Skip to main content

Advertisement

Log in

Assessment of Pregelatinized Sorghum and Maize Starches as Superior Multi-functional Excipients

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Research exploring pharmaceutical applications of native sorghum and maize crops is needed to improve their economic competitiveness.

Objectives

This work assesses the physicochemical and compressional attributes of pregelatinized sorghum and maize starches originating from Sudan and determines whether these attributes are superior than existing starches in pursuit of achieving quality attributes of pharmaceutical dosage formulations.

Methods

The effects of pregelatinization temperature, starch concentration, and wet massing time were studied in 23 full factorial design. The relevant physical and functional properties such as particle morphology, compressibility index, porosity, particle size distribution, lubricant sensitivity, Heckel and Kawakita plots, and dissolution were systematically examined.

Results

The Hausner ratios (HRs) of unmodified sorghum (1.48) and maize starch (1.39) decreased to 1.22 on pregelatinization. The Heckel parameter of pregelatinized sorghum and maize starches were 29.4 and 17.5, respectively, indicating a high degree of plastic deformation. Low elastic recovery value of 0.29 % indicated low capping and lamination tendency. The coordination number of 8.7 which corresponded to bed voidage of approximately 45 % and Kawakita analysis supported densification by particle rearrangement at low compaction pressures. Swelling power increased fourfold compared to unmodified starches resulting in the faster disintegration of tablets. More than 80 % of drug was released after 10 min from all the formulations. Although lubrication sensitivity values increased marginally, no effect on disintegration time was seen.

Conclusion

The pregelatinized starches mainly sorghum possess superior physical and functional properties and can accommodate minor changes in the formulation composition or process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khar RK, Vyas PS, Farhan JA, et al. Lachman/Lieberman’s. The Theory and Practice of Industrial Pharmacy, 4 ed. New Delhi: CBS Publishers and Distributors Pvt Ltd.; 2013.

    Google Scholar 

  2. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  3. Okpanachi GO, Musa H, Isah AB. Physicochemical characterisation of microcrystalline starch derived from Digitaria iburua (Poaceae). Nig J Pharm Sci. 2012;11:66–76.

    Google Scholar 

  4. Subhadhirasakul S, Ketjinda W, Phadoongsombut N. Study on tablet binding and disintegrating properties of alternative starches prepared from taro and sweet potato tubers. Drug Dev Ind Pharm. 2001;27:81–7.

    Article  CAS  PubMed  Google Scholar 

  5. Garr JSM, Bangudu AB. Evaluation of sorghum starch as a tablet excipient. Drug Dev Ind Phar. 1991;17(1):1–6.

    Article  CAS  Google Scholar 

  6. Odeku OA. Potentials of tropical starches as pharmaceutical excipients: a review. Starch – Stärke. 2013;65(1-2):89–106.

    Article  CAS  Google Scholar 

  7. Adebayo SA, Brown-Myrie E, Itiola OA. Comparative disintegrant activities of breadfruit starch and official corn starch. Powder Tech. 2008;181:98–103.

    Article  CAS  Google Scholar 

  8. Adedokun MO, Itiola OA. Disintegrant activities of natural and pregelatinized trifoliate yams, rice and corn starches in paracetamol tablets. J Appl Pharm Sci. 2011;1(10):200–6.

    Google Scholar 

  9. Jubril I, Muazu J, Mohammed GT. Effects of phosphate modified and pregelatinized sweet potato starches on disintegrant property of paracetamol tablet formulations. J Appl Pharm Sci. 2012;2(2):32–6.

    Google Scholar 

  10. Satin M. Functional properties of starches. In: Third Intern. Symp. on Tropical Tuber Crops, held in Thiruvananthapuram, Kerala, India; Jan 19–22, 2000.

  11. Udachan IS, Sahu A, Hend F. Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. Int Food Res J. 2012;19(1):315–9.

    CAS  Google Scholar 

  12. Yagoub AE, Suleiman AME, Abdel-Gadir W. Effect of fermentation on the nutritional and microbiological of quality of dough of different sorghum varieties. J Sci Tech. 2009;10(3):109–19.

    Google Scholar 

  13. Hamad SH, Dieng MC, Ehrmann MA, et al. Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol. 1997;83(6):764–70.

    Article  CAS  PubMed  Google Scholar 

  14. Mustafa A, Macmasters M. New varieties of sorghum grain suitable for starch production. Starch-Starke. 1970;22(6):192–5.

    Article  Google Scholar 

  15. Abdallah DB, Charoo NA, Elgorashi AS. Comparative binding and disintegrating property of Echinochloa colona starch (difra starch) against maize, sorghum, and cassava starch. Pharm Biol. 2014;935–943.

  16. Visavarungroj N, Remon JP. An evaluation of hydroxypropyl starch as disintegrant and binder in tablet formulation. Drug Dev Ind Pharm. 1991;17(10):1389–96.

    Article  CAS  Google Scholar 

  17. Alebiowu G, Itiola OA. Compressional characteristics of native and pregelatinized forms of sorghum, plantain, and corn starches and the mechanical properties of their tablets. Drug Dev Ind Pharm. 2002;28:663–72.

    Article  CAS  PubMed  Google Scholar 

  18. Núñez Santiagoa MC, Bello-Pe’reza LA, Tecante A. Swelling-solubility characteristics, granule size distribution and rheological behavior of banana (Musa paradisiaca) starch. Carbohydr Polym. 2004;56:65–75.

