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Abstract
Purpose The aim of this paper is the development of a process control concept for a hot melt extrusion (HME) and pelletization
process. The new concept should improve the particle size distribution of the pellets produced.
Methods Production of pellets containing an active pharmaceutical ingredient (API) can be achieved by means of HME,
followed by a pelletization process step. The quality of pellets produced depends on the strand temperature at the pelletizer’s
inlet and the pelletizer’s intake speed. This paper presents a strategy for the strand diameter and temperature control based on
adjusting the cooling intensity on the cooling track between the HME and the pelletization step and altering the pelletizer’s intake
speed. Two concepts are presented and compared to the open-loop operation of the system: the first one is model predictive
control (MPC) in combination with a model based on the local linear model tree (LOLIMOT) algorithm, and the second one is
PID control. The quality of the pellets produced was analyzed in terms of particle size distribution (PSD).
Results By implementation of the two control concepts, strand temperature and diameter could be kept close to the desired set
points. Consequently, the presented concepts yielded pellets with a narrower particle size distribution than the open-loop
operation of the plant.
Conclusions The application of the presented control strategies can improve the quality of the pellets produced by an HME and
pelletization system in terms of their particle size distribution.

Keywords Continuousmanufacturing .Hotmelt extrusion .Model predictivecontrol . Local linearmodel tree . Processmodeling

Introduction

This paper presents a model-based control system for the
strand temperature and strand diameter in a pharmaceuti-
cal hot melt extrusion (HME) process. HME processes are
used in pharmaceutical manufacturing to produce ad-
vanced dosage forms, e.g., amorphous solid dispersions
(ASDs) for improving solubility [1] and for producing
oral dosage forms containing poorly soluble active phar-
maceutical ingredients (APIs) [2] or for sustained-release

tablets [3] and pellets [4]. HME processes do not require
solvents and are reliable and reproducible [5]. After the
extrusion step, the extruded strands can be cut into pellets
of desired size, which can be filled into capsules or blend-
ed with excipients and pressed into tablets. There are sev-
eral methods of producing pellets from the extrudates [6].
In this study, strand pelletization was used, which typical-
ly requires a cooling track between the extruder outlet and
the pelletizer inlet to achieve suitable strand temperature.
The cooling power and the inlet speed of the pelletizer
influence the quality of pellets produced. As is the case
with many other continuous pharmaceutical manufactur-
ing processes [7–12], appropriate control strategies must
be defined. Model-based approaches for control strategy
development were successfully demonstrated in the phar-
maceutical industry already [8, 10, 11, 13, 14]. For HME,
only few publications are available which address control
strategy development [5, 15]. This study focuses on the
cooling and pelletization step after the HME process it-
self. In [16], a study of a process control approach in a
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similar setup was reported. However, no details on the
development of the feedback control were provided.

This study proposes two different control strategies that
automatically adjust both of the above-mentioned parameters
(i.e., strand temperature and strand diameter) to increase the
pellet quality. One of them, i.e., the application of a data-
driven modeling approach for controller synthesis in a phar-
maceutical manufacturing setup, is new to the knowledge of
the authors. The results achieved were compared to the pro-
cess data and analytical results determined offline. The pur-
pose of this manuscript is not to demonstrate that one or the
other feedback control strategy performs better, but to show
the achievable performance increase by implementation of
feedback control compared to open-loop operation of the sys-
tem. Quantitative measures are provided to compare the dif-
ferent techniques, and a discussion highlighting the pros and
cons of the individual approaches is given. The application of
model-based control design approaches to this specific appli-
cation in pharmaceutical manufacturing is novel. In compari-
son to traditional approaches, which typically run the system
in an open-loop fashion, i.e., keeping intake speed and air
pressure constant, the implementation of feedback control sig-
nificantly improves pellets quality in terms of their particle
size distribution. A narrow particle size distribution is desired,
since, on the one hand, homogeneously sized pellets provide a
well-defined release profile of the final drug product, and on
the other hand, the option of volumetric filling of pellets into
capsules delivers more homogeneous capsule masses com-
pared to pellets with wider particle size distribution. The dem-
onstrated approaches allow for a systematic design of feed-
back control systems, which are able to narrow the particle
size distribution of the pellets.

