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Abstract
In the current era of agricultural robotization, it is necessary to use a suitable automated data collection system for constant
plant, animal, and machine monitoring. In this context, cloud computing (CC) is a well-established paradigm for building
service-centric farming applications. However, the huge amount of data has put an important burden on data centers and
network bandwidth and pointed out issues that cloud-based applications face such as large latency, bottlenecks because of
central processing, compromised security, and lack of offline processing. Fog computing (FC), edge computing (EC), and
mobile edge computing (MEC) (or flying edge computing FEC) are gaining exponential attention and becoming attractive
solutions to bring CC processes within reach of users and address computation-intensive offloading and latency issues. These
paradigms from cloud to mobile edge computing are already forming a unique ecosystemwith different architectures, storage,
and processing capabilities. The heterogeneity of this ecosystem comes with certain limitations and challenges. This paper
carries out a systematic review of the latest high-quality literature and aims to identify similarities, differences, and the main
use cases in thementioned computing paradigms, particularly when using drones. Our expectation from this work is to become
a good reference for researchers and help them address hot topics and challenging issues related to this scope.
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1 Introduction

Today, we are witnessing climate change, a health pandemic,
and a political conflict which have a major impact on food
security. According to FAO (Food and Agriculture Orga-
nization), the world needs to increase food production by
almost 50% by 2050 [4]. To meet this demand, farmers, sci-
entists, and agricultural industries are exploring newmodern
technologies such as the Internet of Things (IoT), artificial
intelligence (AI), cloud computing (CC), edge computing
(EC), flying edge computing (FEC), big data, and unmanned
aerial vehicles (UAVs). The ecosystem that emerged from
this combination is now called smart farming, smart agri-
culture, or also precision agriculture, which is all about
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collecting the right data at the right time so that the use of
resources can be optimized by considering the requirements
of every inch of farmland [16] Today’s trends and statistics
point out a considerable evolution towards the robotization
of the agricultural sector. According to CISCO [1], more than
70 billion devices will be connected by the end of 2025.

According to Polaris Market Research Analysis [2], the
global agriculture drones market was valued at USD 1.26
billion in 2021 and is expected to growat aCAGR(compound
annual growth rate) of 29.1% during 2018–2030.

The adoption of these technologies has made agricul-
turemore industrialized and technological, bringingmultiple
benefits such as increased quantity and quality products,
reduced labor costs, and reduced resource consumption.

However, the massive use of connected objects and dig-
ital services induces a huge amount of data from farms.
Ensuring the best processing, protection, and traceability of
this data has become an issue for both farmers and compa-
nies in the agricultural sector. For that purpose, prominent
metaverse (Facebook, Microsoft, Google, Apple, and Ama-
zon) are usingmassive Cloud Datacenters (CDCs) to provide
effective user services to process this data in a proficient and
trustworthy manner.
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In the majority of cases, data from farms is analyzed, pro-
cessed, and stored in secure clouds. The main advantage of
this is to make them accessible from any part of the globe.
But, processing and memorizing this massive volume of data
at local nodes have been deemed critical challenges, espe-
cially when using artificial intelligence (AI) based systems
to extract and exploit valuable information. In fact, the cen-
tralized processing mode of cloud computing has limited
bandwidth, high latency, and high power consumption.

Eventually, the goal of having massive storage capacity
with efficient scalability has recently been the driving force
behind new emerging research efforts dealing with edge, fog,
and flying edge computing paradigms. Fog nodes, in an effort
to alleviate processing at the data center level, perform light
user requests without having to send them to the cloud while
edge nodes provide an innovative service to completely exe-
cute user requests at the nearest level to the user. As the
research in fog, edge, and flying edge computing is purpose-
fully growing, there is a need to assess the existing research
related to these emerging paradigms to find out the possible
future directions and research opportunities related to this
field.

This work presents a fresh manifesto on modern comput-
ing paradigms to identify further opportunities and future
directions for emerging paradigms compared with the cloud
computing paradigm. It expands our previous work [3] by
discussing recent valuable works based on flying edge com-
puting as well as the resulting challenges. Our contribution
further includes, through a systematic review methodology,
a synthetic taxonomy on the advantages and limits of each
architecture.

The remainder of this paper is organized as follows:
The background on computing concepts is presented in
Section2 including smart farming, Internet of Drones con-
cepts, and a detailed comparison between the discussed
computing paradigms. Section3 draws the review methodol-
ogy conducted in this survey. Section4 describes a systematic
literature review of novel research works related to the men-
tioned architectures to sum up, in Section5, with a synthetic
overview of related open issues. Finally, Section6, concludes
the ongoing work.

2 Background on computing paradigms

Before delving into the main parts of this paper, a general
overview that summarizes the different paradigmsmentioned
will be given. Each paradigmwill be carefully discussed con-
cisely for clarity and consistency. The reason for discussing
these paradigms is to provide an overview that will guide
the understanding of the research objectives of this paper,
mainly the information life cycle and each paradigmarchitec-
ture. The computing technologies in an IoT environment may

offer services for end-users, which can improve the system’s
overall performance with higher throughput in real time.
The developing rate of IoT-based smart devices or sensors
requires mobility with extensive geographical distribution,
which is only possible nowadays through computing tech-
nologies [5].

2.1 Smart agriculture

Smart agriculture is an emerging concept that emphasizes
the use of advanced technologies such as IoT and AI to
improve productivity. It is based on digital tools to collect
and analyze various real-time information in order to better
understand and analyze the physiological crops needs and to
develop decision support tools for the user. Thewhole picture
is as follows: sensors and/or drones with sensing capacities
are deployed over the field to monitor specific parameters
such as soil moisture, soil fertility, air temperature, smoke,
crop growth factors, movement of livestock, and presence of
pests. All these collected data are valuable resources for use
in data-driven services and decision support systems (DSS)
in agricultural platforms and will be then processed in pow-
erful servers to extract and analyze valuable information for
a better use of resources and an increasing production [6].

Precision farming can be viewed as comprising four
stages: data acquisition, interpretation, analysis, and control.
To successfully deploy and run a smart agriculture system,
the farmer needs to implement various cutting-edge tech-
nologies across these stages to experience perceived benefits.
To achieve these goals, we may face several challenges. For
example, we should consider setting up a communication
network that can integrate a limited number of sensing nodes
across a large area of farmland. This will require third-party
network provisioning or setting up a private network con-
sisting of access points and uplinks to a private backhaul
network, which channels all the data traffic to centralized
monitoring software or an analytics head-end system.

While data plays a central role in smart agriculture, data
management is an ongoing challenge for many farmers and
agribusinesses alike. Even a small farm gathers and stores
tons of data to inform related operations and marketing deci-
sions. To overcome this challenge, a smart approach to data
processing,management, and storagemust be deployed. That
iswhy the agriculture industry is rapidly adopting the big data
concept as a key solution for a successful precision agricul-
ture system.

