google Scholar 

  15. Roy S, Rhim JW. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf B Biointerfaces. 2019:110761

  16. Jantarat C, Sirathanarun P, Ratanapongsai S, Watcharakan P, Sunyapong S, Wadu A. Curcumin-hydroxypropyl-\(\beta\)-cyclodextrin inclusion complex preparation methods: effect of common solvent evaporation, freeze drying, and ph shift on solubility and stability of curcumin. Trop J Pharm Res. 2014;13(8):1215–23.

    Article  CAS  Google Scholar 

  17. Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. Aaps Pharmscitech. 2009;10(3):752–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, Matioli G. Curcumin-\(\beta\)-cyclodextrin inclusion complex: stability, solubility, characterisation by ft-ir, ft-raman, x-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014;153:361–70.

    Article  CAS  PubMed  Google Scholar 

  19. Yallapu MM, Jaggi M, Chauhan SC. \(\beta\)-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces. 2010;79(1):113–25.

    Article  CAS  PubMed  Google Scholar 

  20. Devi N, Deka C, Nath P, Kakati DK. Encapsulation of theophylline in gelatin a–pectin complex coacervates. In: Infectious Diseases and Nanomedicine III. Springer. 2018:63–74

  21. Saikia C, Das MK, Ramteke A, Maji TK. Evaluation of folic acid tagged aminated starch/zno coated iron oxide nanoparticles as targeted curcumin delivery system. Carbohydr Polym. 2017;157:391–9.

    Article  CAS  PubMed  Google Scholar 

  22. Singh N, Thukral DK, Chawla S. Formulation and evaluation of pegylated gms based solid lipid nanoparticles. International Journal of Biotechnology and Biomedical Sciences. p-ISSN 2454-4582, e-ISSN 2454-7808, Volume 3, Issue 1; January-June, 2017 pp. 52-57 © Krishi Sanskriti Publications http://www.krishisanskriti.org

  23. Carbinatto FM, de Castro AD, Evangelista RC, Cury BS. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9(1):27–34

  24. Khatun B, Baishya P, Ramteke A, Maji T. Study of the complexation of structurally modified curcumin with hydroxypropyl beta cyclodextrin and its effect on anticancer activity. New J Chem. 2020.

  25. Majumder M, Debnath S, Gajbhiye RL, Saikia R, Gogoi B, Samanta SK, Das DK, Biswas K, Jaisankar P, Mukhopadhyay R. Ricinus communis l. fruit extract inhibits migration/invasion, induces apoptosis in breast cancer cells and arrests tumor progression in vivo. Sci Rep. 2019;9(1):1–14

  26. Yang X. Clonogenic assay to test cancer therapies. Bio-Protoc. 2012;2(10):1–3.

    Google Scholar 

  27. Jeng TW, Hendon R, Fraenkel-Conrat H. Search for relationships among the hemolytic, phospholipolytic, and neurotoxic activities of snake venoms. Proc Natl Acad Sci. 1978;75(2):600–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Doley R, Mukherjee AK. Purification and characterization of an anticoagulant phospholipase a2 from indian monocled cobra (Naja kaouthia) venom. Toxicon. 2003;41(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  29. Gupta K, Barua S, Hazarika SN, Manhar AK, Nath D, Karak N, Namsa ND, Mukhopadhyay R, Kalia VC, Mandal M. Green silver nanoparticles: enhanced antimicrobial and antibiofilm activity with effects on dna replication and cell cytotoxicity. RSC Adv. 2014;4(95):52845–55.

    Article  CAS  Google Scholar 

  30. Mohan PK, Sreelakshmi G, Muraleedharan C, Joseph R. Water soluble complexes of curcumin with cyclodextrins: Characterization by ft-raman spectroscopy. Vib Spectrosc. 2012;62:77–84.

    Article  CAS  Google Scholar 

  31. Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G. Development of a myricetin/hydroxypropyl-\(\beta\)-cyclodextrin inclusion complex: Preparation, characterization, and evaluation. Carbohydr Polym. 2014;110:329–37.

    Article  CAS  PubMed  Google Scholar 

  32. Esmaili SK, Ghanbarzadeh B, Ayaseh A, Pezeshki A, Hosseini M. Design, fabrication and characterization of pectin-coated gelatin nanoparticles as potential nano-carrier system. J Food Biochem. 2019;43(2):e12729.

    Article  PubMed  Google Scholar 

  33. Gómez-Mascaraque LG, Llavata-Cabrero B, Martínez-Sanz M, Fabra MJ, López-Rubio A. Self-assembled gelatin-\(\iota\)-carrageenan encapsulation structures for intestinal-targeted release applications. J Colloid Interface Sci. 2018;517:113–23.

    Article  PubMed  Google Scholar 

  34. Rachmawati H, Edityaningrum CA, Mauludin R. Molecular inclusion complex of curcumin-\(\beta\)-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. Aaps Pharmscitech. 2013;14(4):1303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devi N, Kakati DK. Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. J Food Eng. 2013;117(2):193–204.

    Article  CAS  Google Scholar 

  36. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G. Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids. 2018;481:424–34.

    Article  CAS  Google Scholar 

  37. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel beads for stability improvement using doehlert shell design. J Pharm Sci. 2006;95(9):1994–2013.

    Article  CAS  PubMed  Google Scholar 

  38. Sahraee S, Ghanbarzadeh B, Milani JM, Hamishehkar H. Development of gelatin bionanocomposite films containing chitin and zno nanoparticles. Food Bioprocess Technol. 2017;10(8):1441–53.

    Article  CAS  Google Scholar 

  39. Devamani RHP, Deepa N, Gayathri J. Morphology and thermal studies of calcium carbonate nanoparticles. Int J Innov Sci Eng Technol. 2016;3(1):87–9.

    Google Scholar 

  40. Hedges A. Cyclodextrins: properties and applications. In: Starch, Elsevier. 2009:833–51.

  41. Devi N, Maji TK. Genipin crosslinked microcapsules of gelatin a and \(\kappa\)-carrageenan polyelectrolyte complex for encapsulation of neem (Azadirachta indica a. juss.) seed oil. Polym Bull. 2010;65(4):347–62.

  42. Kimura E, Aoki S, Kikuta E, Koike T. A macrocyclic zinc (ii) fluorophore as a detector of apoptosis. Proc Natl Acad Sci. 2003;100(7):3731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tezpur University for the necessary technical facilities and infrastructure to carry out the research work. The authors would like to acknowledge Dr. Rajendra Joshi, Founder & CEO at RI Instruments & Innovation INDIA for the instrumental facility of Raman Spectroscopy. Financial support in the form of Maulana Azad National Fellowship, UGC, Govt. of India is highly acknowledged by the author Bably Khatun.

Funding

No funding was received for conducting this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Maji.

Ethics declarations

Consent for Experimentation

The authors have the consent from Tezpur University Ethical Committee (TUEC) Memo No. DoRD/TUEC/10-14/3086-A for the use of isolated lymphocytes for the experiment. Blood sample was given voluntarily by me (Bably Khatun) with the help of Institutional health centre.

Consent to Participate

The work has been done with the consent of all the participants

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatun, B., Majumder, M., Mukhopadhyay, R. et al. Effect of Curcumin-Hydroxypropyl-\(\beta\)-Cyclodextrin Complex and the Complex Loaded Gelatin Carrageenan Microparticles on the Various Chemical and Biological Properties. J Pharm Innov 17, 806–820 (2022). https://doi.org/10.1007/s12247-021-09559-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09559-0

Keywords

Navigation