The paper is structured as follows: Section “Process
Description” describes the plant setup and the equipment used.
Section “Model Development” details the selected modeling
approach, which is used in Sect. “Controller Design” for the
controller design. Section “Results” discusses the results, and
Sect. “Discussion and Outlook” concludes the paper.

Process Description

The pellet production line investigated consists of a twin
screw extruder (Coperion ZSK18 twin screw extruder,
https://www.coperion.com) equipped with two feeders (K-
Tron KT20, https://coperion.com; Brabender MTS-Hyg,
https://www.brabender-technologie.com), a strand pelletizer
(Primo 60 E, http://www.maag.com) and a custom-made
cooling track. A sketch of the manufacturing process is shown
in Fig. 1, and a photo is provided in Fig. 2. As the model
formulation, 40% (w/w) of vitamin B1 (thiamine mononitrate,
pharma grade, DSM http://dsm.com) and 60% (w/w) of
Eudragit E PO (pharma grade, Evonik https://evonik.de)

were used as API and excipient, respectively. The total mass
flow was set to 2 kg/h.

One goal of the process is to manufacture homogeneously
sized pellets. The pellets produced are cylindrically shaped.
Their length (determined based on the ratio between the intake
roll speed and the knife speed) is adjusted in the pelletizer.
Given a constant mass flow at the extruder outlet, the strand
diameter is a function of the pelletizer’s intake roll speed.
Under the assumption of constant strand density, the volume
flow needs to be constant, and therefore, higher intake speeds
cause lower strand diameters. Consequently, the strand diam-
eter can be altered during runtime (by varying the intake speed
of the pelletizer) and measured using a 3-axis laser measure-
ment head ODOC 13TRIO and the corresponding processing
unit USYS 200 (http://www.zumbach.com). For decreasing
the strand temperature before it enters the pelletizer, a
cooling track between the extruder’s outlet and the
pelletizer’s inlet is required. The conveyor belt, whose speed
is kept constant, transports the strand to the pelletizer. The
quality of pellets produced greatly depends on the
temperature of the strand at the pelletizer’s inlet. Strand
temperatures that are too high or too low can impair the
cutting quality of the pelletizer (e.g., strands sticking to the
intake rolls if the temperature is too high or breaking due to
brittleness if the temperature is too low). To adjust the
temperature of the strand at the inlet of the pelletizer, a
cooling track consisting of a pressure regulator (FESTO
VPPE-3-1-1, https://festo.com) and several air distribution
nozzles was constructed. The pressure regulator sets the air
pressure at the distribution nozzles, which affects the air mass
flow and the heat transfer from the strand to the cooling air.
The extruder die temperature may also influence the strand
temperature, which is measured using an infrared pyrometer
micro-epsilon CT-SF22-C3 with CF lens (https://www.micro-
epsilon.de/) with a measurement spot of diameter 0.6 mm.

The equipment shown in Fig. 1 is connected to a SCADA
system containing the software PLC (XAMControl, evon
GmbH, https://www.evon-automation.com). The software
PLC executed the control algorithm with a sampling interval
of Ts = 0.35 s. By using this sampling interval, the time
required to compute the control algorithms remains below
50% of Ts, i.e., more than 50% of the sampling interval are
available as buffer time, before the next computation needs to
be started.