2.2 Internet of Drones (IoD)/UAVs overview

We strongly believe that IoT is a key technology in smart
farming, through the use of multi-functional devices such
as ground robots and drones. The Internet of Drones (IoD)
has recently gained momentum due to its high flexibility
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in various complex scenarios. In fact, thanks to techni-
cal and practical advantages such as high maneuverability
and wireless expansion capabilities, UAVs are successfully
used in various application areas such as agriculture, search
and rescue missions, surveillance systems, and many other
civil utilization. These flying robots, in a wide range of
applications, are used as first responder because of their
fast, cost-effective, and safe deployment capabilities [7].
Further, with improved technology and installations like
three-dimensional projects, UAVs are playing the pivotal part
of airborne base stations in almost all emerging networks.
Thus, the use of drones is expected to improve the perfor-
mance parameters of various network architectures, such as
reliability, connectivity, throughput, and latency.

Because of their involvement in awide range of daily oper-
ations, UAVs have become the best candidates to achieve
meaningful results in precision farming [9]. Due to these
capabilities, UAVs can be used throughout the life cycle of
crops in similar functions as soil health examinations [30],
colony [10], factory counting [11], crop health monitoring
[13], irrigation [39], spraying fertilizers and pesticides [14],
and estimating crop yield.With precise and accurate sensors,
drones can determine water stress, low crop nutrients, and
poor soil health. By implementing a drone program, farming
can become more economically and environmentally effi-
cient by targeting the areas that need the most care. This
drone-based technology has become a point of interest for
all concerned agriculture professionals, including farmers,
agronomists, crop insurance companies, and researchers.

Nevertheless, the adoption of drone networks brings also
several issues related to the inherent unreliability of the wire-
less medium, battery life, and high mobility, which can lead
to frequent topology changes. This explains the really large
amount of workshops generated in the recent literature on
correlated topics. Here, we briefly cite some challenges of
remote farming using UAVs in the literature:

• Deployment andpathplanning: Initially, drones should
be deployed in such a manner to best cover the farming
field. Then, once deployed, these drones should carry
out their functions in a cooperative manner and delegate
surveillance and data collection tasks to each other to
optimize the number of drones used for a given applica-
tion.

• Communication: Drones are generally used to monitor
farming areas, to connect sensors, and to collect valu-
able data. This task requires the establishment of air-air
and air-ground exchanges which are carried over wire-
less links that are most often fluctuating, unstable, and
subject to ambient interference.

• Real-time requirement: Depending on the targeted
farming application, drones can be called upon to pro-
vide instantaneous and real-time response times. This

aspect represents a challenge in the sense that it requires
advanced processing and transmission capabilities.

2.3 Cloud computing overview

The US National Institute of Standards and Technology
(NIST) defines “Cloud Computing” as a model for enabling
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g. networks, servers,
applications, and services) that can be rapidly provisioned
and released with minimal management effort or service
provider interaction.

On another hand, a successful IoT system requires high
performance, reliability, efficiency, and scalability. Here, we
came up with the idea of merging cloud computing and the
Internet of Things, and this allows systems to be automated in
a cost-effective way that supports real-time control and data
monitoring. These two technologies are considered the real
motivators that are driving the agricultural industry to tran-
sition to smart agriculture to improve operational efficiency
and productivity.

As the cloud is mainly formed by centralized servers also
called data centers, it is, generally, quick to deploy, inexpen-
sive to maintain, and practical when data need to be centrally
controlled. The main advantage of the cloud is that the stored
data can be accessed from anywhere in the world. The cloud
can also handle a very large number of analyses at the same
time and can manage very complex neural networks thanks
to very high computing power.

However, when dealing with a massive amount of data,
these cloud nodes aremostly constrained by their high failure
rate, security risks, and access delay. Data processing at the
central level causes considerable time delays that affect the
overall system quality of service (QoS), especially regarding
the response time requirement for latency-sensitive appli-
cations and intermittent Internet connectivity [18]. On the
same perspective, according to IDC forecasts [64], 50% of
the Internet of Things with more than 50 billion terminals
will face network bandwidth limitations, and 40% of data
will need to be analyzed, processed, and cached at the edge
of the network. The size of the edge computing market will
exceed trillions, and it will become an emerging market that
is evenly matched with cloud computing.

2.4 Fog computing overview

The fog computing architecture comprises various compo-
nents, including gateways, routers, and cloud services used
to distribute computing resources between data devices and
the cloud or any other data center in a distributed computing
process.

This computing approach was first introduced by Flavio
Bonomi at CISCO in 2012. According to [23], fog comput-
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ing is a highly virtualized platform that provides computing,
storage, and networking services between end nodes and tra-
ditional cloud computing data centers, typically located at
the backhaul network, but not exclusively. The basic idea
behind fog is to bring the cloud down to the scale of the
farm so that the user’s computation demand is served at their
proximity rather than performed in the distant cloud. More-
over, fog computing is primarily introduced for applications
that need real-time processing with low latency since the
data generated by the terminals is pre-processed in decentral-
ized mini-computing centers beforehand, rather than being
directly uploaded to the cloud.

The fog nodes are context-aware and support common
data management and communication services. The het-
erogeneity of fog servers comprises shared locations with
hierarchically structured blocks. They can be organized in
clusters, either vertically to support isolation or horizontally
to support federation or relative to fog nodes’ latency distance
to the smart end devices.

Fog computing can also be used to develop low latency
networks between analytic endpoints and devices, which can
lead to reduced bandwidth requirements compared to cloud
computing. However, fog computing is dependent on multi-
ple links for transferring data from the physical asset chain
to the digital layer, which can be potential points of network
failure.

Moreover, this type of infrastructure is still rare and
especially reserved for large industrialized farms because it
requires greater investment in network and IT architecture
[57]. Fog also requires graphic computers to be installed on
the farm. The maintenance of an infrastructure like fog is
more restrictive because not all interventions can be man-
aged remotely.

2.5 Edge computing overview

The emerging paradigm of edge computing (EC) employs
novel techniques to address the challenges of ultra-low
latency, high data rates, broad bandwidth, and optimal user
experience. The EC architecture processes data closer to the
source, often on the samedevice that collects and analyzes the
data, enabling fast and seamless results. The proximity to the
data source offers significant business advantages, with the
biggest benefit being the ability to control critical processes
in real time. EC also supports decentralized data storage and
processing, eliminating bandwidth limitations and network
outages that could adversely affect important business deci-
sions.

Similar to fog computing, edge computing does not
require huge bandwidth. Only the analysis results are sent to
a cloud-hosted on the Internet. This approach is interesting
because it addresses Internet connection problems in certain
rural areas (persistence of white areas). However, unlike fog

computing, edge computing does not require the installa-
tion of a graphic computer on the farm since the edge nodes
already have computational capacities. Moreover, devices
that use edge computing can provide near real-time analyt-
ics that can help optimize performance and increase uptime.
These technologies are experiencing strong growth, partic-
ularly for facial recognition applications associated with
mask-wearing detection or temperature measurement.