    Article  Google Scholar 

  19. Abdalla AA, Umsalama MA, Abdelhalim AR, et al. Physicochemical characterization of traditionally extracted pearl millet starch (Jir). J Appl Sci Res. 2009;5(11):2016–27.

    CAS  Google Scholar 

  20. Ohwoavworhua F, Adelakun T, Kunle O. A comparative evaluation of the flow and compaction characteristics of a-cellulose obtained from waste paper. Trop J Pharm Res. 2007;6(1):645–51.

    Article  Google Scholar 

  21. Achor M, Oyi AR, Isah AB. Some physical characteristics of microcrystalline starch obtained from maize and cassava. Continental J Pharm Sci. 2010;4:11–7.

    Google Scholar 

  22. Liu Z. Measuring the angle of repose of granular systems using hollow cylinders. Pittsburgh: University of Pittsburgh; 2011.

    Google Scholar 

  23. Wade A, Weller PJ. Handbook of pharmaceutical excipients. London: Pharmaceutical Press; 1994.

    Google Scholar 

  24. Zhang Y, Huang Z, Yang C, Huang A, et al. Material properties of partially pregelatinized cassava starch prepared by mechanical activation. Starch-Starke. 2013;65(5‐6):461–8.

    Article  CAS  Google Scholar 

  25. Allen LV, Popovich NG. Ansel’s pharmaceutical dosage forms and drug delivery systems, vol. 306. Baltimore: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  26. USP36-NF31. United States Pharmacopeial Convention. Rocville 2013

  27. Alebiowu G, Adeagbo A. Disintegrant properties of a paracetamol tablet formulation lubricated with co-processed lubricants. Farmacia. 2009;57(4):500–10.

    Google Scholar 

  28. Adedokun MO, Itiola OA. Influence of some starch mucilages on compression behaviour and quality parameters of paracetamol tablets. Br J Pharm Res. 2013;3(2):176–94.

    Article  CAS  Google Scholar 

  29. Rojas J, Aristizabal J, Henao M. Screening of several excipients for direct compression of tablets: a new perspective based on functional properties. Revista de Ciências Farmacêuticas Básica e Aplicada. 2013;34(1):17–23.

    CAS  Google Scholar 

  30. Zhang Y, Huo M, Zhou J, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2013;12(3):263–71.

    Article  Google Scholar 

  31. Rippie E, Faiman F, Pramoda M. Segregation of particulate solid systems IV. Effect of particulate shape on energy requirements. J Pharm Sci. 1967;56:1523–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kawakita K, Lüdde KH. Some considerations on powder compression equations. Powder Tech. 1971;4(2):61–8.

    Article  Google Scholar 

  33. Rojas JY, Uribe Y, Zuluaga A. Powder and compaction characteristics of pregelatinized starches. Die Pharmazie. 2012;67(6):513–7.

    CAS  PubMed  Google Scholar 

  34. Garekani HA, Ford JL, Rubinstein MH, et al. Effect of compression force, compression speed, and particle size on the compression properties of paracetamol. Drug Dev Ind Pharm. 2001;27:935–42.

    Article  CAS  PubMed  Google Scholar 

  35. Mohan S. Compression physics of pharmaceutical powders: a review. Int J Pharm Sci Res. 2012;3:1580–92.

    CAS  Google Scholar 

  36. Cumberland DJ, Crawford RJ. The packing of particles, vol. 6. Amsterdam: Elsevier; 1987. p. 33.

    Google Scholar 

  37. German RM. Coordination number changes during powder densification. Powder Tech. 2014;253:368–76.

    Article  CAS  Google Scholar 

  38. Klevan I. Compression analysis of pharmaceutical powders: assessment of mechanical properties and tablet manufacturability prediction. 2011.

    Google Scholar 

  39. Colonna P, Doublier JL, Melcion JP, De Monredon F, Mercier C. Extrusion cooking and drum drying of wheat starch. I. Physical and macromolecular modifications. Cereal Chem. 1984;61:538–42.

    CAS  Google Scholar 

  40. Bos E, Bolhuis GK, Van Doorne H, et al. Native starch in tablet formulations: properties on compaction. Pharm Weekbl Sci. 1987;9:274–82.

    CAS  PubMed  Google Scholar 

  41. Wong L, Pilpel N. Effect of particle shape on the mixing of powders. J Pharm Pharmacol. 1990;42(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  42. Defloor I, Dehing I, Delcour JA. Physico-chemical properties of cassava starch. Starch-Starke. 1998;50:58–64.

    Article  CAS  Google Scholar 

  43. US Department of Health and Human Services, Food and Drug Administration (FDA), Center for Evaluation and Research (CDER). Guidances for industry: Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a Biopharmaceutics Classification System. 2000

  44. Raihan Sarkar MD, Monjur-Al-Hossain ASM, Saiful Islam MD, et al. Effect of hydrophilic swellable polymers on dissolution rate of atorvastatin using simple physical mixing technique. Ind J Novel Drug Del. 2012;4:130–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naseem Ahmad Charoo.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, D.B., Charoo, N.A. & Elgorashi, A.S. Assessment of Pregelatinized Sorghum and Maize Starches as Superior Multi-functional Excipients. J Pharm Innov 11, 143–155 (2016). https://doi.org/10.1007/s12247-016-9247-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-016-9247-8

Keywords

Navigation