Model Development

Model Structure and LOLIMOT Algorithm

The inputs and outputs of the plant model are shown in Fig. 3.
In the process investigated, the pelletizer’s intake speed u1 (in
%; actual intake speed v in m/min is given by
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v ¼ 0:4521 m=min
% u1�1:293m=min; the relation between ac-

tuating signal u1 and actual intake speed v was obtained ex-
perimentally) and air pressure u2 (in % of 6 bar) are deemed
actuating signals. Due to construction and process limitations,
their values are restricted according to Eqs. (1) and (2). The
excitation run shown in Sect. “Identification Data” allows
lower values of u2. Due to a lack of process robustness at such
low air pressure values, the lower limit of 10 % given in (2)
was selected for the controller design presented in Sect.
“Controller Design”:

u1;min≤u1≤u1;max;where u1;min ¼ 40% u1;max ¼ 70% ð1Þ
u2;min≤u2≤u2;max;where u2;min ¼ 10% u2;max ¼ 40% ð2Þ

Strand temperature y1 (in °C) and diameter y2 (in mm) are
the controlled variables. At this point, it should be noted that
the die temperature d1 is typically set by the operator of the
extruder. The selection of that temperature is not within the
scope of the current paper, and it should not be altered by the
feedback control strategies. However, in order to cover the
typical range of die temperatures during operation, several
different values are considered during the identification exper-
iments; see Sect. “Identification Data”. Therefore, in terms of
controller synthesis, die temperature d1 (in °C) is considered a
measurable disturbance.

The suggested modeling approach relies on the so-called
local linear model tree (LOLIMOT) algorithm [17, 18]. The
underlying model structure consists of multiple local linear1

models (LLM). The output of each local model is computed
via a static relation from the model’s inputs. The local model
outputs are weighed via the so-called validity function Φ and
summed up to compute the global model output y ̂. Figure 4
shows the model structure and the respective equations. The
encircled part indicates the “core” model, and the shift opera-
tors denoted as “z−1” and the feedback of model output y ̂ are
used in order to model the system’s dynamics. A shift operator
“z−i” delays the input signal by i times the sampling interval,

which is in our setup equal to i ∙ 350 ms. Two models were
developed: one for the strand temperature and the other for the
strand diameter. For both of them, local model order n = 5 was
chosen, as indicated by the maximum delay of output y ̂. This
value turned out to be a good compromise between model
complexity and prediction accuracy. The number of local
models, M, was restricted to be less than or equal to 10 in
order to avoid overfitting. The local model parameters wi0,
…, wim and the validity function parameters cj1, …, cjm and
σj1, …, σjm are determined by the LOLIMOT algorithm,
which is responsible for partitioning the input space (inputs
uî in Fig. 4) into M local models.

The steps of the LOLIMOTalgorithm are depicted in Fig. 5
for a system with 2 inputs: u1̂ and u2̂. Beginning with one
local model 1-1, a split in each dimension is tested. The model
parameters are identified based on the experimental data for
both possible splits. Subsequently, the model error is comput-
ed. The split leading to the smallest error is chosen for further
processing. The next step is to determine which of the local
models, 2-1 or 2-2, contributes to a larger error. The one that
does (2-1 in the example shown in Fig. 5) is divided further.
More details of the LOLIMOT algorithm and further variants
of the algorithm can be found in [18, 19].

Identification Data

Experimental data for executing the LOLIMOT algorithm for
system identification were generated by running specific ex-
periments. The plant was excited by inputs u1, u2, and d1.
Responses y1 and y2 were captured (Fig. 6). The input signals
were arranged for the “steady-state” periods to be available
(see time interval between 120 minutes and 175 minutes) and
the dynamic excitation of the system to be present (see ran-
domly selected inputs between 0 minute and 120 minutes).
For the “steady states”, one input remained constant, while
the other one was varied according to a staircase function.
The duration of the staircase steps was selected such that a
steady state will be reached at each level. Since disturbance
input d1 is not expected to undergo rapid variations, no dy-
namic excitation was performed. Obviously, the raw data1 Strictly speaking, the model consists of locally-affine models.