However, the deployment cost of EC is higher than that
of conventional sensors/cameras since the edge nodes are
already equipped with computers and use more advanced
technology. Additionally, edge nodes equipped with edge
computing technology cannot process the same data stream
as a computer (fog) or supercomputers (cloud) due to their
limited capabilities. EC is also less scalable compared to
fog computing and supports little interoperability. This could
make IoT devices incompatible with certain cloud services
and operating systems. In addition to these disadvantages,
edge computing does not support resource pooling, andmain-
tenance ismore cumbersome than in conventional computing
as certain problemsmay require physical maintenance on the
farm.

2.6 Flying edge computing overview

Flying edge computing (FEC) has emerged as a promising
solution for meeting the quality of service (QoS) require-
ments of the Internet of Things (IoT) and mobile devices,
which often have limited resources in terms of processing
cycles and power. In fact, with the advent of drones, these
flying robots are used to form flying edge platforms, also
called mobile edge computing (MEC) solutions. Such plat-
forms have been employed, on the one hand, to improve the
intensive computation and offloading bottlenecks between
end nodes and centralized data servers and, on the other hand,
to offload processing restrictions of simple fixed sensors [22].

This FEC paradigm can be presented as a server-edge net-
work supported by a cloud computing backend layer close to
IoT and mobile device networks.

Flying edge computing aims to extend flying cloud
computing for real-time IoT applications. The edge layer dis-
tributes the computational load by processing data locally to
the edge device level without cloud intervention. Therefore,
switching data processing and storage to the edge layer can
significantly reduce latency.

Hybrid solutions can be modeled hierarchically, where
more computationally intensive tasks are executed in the
gateway (the fog) and less computationally intensive tasks
are executed in the end devices (fog/edge/flying edge). The
collected and processed data is still delivered to the cloud,
where it is made available to the user. As illustrated in Fig. 1,
hybrid solutions are conceptually modeled with regard to a
hierarchical view.
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Fig. 1 Hierarchical view of computing

2.7 Differences and similarities of computing
paradigms

Unlike the cloud, FC, EC, and FEC share common features
relative to the way they bring the intelligence services closer
to the users and how they offer customers with lower latency
services while making sure, on the one hand, that highly
delay-tolerant applications would achieve the required QoS
and, on the other hand, lowering the overall network load
[48]. That is why it is not trivial to assess the main differ-
ences. This subsection attempts to look into similar common
features and differences between the above paradigms,which
can be summarized in Table 1.

First, we are trying to synthesize information to provide
a general comparison between edge computing and flying
edge computing, since they are very close:

• Edge computing involves processing and analysis of data
on fixed devices located at the edge of the network, while
mobile edge computing involves processing and analysis
of data onmobile devices (UAVs, tractors, robots, mobile
actuators,...) that can move to different locations. Flying
edge computing is a specific type of MEC using UAVs.

• Edge computing is suitable for applications that require
low latency, real-time processing, and reduced network
bandwidth, while flying edge computing is more useful
for applications that require real-time data processing and
analytics in remote or hard-to-reach locations such as
forest fire detection and wildlife monitoring.

• Edge computing typically involves deploying computing
resources on fixed and powerful devices such as gateways
or edge servers, while flying edge computing implements
computing programs on drones with regard to their hard-
ware capabilities.

• Compared to fixed edge servers, the performance of
flying edge nodes is strongly constrained by their avail-
able energy which requires continuous monitoring of the
available resources before tackling a given task and even
seeing the implementation of energy-saving solutions to
extend their lifetime.

• To cover large geographical areas, flying edge nodes is
practically better and cheaper than deploying the high
number of fixed edge servers, as connecting these edge
servers is challenging because of unreliable and fluctuat-
ing communications.

• When using UAVs, the network is much more fault-
tolerant, since the tasks initially allocated to the failed
drone can be easily redistributed to the other available
drones. This fault tolerance is more difficult to manage
with fixed nodes because it requires human intervention
to repair or change the faulty node.

A focus on the flying edge concept compared with tradi-
tional edge and cloud computing is represented in Fig. 2.

Overall, the different computing techniques exhibit the
same view of providing QoS to customers, but each one has
a separate set of features that makes it original.

Notably, the fog paradigm is designated the most effective
and reliable system to better handle the security and privacy
challenges encountered.

However, some features of the variants of the edge
paradigm, such as decentralization, mobility, fast data pro-
cessing and analysis, and bandwidth-free constraints, have
made it a promising solution to real-time IoT applications.

Particularly, for farming applications requiring UAV
remote sensing, the FEC offers several features facilitating
the deployment and efficient functioning of such applica-
tions. Along with high mobility and scalability, UAVs can
offer many potential opportunities in terms of enabling
services such as pervasive connectivity, aerial intelligence,
self-maintenance capabilities for communications, and sen-
sor deployment. Therefore, UAVs are, generally, used for
several roles such as airborne base station subsystem (BSS),
data collectors, relay nodes, edge and cloud computing
servers, and power suppliers to support IoT applications.
These features are likely to extend network coverage and
provide diversified and flexible intelligence facilities for new
potentialities in modern IoT applications. Among the most
relevant benefits of FEC are as follows:
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Table 1 Main differences between cloud, fog, edge and flying edge computing

Attribute The computing technique
CC FC EC FEC

Network architecture Centralized Centralized/decentralized Decentralized Decentralized

Service architecture Client–server SOA/microservices Microservices Micro/nano-services

Focus Infrastructure level Infrastructure level IoT level No communications
infrastructure needed

Handling multiple IoT
applications

Supported Supported Not supported Not supported

Latency High Medium Low Ultra low

Scalability High Average Limited Limited

Mobility Not supported Offered Supported Supported

Energy High Low Low Very low

Bandwidth cost High Average Low Low

Storage and
computation capacity

High Varying Limited Limited

Access security Open to all users Restricted access Distributed and
restricted access

Distributed and
restricted access

Data privacy Third party Institutional access Institutional access Institutional access

Data analysis Less time-sensitive data
processing

Real-time, decides to
process locally or send
to cloud

Real-time instant
decision-making

Real-time instant
decision-making

Data attack High probability Low probability Very low probability Very low probability

Failure risk Medium Low Low High

Communication Wired Internet Wired intranet Wired/wireless intranet Wired/wireless intranet

Interoperability At the Internet Close to the edge At the edge At the edge

No. of nodes Few Large Very large Very large

• Scalability: The system can be rapidly expanded in terms
of coverage area, number of sensor devices, number of
drones in operation, and services provided.

• Flexibility: The system is flexible enough to adapt to
changes, required services, or monitored areas.