Fig. 1 Schematic of the HME
process investigated
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captured have considerable noise. One reason for the fluctua-
tions is the strand guidance, which allows for a minor radial
movement that shifts the temperature measurement spot on
the strand and affects the thickness measurement. In order to
dampen the noise, a 50-element moving average filter was
used. The filtered data used for the model identification (see
the following subsection) and prediction by the identified
model are presented in Fig. 6. Fig. 7 is providing a detailed
view of one section of the identification data. Furthermore, a
detailed view of a validation dataset is provided in Fig. 8.
There, the measured validation data is compared to the
LOLIMOT prediction and to the prediction obtained by the
linear time varying (LTV) system which was used in the MPC
setup; see Sect. “MPC Controller”. Obviously, the LTV sys-
tem output almost coincides with the LOLIMOT prediction.

Model Identification

LMNTool [20] was used to identify two dynamic models:
one for predicting strand temperature y1 and the other for
predicting strand diameter y2. For both models, the inputs/
local model order and the maximum number of local
models were chosen as described in Sect. “Model
Structure and LOLIMOT Algorithm”. Figure 6 and Fig.
7 present a comparison between the measured and predict-
ed outputs, showing a sufficiently good agreement be-
tween the model and the real plant.

Controller Design

Two control concepts were designed and implemented at
the real plant. The first one consists of two PID control-
lers, and the second one relies on a model predictive con-
troller (MPC) based on the process model presented in
Sect. “Model Development”. These two concepts were
chosen, because the PID approach is very common in
industrial control applications, which is often used in
comparative studies with respect to other control strate-
gies. The LOLIMOT and MPC approach was chosen, be-
cause it allows for a systematic controller design, and it is
applicable to processes, where no mechanistic model is
available. Further, it offers the inherent capability of con-
sidering constraints (e.g., actuator saturation) and control
of multi-input, multi-output systems. The following sub-
sections outline these two concepts. The results are pre-
sented and discussed in Sect. “Results”.

PID Controllers

Two independent PID controllers are designed for the
strand temperature and thickness control. Since strand
diameter y2 is mainly affected by the pelletizer’s intake
speed u1, one feedback loop is designed for this
actuator/control signal pairing. The other PID controller
adjusts air pressure u2 in order to control strand temper-
ature y1. The control system is depicted in Fig. 9. The

Fig. 3 System inputs and outputs

Fig. 2 The process setup
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discrete-time transfer function of the implemented PID
controller is given by

C zð Þ ¼ u zð Þ
e zð Þ ¼ KP þ KI Ts

1

z−1
þ KD

1

Ts

z−1
z

ð3Þ

and the corresponding controller parameters are provided
in Table 1.

An anti-windup strategy was implemented via integrator
clamping [21]. The controller tuning was performed using
simulation studies based on the process model. Next, a fine-
tuning of the parameters was performed at the real plant. The
final controller settings are summarized in Table 1. The con-
troller gains are all negative since the plant gains from u1 to y2
and from u2 to y1 are both negative (the higher the pelletizer’s
intake speed, the lower the strand diameter; the higher the air
pressure, the lower the strand temperature).

Fig. 5 LOLIMOT algorithm for a
system with two inputs

Fig. 4 Structure of the process
model
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MPC Controller

Amodel predictive controller [22, 23] with objective function

J k ¼ ∑
i¼1

np

rkþi−ŷkþi

� �T
Q rkþi−ŷkþi

� �
þ ∑

nc−1

i¼0
uTkþiR ukþi

þ ∑
nc−1

i¼0
uTΔ;kþiRΔ uΔ;kþi ð4Þ

was applied. Vectors rk, ŷk , and uk are composed of refer-

ence signals, controlled variables, and manipulated variables
at time instant k, i.e.,

rk ¼ r1;k
r2;k

� �
; ŷk ¼

ŷ1;k
ŷ2;k

 !
; uk ¼ u1;k

u2;k

� �
: ð5Þ

Fig. 7 Identification data and LOLIMOT prediction: detailed view of data section presented in Fig. 6

Fig. 6 Identification data and LOLIMOT prediction – overview: plant inputs u1, u2, and d1 and outputs y1 and y2. The outputs show the measured raw
data (“meas”), the average filtered measurement data (“meas, avg”), and the data computed using the identified LOLIMOT model (“LOLIMOT”)
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Vector uΔ, k denotes the difference between two consecu-
tive actuator signals, i.e.,

uΔ;k ¼ uk−uk−1: ð6Þ

The positive (semi-) definite matricesQ ≽ 0,R ≻ 0 andRΔ

≽ 0 are used for weighing the control error, the actuating effort
and the actuating variable variation, respectively. Their values
(see Table 2) are established in the simulation studies, follow-
ed by fine-tuning at the real plant. The weight of R is chosen
much lower than of the other matrices, which allows the con-
troller to fully exploit the admissible range of actuators.

The following constraints have to be taken into account
when minimizing the objective function (4):

umin≤uk ≤umax; ð7Þ
xkþ1 ¼ Akxk þ Bu;kuk þ Bd;kd1;k ; ð8Þ
ŷk ¼ Ckxk : ð9Þ

Measureable disturbance d1 is assumed to remain constant
along the prediction horizon. Constraints (8) and (9) describe
the system’s dynamics. System matricesAk, Bu,k, Bd,k, and Ck

are computed using the LOLIMOT model, as described in
[24]. Since these are not constant along the prediction horizon
(they are computed separately for each prediction step k + i in
(4)), a nonlinear optimization problem in the form of

minuk ;…;ukþnc−1
J k ; subject to : 7ð Þ; 8ð Þ; 9ð Þ ð10Þ

has to be solved. The computation time of real-time execu-
tion of the optimization task monitored using the software
PLC is around 30–40% of the sampling interval Ts.

To account for the model-plant mismatch, the term

rkþi−ŷkþi

� �
in the objective function (4) is replaced by

rkþi−ŷkþi
− yk−ŷk
� �� �

: ð11Þ

Fig. 9 Control concept using two separate PID controllers

Table 1 Controller parameters PID

PID controller 1 (temperature) PID controller 2 (diameter)

KP −2 −20
KI −0.2 −3
KD −0.1 0

Fig. 8 Validation data (means, avg), LOLIMOT prediction, and
prediction via a linear time varying (LTV) system (see Eqs. (8) and (9))
of a validation dataset. The temperature of the validation dataset was
corrected by an offset of 12 °C. This was necessary due to a fact that
the temperature sensor was slightly misaligned during the creation of the

validation dataset. However, the dynamics of the temperature is still cap-
tured accurately, and a constant offset between measurement and model
prediction is inherently compensated by the proposed control concept
(see Eq. (11))
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It is assumed that the difference between the model output

ŷk and measurement yk remains constant along the prediction

horizon.

Results

This section presents the results obtained using the proposed
control concepts (i.e., PID and MPC) and open-loop experi-
ments (i.e., no feedback control and constant u1 and u2 values).
In order to compare those, process data (temperature y

1
and

diameter y2) and offline analysis of the pellets produced in
terms of particle size distribution (PSD) were applied. For test-
ing the feedback control loop, reference profiles for temperature
and diameter were specified, and samples were taken, when the
process was run at steady state of the specific set points; see Fig.
10 and Fig. 11. The open-loop operation was tested for one
constant setting of the actuating signals. The plant inputs u1
and u2 were chosen to be around the center region of the feasi-
ble values and are provided in Sect. “Process Data”.