• Fast deployment: The mobile and autonomous aspect of
UAVs makes the flying edge easily deployed in remote
areas to facilitate IoT services. It is a turnkey system that
can be used where there is no communication infrastruc-
ture.

• Power effectiveness: As hosted computing services are
provided by flying robots (UAVs) which are easily
recharged, this scheme is considered to have extremely
high-performance efficiency for IoT nodes.

• Communicationpossibilities:UAVscanpotentially adopt
many recent cellular and non-cellular wireless commu-
nication networks to control the UAV and to enhance
the coverage and latency services. The most promi-
nent communication protocols that can be used with
UAVs are IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMax),
IEEE 802.15.4 (LRWPAN), cellular networks (3G/4G),
IEEE 802.15.1 (Bluetooth), LoRaWAN (LoRa), SigFox,
and narrowband IoT (NB-IoT). Typically, the choice of

communication protocol depends on the desired achiev-
able throughput, power consumption, range, implemen-
tation cost, reliability, delay, and security.

Like edge computing,MEC shortens the distance between
where data is produced, collected, and analyzed in the cloud.
Processing that is typically offloaded to the data center is
now done virtually by mobile edge clouds, which collect,
store, and process information from nearby wireless devices
within the cloud network. Being close to the device and
bypassing the user enables significant performance improve-
ments, including higher bandwidth, lower latency, and faster
response times and decision-making. Cloud, fog, and edge
have limitations regarding computing capacity, coverage
range, storage resources, and latency. Using a single comput-
ing paradigm is not enough to fulfill the diverse requirements
of a huge number of traditional and heterogeneous IoT
devices. It depends on the use case, but a user might be
facedwith computation-sensitive and latency-sensitive appli-
cations at the same time. In this case, the user would require
the services provided by both cloud and edge or fog [17]. This
is where a federation between computing paradigms can play
a key role in resolving such issues.
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Fig. 2 Similarities and
differences between computing
techniques

Each of these paradigms has its unique features and
applications. For instance, cloud computing is widely used
in the deployment of web applications and data storage.
Edge computing is employed in real-time applications such
as autonomous vehicles, industrial automation, and smart
homes. Fog computing is used in applications that require
decentralized computing, such as precision agriculture. Fly-
ing edge computing, on the other hand, is a relatively new
concept that combines edge computing with UAVs. It is
mainly used for real-time data processing and analytics in
remote or hard-to-reach locations, such as environmental
monitoring, wildlife conservation, and disaster management.

A comparative overview of these computing techniques
with details about the pros and cons of each one is given in
Table 2.

3 Reviewmethodology

Over the past few years, several works have been proposed
in the field of smart farming. The academic community
has extensively analyzed this rich literature from multiple
perspectives and with specific objectives in mind. In this
review, our primary goal is to identify specific smart agri-
culture use cases that rely on a combination of cloud, fog,
edge, and flying edge architectures. Our contributions in this
work include (i) presenting a representative list of applica-
tion domains based on the required computing architecture,
(ii) investigating relevant works based on a multi-layered
architecture with a focus on main contributions/achieved
objectives and components of the proposed solutions, and
(iii) providing a comparative summary of the pros and cons of
each computing architecture based on the latest results listed
in this review. Finally, we also discuss the impending chal-

lenges and open issues in computing paradigms-based smart
agricultural applications. To create a review that meets pub-
lication requirements and specific considerations associated
with each step, we followed various standards and guidelines
suggested for literature reviews, such as those in [15, 19, 54],
and we adopted the Preferred Reporting Items for System-
atic Reviews andMeta-Analyses (PRISMA)methodology to
systematically review the existing literature on smart farming
with IoT in the era of drones. Figure3 shows the workflow
and the basic steps of our review process which include (1)
designing the review, (2) conducting the review, (3) analyz-
ing, and (4) writing up the review.

Hereafter, we explain one by one the key steps followed
to carry out this survey with relative details concerning the
number, the quality, and the filtering of the references used.

3.1 Designing the review

Faced with a plethora of literature on digital precision agri-
culture, it was necessary to restrict our field of study to a
specific and targeted topic.

The development of wireless technologies and the drone
market motivated us to address the prospects for the advent
of these key components inmodern agricultural applications.
Through the keywords used in our research, we found well-
ranked surveys that we decided to include in this paper.

For example, in the review [19], the authors identify
the main devices, platforms, network protocols, and data
processing technologies for IoT-based smart farming appli-
cations. This work reports an increasing trend towards the
integration of complementary technologies that rely on cloud
and big data computing for processing large amounts of data,
with a particular use of artificial intelligence and image pro-
cessing techniques. As this study was focused on the sensing
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Table 2 The comparison of cloud computing and other computing paradigms

Architecture Pros Cons

CC · Centralized computing model · Scalable · Long latency/response time

· Accessed through the Internet · Cost-effective ·limitedbandwidth

· Large-scale data storage and processing
on remote servers

· Based on an Internet-driven global
network on robust TCP/IP protocol

· Security vulnerabilities

· No offline mode

· Bottlenecks if many devices send data
simultaneously

FC · Coined by Cisco · Real-time data analysis · Data must pass through many links to
approach the fog node

· Extending cloud to the edge of the
networks

· Fast · Single point of failure

· Hybrid computing model between cloud
and edge computing

· Sensitive data remain inside the network

· Any device with computing capability,
storage, and network connectivity can
be a fog node

· Saves storage and network costs

·More scalable than mist and edge

· Operations can be managed by the IT
team

· Fog node can be deployed in protected,
private, public, or hybrid mode

EC · Decentralized computing model ·More secure than FC and CC due to the
proximity

· Less scalable than fog and cloud

· Limited peripheral layers · Fast · Requires more node energy

· Pushes the intelligence, processing
power, and communication of an edge
gateway of appliances directly into
devices like programmable automation
controllers (PACs)

· Not dependent on the Internet · No cloud awareness

· Not usable in hard conditions or where
sensor nodes are fluctuating

FEC · Can work with no communications
infrastructure

· Completely secure · Most devices are constrained by their
size and battery usage

· A flying node acts like a computing and
communication machine

·Works offline and no need to any
communications infrastructure

· Involves deploying computing resources
and data processing capabilities on
UAVs, which can fly to remote or
inaccessible areas to collect and process
data

· Saves power

· Scalable
· Provides real-time data analysis and
decision-making capabilities in remote
or hard-to-reach locations

Fig. 3 The review process of
our work
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and the data collection layer without a specific concern on
multi-layered computing solutions, our workmay extend this
review by including the analysis of computing paradigms’
usage in smart agriculture as a way to deal with challenges
associated with traditional centralized cloud solutions such
as high communication latency, lack of support for real-time
reaction to detected events, and large bandwidths.