Process Data

Reference profiles for the strand temperature and strand diam-
eter were created, and tracking performance of the two control
strategies was assessed. The profiles, the controlled variables,
and the actuating signals are depicted in Fig. 10 and Fig. 11 for
the MPC and PID control, respectively. The MPC tightly
tracks the diameter profile, primarily by adjusting the pellet-
izer’s intake speed. From 1100 s to 1200 s, a deviation in the
diameter is noticeable. The controller reacts by increasing the
pelletizer’s intake speed until the diameter is close to the ref-
erence again. The temperature profile is not tracked with the
same accuracy. There are three main reasons for the larger
deviations: First, the weight of the temperature control in Q
is much lower than that of the diameter control. Consequently,
the controller prioritizes control actions that keep the diameter
close to the reference. This can clearly be observed between
1000 s and 1200 s. Second, the selected temperature profile
cannot be met at all times due to constraints of the plant (e.g.,
minimum/maximum cooling power). Obviously, between
800 s and 1000 s, the temperature does not reach the desired
value of 75 °C, although the cooling power is already reduced
to its minimum value of 10%. Third, the temperature measure-
ment in the process setup applied is very sensitive to the radial
strand position. Minor deviations from the nominal strand
positioning shift the small measurement spot away from the
strand’s center, causing a change in the temperature reading.
Additionally, since the strand can freelymove on the conveyor
belt (perpendicularly to the transport direction), the airstream
hits the strand under varying conditions, changing the temper-
ature. This deviation between the model and the real plant can
impair the control performance as well. Another parameter not

Table 2 Controller parameters MPC

Q
1 0
0 700

� �
106

R
0:1 0
0 0:1

� �

RΔ
2 0
0 2

� �
106

nc 2

np 20

Fig. 10 MPC control. Reference signals and controlled variables are shown in the top diagrams; actuating signals are shown in the bottom diagrams
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captured by the proposed LOLIMOT model is the mass flow
at the extruder outlet, whose possible variations may also af-
fect the strand diameter and temperature. During the trials, the
two powder feeders operated within a range of approximately
+/−3% of nominal mass flow.

The results achieved by the PID control are similar in terms
of strand diameter tracking performance. Once again, high
values in the temperature profile could not be tracked due to
the actuator saturation.

In addition to the closed-loop experiments discussed
above, the process was operated in the open-loop configura-
tion at the following set point: u1 = 50%, u2 = 30%; see Fig.
12. Pellet samples were taken from the closed-loop experi-
ments (see gray-shaded numbering in Fig. 10 and Fig. 11)
and the open-loop experiment. Their analysis is presented in
the following subsection. From the process data, the root mean
squared error between reference signal and actual diameter
and temperature,

Fig. 11 PID control. Reference signals and controlled variables are shown in the top diagrams; actuating signals are shown in the bottom diagrams

Fig. 12 Open-loop operation. Diameter and temperature are shown in the top diagrams; the constant actuating signals are shown in the bottom diagrams
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RMSEd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

k¼1 r2;k−y2;k
� �2r

;RMSET

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

k¼1 r1;k−y1;k
� �2r

; ð12Þ

respectively, was computed. N denotes the number of sam-
ples used for computation. The samples were selected accord-
ing to the intervals used for taking offline samples; see gray-
shaded areas in Fig. 10 and Fig. 11. Table 3 summarizes the
results.

Offline Analysis Data

The PSD measurements were performed using the Microtrac
PartAn 3D dry particle image analyzer (http://microtrac.com).
For PSD analysis, the area-equivalent diameter

Da ¼
ffiffiffiffiffiffiffi
4 A
π

r
ð13Þ

is applied. Area A is the average area in a sequence of
images of a specific particle [25].

In Fig. 13, the PSD of samples 1–14 and the PSD of the
open-loop experiment are shown. For both control strate-
gies (LOLIMOT+MPC on the left, PID on the right), the
PSDs of samples corresponding to the diameter set point
r2 = 1.3 mm are reproducible, and the higher and lower set
points of 1.4 mm and 1.2 mm suggest clearly distinguish-
able size distributions. Compared to the open-loop opera-
tion, the PSD slope is higher under both control concepts,
indicating a narrower PSD using the feedback control. To
quantitatively compare the pellets properties, the second
central moment μ2 [26] of each of the PSDs was computed
and is provided in Table 3. Compared to the second central
moment of the open-loop experiment, which is

Table 3 RMSE for the proposed control concepts. Provided sample numbers correlate to the time intervals used for sampling; see Fig. 10 and Fig. 11.
Further, the second central moment μ2 of the measured PSD is provided (see Sect. “Offline Analysis Data”)