Thepaper [64] presents a reviewof the applicationofEC in
the Agricultural Internet of Things and investigates the com-
bination of EC with AI, blockchain, and virtual/augmented
reality technologies. The challenges of edge computing task
allocation, data processing, privacy protection, and service
stability in agriculture are reviewed, but their study was
limited to edge computing, and no comparison was made
between edge and other computing paradigms.

The authors in the survey [20] provide an extensive review
of the use of smart technologies in agriculture based on
relevant researchworks. They elaborate an extensive state-of-
the-art of new technologies for smart agriculture including,
the Internet of Things, cloud computing, machine learning,
and artificial intelligence.Moreover, this survey discusses the
components used in different architecture models and briefly
explores the communication protocols used to interact from
one layer to another. Finally, the challenges of smart agri-
culture and future research directions are briefly pointed out
in this article, with a particular concern on climate impact.
However, the paper does not provide any comparative anal-
ysis of the architectural design of the reviewed solutions and
does not include fog-based solutions.

This survey [18] is a systematic review of cloud, fog, and
edge computing applications and architecture components
from research articles published between 2015 and 2021.
The study carried out reports a high focus on applying the
cloud-fog-edge combinations in order to get the benefits of a
truly connected and smart farming concept.We intend to aug-
ment such a study with more fresh papers and introduce the
flying edge paradigm as a trendy advanced solution capable
of solving many of the challenges raised.

In the paper [21], the authors review the latest research
on IoT and UAV technology applied in precision agriculture.
Besides an overview of the main principles of the “intel-
ligent” perspective in the process of cultivation so-called
“Agri-Food 4.0,” the authors present the role of UAV tech-
nology in smart agriculture by analyzing the applications
of UAVs in various scenarios and their utility in com-
plex agricultural environments.Moreover, a brief description
of their AREThOU5A project is outlined where emerging
developments in the field of Internet of Things (IoT), low-
power wide-access radio technologies, energy harvesting,
andmachine learning are exploited to promote rational use of
water resources in agriculture. This review, however, does not
address either the architectural design or the data computing

concern of the reviewed solutions. Also, an in-depth com-
parative analysis is also still required.

This review [8] presents a thorough examination and bib-
liometric analysis of the use of drones in the agricultural
domain. The main objective of the paper is to provide a
comprehensive overview of the existing literature on drone
applications in agriculture and to identify significant patterns,
research areas, and influential contributors in this field. For
that purpose, the authors conducted a systematic review of
research articles obtained from various databases. They cat-
egorized the studies based on their primary focus, such as
crop monitoring, pest detection, irrigation management, and
yield estimation. The paper highlights the potential advan-
tages of employing drones in agriculture, including enhanced
operational efficiency, cost-effectiveness, and environmental
sustainability. In addition to the literature review, the authors
employed bibliometric techniques to analyze the collected
and reviewed articles. They examined citation networks,
co-authorship patterns, and keyword co-occurrence to gain
insights into the research landscape and identify emerging
trends. The findings of this bibliometric analysis showcased
the remarkable growth of research in this area, with a sub-
stantial increase in the number of publications over time. The
analysis also revealed key research topics such as remote
sensing, image analysis, and precision agriculture, which
have received significant attentionwithin the field.Moreover,
the analysis identified influential authors and institutions that
have made noteworthy contributions to the advancement of
drones in agriculture.

Being aware that integrating UAVs in smart farming faces
obstacles related to technology selection and deployment,
particularly in data acquisition and image processing and
the lack of standardized workflows, the authors of the paper
[92] address these challenges by conducting a comprehensive
review of recent UAV applications in precision agriculture.
They explore common applications, UAV types, data acqui-
sition techniques, and image processing methods to provide
a clear understanding of each technology’s advantages and
limitations. They aim to delve into the theoretical back-
ground and related work of UAV, cloud, IoT, big data, and AI
approaches in smart farming and precision agriculture. They
identified numerous research queries (RQ) for which they
gave findings from the latest state of the art with a detailed
classification.

This paper [19] presents a comprehensive survey on
mobile edge computing nodes (ECNs) and identifies some
open research questions related to their intrinsic character-
istics. In particular, mobile ECNs are classified into four
categories, namely aerial, ground vehicular, spatial, andmar-
itime nodes. For each specific group, any mutual basic terms
used in the state-of-the-art are described, different types
of nodes employed in the group are reviewed, the general

123

43Annals of Telecommunications (2024) 79:35–59



network architecture is introduced, the existing methods and
algorithms are studied, and the challenges that the group
is scrimmaging against are explored. Moreover, the authors
provide a deep study of the integrated architectures accord-
ing to each use case. Finally, the research gaps, that are yet
to be filled in the area of mobile ECNs, are discussed along
with directions for future research and investigation in this
promising area.

Therefore, after a first scan of existing literature reviews
and to clearly assess the scope addressed in our contribu-
tion, we limited our research question to the role of cloud,
fog, edge, and flying edge computing combinations in smart
farming, with a particular focus on the latest existing works
dating from 2020 to 2023.

Thus, after identifying the research question and consider-
ing general review methods, we designed a research strategy
for tracking relevant proposals. This included the selection of
search terms and suitable databases, as well as the decision
on inclusion and exclusion criteria.

Figure 4 shows the designed search strategy from dif-
ferent e-resources. In our study, we used the most popular
scientific digital resources to obtain research papers. The

articles were fetched from various digital libraries such as
Elsevier, IEEE Xplore, Springer, Mdpi, and Google Scholar.
The “Search string creation” and “Search keywords selec-
tion” have played an essential role in finding useful research
papers from the literature.

3.2 Conducting the review

To conduct this review, we added the Zotero plugin to our
browser to create a pool of selected articles.Zotero: is a free,
easy-to-use tool to help us collect, organize, annotate, cite,
and share research. It works as a personal research assistant
in the browser, offering many interesting features such as
automatically collecting citation information from websites,
storage of portable document format (PDF), files, images,
links, and entire pages, including saved searches and labeling
them for better understanding and identification.

After collecting an initial set of articles, we screened the
texts to ensure that they met the inclusion criteria. We also
performed an analysis of the references in the selected articles
to identify other potentially significant articles.

Fig. 4 Stepwise process to
select the articles reviewed in
this survey
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3.3 Analyzing the review

At this stage, it is important to consider how the selected arti-
cles will be used for proper analysis. After selecting the final
sample, standardized methods should be used to obtain rele-
vant information fromeach item.This can include descriptive
information such as author, year of publication, subject, or
type of study, as well as effects and findings. It can also
include a conceptualization of a particular idea or theoretical
perspective. Importantly, this should be done according to
the purpose and research question of the specific review.

In this research,we aim to investigate and provide a review
of existing research on cloud, fog, edge, and flying edge com-
puting applications in the agricultural field. To achieve our
goal, we adopted an analytical method to determine the type
of information that needs to be abstracted to fulfill the purpose
of the specific review and analysis. Once this is determined,
we can decide on how to document and report this process.

This step allows us to check the eligibility of articles after
reading the full text and extracting relevant information. We
will assess the quality of each article based on their relevance
to the research question, the clarity of the research objectives,
the soundness of the methodology, and the validity and reli-
ability of the results. The information extracted from each
article will be synthesized and analyzed to draw meaningful
conclusions about the current state of research on cloud, fog,
edge, and flying edge computing applications in agriculture.

To begin writing, we prioritized clearly describing the
process of designing and conducting the literature review,
including how we collected, analyzed, synthesized, and
reported the literature. We started by exploring and explain-
ing key concepts and paradigms related to smart agricul-
ture, followed by identifying commonalities and differences
between computing paradigms. We then reviewed relevant
surveys and articles, examining their main contributions and
limitations, and identified potential future research directions
and areas for contribution. Finally,wediscussednotable chal-
lenges and potential solutions.

This subsection focuses on trends in computational
paradigms in the agricultural context, analyzing the yearly
distribution of publications in selected journals and confer-
ences that report on precision agriculture. In order to classify
the existing proposals according to our original objective, we
analyzed the selected articles and identified an omnipresent
use of cloud computing, even in hybrid solutions involving
fog and/or edge computing. There is also a notable trend
towards the integration of an edge layer, specifically the fly-
ing edge, which alignswith economic trends in this direction.

From a scientific contribution perspective, most of the
reviewed papers focused on crop monitoring and resource
management applications, with little attention paid to aqua
farming. The main issues addressed in the selected articles
were task offloading, energy consumption, and path plan-

ning. However, there were few works that addressed security
issues and interference mitigation problems.

Figures 5, 6, 7, 8 and 9 give a detailed overview of
the reviewed papers by publishers, by rank, by computing
paradigm, by application domain, and by addressed chal-
lenges respectively.

4 Literature review

The exploitation ofUAVs in the field of precision agriculture,
although beneficial and advantageous, brings new challenges
and raises numerous issues according to the role of such
UAVs (user,MEC server, or relay). Based on recent literature
which is full of newcontributions,we classify theworks iden-
tified into eight categories according to the scientific problem
targeted by the use of these drones, namely (1) latency and
time optimization, (2) path planning, (3) task offloading and
scheduling, (4) resource management, (5) networking and
wireless communication, (6) security, (7) data processing,
and (8) precision and optimized prediction.

Fig. 5 Distribution of research papers by publishers

Fig. 6 Distribution of research papers by rank
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4.1 Latency and time optimization

The authors in [40] aim to develop a system that can col-
lect, process, and analyze environmental data in real time,
enabling timely decision-making and interventions in olive
grove management. They specifically focus on latency-
sensitive applications,where quick response times are crucial
for effective monitoring and control. The proposed architec-
ture leverages both cloud and fog computing paradigms to
provide a scalable and flexible solution. Cloud computing
offers the necessary computational power and storage capa-
bilities, while fog computing brings computing resources
closer to the data sources in the olive groves, reducing
latency and enabling real-time data processing. By adjusting
the latency dynamically, the architecture ensures that time-
sensitive tasks related to environmental monitoring, such as
irrigation control, disease detection, or pest management,
can be performed efficiently. The system integrates various
components, including sensors, data collection devices, fog
nodes, cloud resources, and decision support systems, to cre-
ate an end-to-end solution for time-sensitive environmental
monitoring in olive groves.

The experimental results captured the expected behavior
and validated the effectiveness of the prototype in deal-
ing with time-sensitive agricultural applications, procuring
high throughput (around 95% on average). The fog network
effectively handles incoming traffic, and varying time inter-
vals between sensor readings did not significantly impact
the mean round-trip time (RTT). The fog devices, also,
accurately estimate their traffic load and make targeted
adjustments, resulting in successful load balancing within
defined bounds. These findings support the claims made in
the paper and demonstrate the potential of the system for
practical field deployments in agricultural monitoring, but
the biggest barrier and main takeaways of such works are

Fig. 7 Distribution of research papers by computing paradigms

Fig. 8 Distribution of research papers by application domain

the lack of a large-scale olive grove deployment. Limita-
tions related to optimized energy consumption, challenges
with nodes’ clock synchronization, and constraints regard-
ing overall automation were also reported. These limitations
provide insights into areas that could be further explored or
improved upon in future research and development efforts.

The paper [50] discusses the design and implementation
of a system for sheep monitoring and tracking based on
image processing techniques. The system involves equip-
ping drones with various sensors and cameras to capture
data related to the health, behavior, and location of sheep.
The collected data is then processed and analyzed to provide
valuable real-time insights for farmers. The novelty of this
contribution lies in the ability to monitor large cattle over
wide areas when ensuring real-time response time and very
high precision. The authors of the paper present the hard-
ware and software configuration for developing a drone, and
the measurement results showed that the system can reli-

Fig. 9 Distribution of research papers by challenges
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ably (with an accuracy of 89–97%) detect sheep on a farm.
One of the drawbacks raised by the proposed system was the
high power consumption of the onboard companion com-
puter used to run the image processing algorithms. Similarly,
a UAV-based convolutional neural network (CNN) for rec-
ognizing and counting calves is proposed in [51].

The paper [36] proposes amonitoring system for aquapon-
ics that incorporates IoT technology and edge computing.
The main goal of the system, designed with miniaturization,
modularization, and low-cost features, is to provide real-
time monitoring and control for cultivation-breeding ratio
research. The systemcan realize remotemonitoring and intel-
ligent control of parameters needed to keep fish and plants
under optimal conditions.

The system is modularized, which means it is composed
of different components that work together to achieve overall
functionality. It utilizes various IoT devices such as sensors
and actuators to collect data from the aquaponics system,
including parameters like temperature, pH level, water level,
and nutrient concentration. These devices are connected to a
central hub or gateway, which acts as an interface between
the IoT devices and the edge computing system.

The edge computing component plays a crucial role in
the system by processing and analyzing the collected data
locally, near the source of data generation. This enables
real-time monitoring and control without relying solely on
cloud-based processing, which can introduce latency and
dependency on internet connectivity. By performing com-
putations at the edge, the system can respond quickly to
changes in the aquaponics environment and trigger appro-
priate actions or adjustments.

The paper highlights the advantages of using edge com-
puting in the context of aquaponics monitoring, including
reduced latency, improved reliability, and enhanced scalabil-
ity. It also discusses the modular nature of the system, which
allows for flexible configuration and customization to meet
specific requirements and scale the system as needed.