Sample number
MPC control

Sample number
PID control

RMSEd (mm),
MPC control

RMSEd (mm),
PID control

RMSET (°C),
MPC control

RMSET (°C),
PID control

μ2 (mm
2),

MPC control
μ2 (mm

2), PID
control

1 8 0.0320 0.0291 1.0878 2.1339 0.0274 0.0259

2 9 0.0294 0.0232 1.2622 2.2641 0.0404 0.0427

3 10 0.0368 0.0315 3.3115 2.6048 0.0299 0.0276

4 11 0.0362 0.0383 1.9675 1.2769 0.0271 0.0261

5 12 0.0426 0.0246 5.6193 5.6306 0.0239 0.0217

6 13 0.0593 0.0259 1.8996 1.6558 0.0237 0.0246

7 14 0.0141 0.0342 0.9265 3.0396 0.0292 0.0354

Complete run Complete run 0.0516 0.0452 3.3754 2.8438

Fig. 13 PSD of samples taken for “LOLIMOT+MPC” (left) and PID (right). In both diagrams, the sample corresponding to the open-loop experiment is
shown. The legend entries indicate the temperature and the diameter set points
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μ2;open−loop ¼ 0:0473 mm2, all of the closed-loop experi-

ments show a smaller value, indicating a narrower PSD.

Discussion and Outlook

Our results demonstrate the advantages of a closed-loop con-
trol of strand diameter and strand temperature over an open-
loop system operation. The PSD of pellets produced can be
narrowed by applying any of the suggested control strategies.
The two concepts have both pros and cons. While the
“LOLIMOT+MPC” approach requires a plant model, tuning
is very intuitive and can easily be accomplished by selecting
the weights. Moreover, the control concept inherently takes
interactions between actuating signals and controlled vari-
ables into account: e.g., the influence of a higher intake speed
on the temperature (and not only on the diameter) is consid-
ered in the MPC strategy. Furthermore, rate constraints of the
actuating signals can be implemented straightforwardly.
Measureable disturbance d1 is also considered in the compu-
tation of actuating signals. While the PID concept does not
require a plant model, tuning of the parameters is less intuitive.
Typically, tuning rules [21, 27, 28] can be used in order to
select the appropriate parameters. However, the performance
of the diameter control via PID control is better for most of the
investigated steady-state points. In contrast, the temperature
control is better using the “LOLIMOT+MPC” approach for
most of the steady-state points. Taking into account the com-
plete trial, including also the transients between the different
set-points, the RMSE of the PID strategy is lower.

Our promising results suggest that the proposed
methods can be applied on continuous pharmaceutical
manufacturing lines, delivering a better pellet quality
in terms of their PSD than a conventional operation
with constant cooling track and intake speed settings.
Future work will focus on improving the strand guid-
ance and the IR-temperature sensor in order to achieve
a more robust temperature measurement. Furthermore,
the mass flow of the material could be considered in
the modeling approach and the MPC control concept,
allowing mass flow adjustments to the HME process
during its runtime.
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Control error, e = r − y; KP, Proportional gain PI controller (%/°C for PID
1, %/mm for PID 2); KI, Integral gain PI controller (%/(°C s) for PID 1,
%/(mm s) for PID 2);KD, Derivative gain PI controller (% s/°C for PID 1,
% s/mm for PID 2); μ2, Second central moment of PSD (mm2); nc,
Control horizon; np, Prediction horizon; Q, Weighing matrix control er-
ror; RMSEd, Root mean square error of the diameter (mm); RMSET, Root
mean square error of the temperature (°C); R, Weighing matrix actuating
effort; RΔ, Weighing matrix actuating variable variation; r1, Reference
value strand temperature (°C); r2, Reference value strand diameter (mm);
Ts, Sampling interval (s); y1, Strand temperature, measured (°C); y2,
Strand diameter, measured (mm); ŷ1, Strand temperature, predicted
(°C); ŷ2, Strand diameter, predicted (mm); u1, Pelletizer intake speed
(%); u2, Air pressure (in % of 6 bar); v, Pelletizer intake speed (m/min)
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