The authors in [16] propose a system that combines cloud
computing, flying edge computing, and UAV technology to
enable smart agriculture. The goal of suchwork is to enhance
the efficiency of agricultural operations through real-time
data collection, analysis, and decision-making. The proposed
platform is highly dynamic and flexible, so it can be deployed
and can collect data quickly dependingon the latency require-
ment for each use case. Most importantly, it can be used in
tough terrains like the desert andhilly areas.A simulationwas
made to evaluate theperformanceof this cloud-connectedfly-
ing edge computing system where multiple configurations,
including local and remote IoT service calls, are involved.
The response times of the service calls were recorded, and
it was found that the flying edge machine exhibited the best
response time, benefiting from the energy efficiency of end
nodes. Furthermore, the average service lookup times were

compared, and it was observed that services provided by the
flying machine (UAV) to end nodes had significantly lower
lookup times compared to services provided by the cloud
through flying machines. This indicates that flying comput-
ing machines (UAVs) can offer faster service provision to
IoT devices.

4.2 Path planning

The paper [26] illustrates a case study for collaborative
UAV-WSN operation in large-scale monitoring for preci-
sion agriculture. Key contributions are mainly in the design
of optimized trajectories for UAV-enabled field data collec-
tion and for in-network data processing that allows efficient
use of limited ground sensor network resources. Particularly,
the authors propose combined segment and loiter tracking
modes, which balance between path length and time spent in
the neighborhood of a cluster head. Through multiple hier-
archical data processing steps, the authors demonstrate the
increasing quality of the extracted information, its timeli-
ness, and lower network-wide latency for decision-making.
The authors also mention the use of edge computing, which
involves performing some of the processing tasks on the
UAVs and WSNs themselves, to reduce the latency and
improve the real-time responsiveness of the system.

The potential drawbacks of the proposed system are
related to the increased complexity of multi-level data pro-
cessing, communication, and interoperability constraints
between the aerial platform and the ground sensors. The
paper does not address potential challenges associated with
the use of UAVs and WSNs in precision agriculture, such as
privacy concerns, regulatory issues, and the potential for sys-
tem failure due to adverseweather conditions or other factors.
A more thorough discussion of these challenges could help
to ensure that the proposed system is practical and feasible
in real-world scenarios.

In this paper [27], Qayyum et al. developed a clustering-
based trajectory design algorithm that aims to optimize the
flight path of a UAV that flies across the fields to collect data,
which are further transmitted to fog nodes for processing.
The proposed model is based on two phases: the data col-
lection phase where IoT sensors are deployed randomly to
form a cluster based on their RSSI and the UAV calculates an
optimum trajectory in order to gather data from all clusters
and to offload this data to the nearest base station and data
scheduling phase where the BS finds the optimally available
fog node based on efficiency, response rate, and availability
to send workload for processing.

The authors also propose the use ofmachine learning algo-
rithms, such as k-means clustering, to group farm areas with
similar characteristics and optimize the UAV’s flight path for
data collection.
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One potential limitation of this research is that the pro-
posed trajectory design may be sensitive to changes in
environmental conditions, such as weather patterns or sea-
sonal variations. Additionally, they do not provide a detailed
evaluation of their algorithm’s performance in real-world
scenarios, which may limit the practical applicability of their
approach.

4.3 Task offloading and scheduling

The authors of the paper [95] propose a multi-UAV-assisted
mobile edge computing (MEC) system targeting areas with
a lack of base stations. In the considered system, multiple
UAVs cooperate to provide a service to IoT devices. They for-
mulate a non-linear optimization objective to minimize the
energy consumption of a such system featuring a joint UAV
deployment and task scheduling optimization algorithm. The
UAV numbers, the hovering position of each UAV, and the
best strategy for offloading and resource allocation were
the principal optimization concerns of their solution. The
optimization problem was simplified into two sub-problems
based on the idea of a block coordinate descent algorithm
and solved using the improved PADE and greedy algo-
rithms. Experimental results demonstrate that the algorithm
has positive convergence performance and can accomplish
more tasks under the constraint of delay compared to two
benchmark state-of-the-art algorithms. This study, however,
is limited to the fixed flight height of the UAV and does not
include scenarios, such as forests and city centers, with dif-
ferent heights of occlusion andwhere fixedUAVheightsmay
collide.

The work in [97] introduces a two-stage end-to-end deep
reinforcement learning (DRL)-based smart agricultural sys-
tem. In stage one, the authors propose ant colony optimiza-
tion (ACO)-based deep Q-learning network (A-DQN)model
for efficiently analyzing tasks such as irrigation scheduling,
pest detection, soil monitoring, fire detection, field and soil
monitoring, and crop growth monitoring. This ACO-DQN
model offloads the task to either edge, fog, or cloud net-
working devices based on latency, energy consumption, and
computing power. With the need for ultra-low latency, the
authors create a mathematical model for smart agriculture
task scheduling which balances both low latency and low
energy consumption for time-critical tasks. They convert this
model into a multi-objective optimization problem consider-
ing time delay and energy consumption. Then, once the task
is offloaded to computing devices, the task of predicting and
monitoring various agriculture activities is performed based
on DRL models at a second stage. The proposed method is
evaluated and compared to traditional deep Q-networks, and
the experimental findings demonstrate a marked enhance-
ment in terms of convergence speed, planning success rate,
and path accuracy.

The authors in [98] present a novel offloading model
based on dynamic programming explicitly tailored for fly-
ing fog-based IoT networks based on 5G/6G technologies.
The proposed algorithm aims to intelligently determine the
optimal task assignment strategy by considering the mobility
patterns of drones, the computational capacity of fog nodes,
the communication constraints of the IoT devices, and the
latency requirements. Extensive simulations and experiments
were conducted to test the proposed approach compared to
static edge-cloud architecture. The obtained results revealed
significant improvements in latency, availability, and the cost
of resources.

4.4 Resource management

The authors in [25] developed a novel optimization algorithm
that aims to achieve a balance between energy consump-
tion and quality of service (QoS) in a hierarchical fog-cloud
computing network. The proposed algorithm minimizes the
energy level among all nodes in the network while ensuring
that the QoS requirements of all users are met. The proposed
solution involves the use of fog nodes (small-scale comput-
ing devices located close to end-users) and cloud computing
resources to support applications that require low latency
and high bandwidth. The authors aim to provide a generic
energy-efficient communication framework for hierarchical
fog-cloud computing networks that can support a wide range
of applications, such as Internet of Things (IoT) applications
and smart city services.

As a novelty, the authors also propose the use of the
wireless power transfer concept (WPT) to provide energy
to the fog nodes and reduce the need for battery replacement
or recharging. Obtained results showed that the computing
mode selection is the dominant factor affecting the system
performance where local computing is considered a better
choice for users with relatively poor channel gains while
fog/cloud computing is considered a better choice for users
with relatively good channel gains. One potential drawback
of this research work is that the proposed algorithm may be
computationally expensive and require a significant amount
of processing power, which could limit its practical appli-
cability in resource-constrained fog nodes. Additionally, the
proposed framework may require significant changes to the
existing communication infrastructure, which could be chal-
lenging to implement andmay require significant investment.

An edge-conscious autonomous swarmdeployment archi-
tecture was adopted by [47] where the authors present an
empirically based model for efficient autonomous swarm
deployment. Theybuilt anddeployed a real autonomousUAV
swarm tomap leaf defoliation in soybeans.Using this deploy-
ment, they determined environmental conditions that led to
malfunctions, inefficient edge energy usage, and predictions.
Based on these findings, they developed a deployment model

123

48 Annals of Telecommunications (2024) 79:35–59



for UAV swarms that decreases malfunctions and data irreg-
ularities by 4.9× and decreases edge energy consumption
by 45%, while increasing deployment times by only 4%.
In particular, simulations demonstrated that the decentral-
ized decision-making approach enabled UAVs to adapt their
deployment based on environmental conditions and obsta-
cles in the field, which resulted in better data collection
efficiency compared to a centralized deployment approach.
Swarm stability also was proved even in the presence of UAV
failures or malfunctions. This deployment model can hold
for low-flying UAVs in common agricultural settings, but
UAVs that fly at higher altitudes, for instance, may experi-
ence different levels of effect from temperature, lighting, and
wind.

The paper [99] addresses the energy efficiency and spec-
tral efficiency trade-off problem of UAV-based irrigation
systems. The authors propose to adopt massive multiple
input, multiple output (M-MIMO) technology as a promising
way to ensure wireless communication in future 6G-based
networks. They design a network model with a three-
layered architecture (cloud-fog-flying edge) and analytically
compute the achievable spectral efficiency and the energy
efficiency of the studied system. Then, they numerically
determine the optimal number of ground base station anten-
nas as well as the optimal number of IoT devices that should
be used to ensure the maximum energy efficiency while
guaranteeing a high spectral efficiency. The novelty of this
proposal stands for the consideration of circuit power (CP)
along with the transmit power and throughput to model the
UAV-based irrigation system. This feature proved that the
maximum ratio (MR) combiner scheme does not require
matrix inversions, whereas the multicell minimum mean
squared error (M-MMSE) combiner scheme requires the
inversion of an MxM-dimensional matrix. The numerical
results prove also that the proposedUAV-based irrigation sys-
tem outperforms conventional systems and demonstrate that
the best spectral and energy efficiency trade-off is obtained
by using the M-MMSE combiner. However, this research
still has some limitations, mainly regarding the high compu-
tational complexity of computing the inverse MxM matrix,
especially when M is large. This complexity is also affected
by the need to estimate the channels and acquire the channel
statistics of all IoT devices, which is not trivial when dealing
with large-scale fields. Additionally, regarding the massive
amount of collected data from such networks, it is essential
to deploy real-time control and to develop security methods
to protect data from unauthorized access or interception.

4.5 Networking and wireless communication

The authors in [94] present a novel environmentally-aware
and energy-efficient multi-drone coordination and network-
ing scheme that features a reinforcement learning (RL)-based

location prediction algorithm coupled with a packet for-
warding algorithm for drone-to-ground network establish-
ment. They, specifically, address application requirements of
connectivity and energy efficiency when considering envi-
ronmental and energy constraints. The novelty is in the
approach of using reinforcement learning (RL) to estimate
future drones’ trajectories based on their coordination sta-
tus and their onboard sensor information. Specifically, once
the intermediate drone accurately predicts the position of the
destination drone, a list of preliminary decisions on where
to forward packets are made. The authors consider various
drone mobility models such as the Gaussian-Markov model
(GMM), mission-based plan model (MBPM), and random
way point model (RWPM) within their prediction tech-
nique. The proposed packet forwarding algorithm features
two drone location-based solutions, i.e., heuristic greedy
and learning-based, that can support heterogeneous drone
operation requirements under disaster response management
scenarios. The proposed scheme is evaluated in a simu-
lation test bed featuring rural and metropolitan areas and
compared with numerous state-of-the-art networking algo-
rithms. Results show that the developed solution overcomes
obstacles and can achieve 81–90% of network connectivity
performance observed under no obstacle conditions. In the
presence of obstacles, their scheme improves the network
connectivity performance by 14–38% while also provid-
ing 23–54% of energy savings in rural areas; the same in
metropolitan areas, an average of 25% gain is achieved when
compared with baseline obstacle awareness approaches and
with 15–76% of energy savings.

The authors of this contribution [49] developed a system
using IoT technologies to inspect water quality for livestock
development.Adrone-mountedLoRagateway transmits data
from sensors to the cloud, while offline storage is available
in case of internet access absence. The integration of IoT
sensors and the LoRa gateway into a vertical take-off and
landing (VTOL) drone enabled effective farm monitoring.
The proposed solution also optimizes the drone’s flight path
using advanced algorithms, reducing mission time and over-
coming battery limitations based on the traveling salesman
problem (TSP). Overall, this research provides a compre-
hensive solution for water inspection, farm monitoring, and
data collection in agriculture using drones and IoT technolo-
gies. The communication link performance was evaluated
under various conditions such as spreading factors (SFs),
LoRa gateway modes, and drone speeds. This evaluation
investigates the Doppler effect at higher flight speeds and
determined that LoRa technology performed well at a maxi-
mum drone speed of 95km/h and with a spreading factor of
12 which demonstrated the robustness of LoRa technology.

123

49Annals of Telecommunications (2024) 79:35–59



The paper [93] proposes a system that can capture and
transfer thermal data captured by aerial edge intelligence to
terrestrial edge intelligence for irrigating dry patches. This
data is transmitted by an integrated LoRa transceiver through
peer-to-peer long-range communications, which avoids the
usage of secondary repeaters and hence helps to create a
low latency in long-range edge computing systems in places
where cellular communication is not available and reduces
the number of drones used for this task, particularly in large
farms. Experimentation scenarios are based only on RSSI
and spreading factor (SF) results and do not include environ-
mental or weather effects.

The work in [42] introduces a fog-based cooperative
framework that leverages the capabilities of neighboring IoT
devices to optimize the transmission of monitoring data in a
farming context. By considering the traffic load and connec-
tivity of devices and by using distributed machine learning
techniques, the framework dynamically predicts the most
suitable devices to relay data, reducing network conges-
tion and improving overall system performance. They also,
identify the redundant nodes that are collecting the same
data and forbid using them in order to efficiently manage
network resources and prolong the system life cycle. Addi-
tionally, the paper emphasizes the importance of data security
in IoT-based smart monitoring systems by incorporating
data encryption and authentication techniques in a fog-based
chain to protect sensitive agricultural data from unautho-
rized access and tampering. To evaluate the effectiveness
of the proposed framework, the authors conduct simulations
and compare the performance with existing approaches. The
results were promising and showed the ability of the solution
to improve energy efficiency, achieving an average increase
of 20% while varying node number and 22% while vary-
ing distances from the sink. This work could be extended to
maintain cloud integrity from the point of users’ perspective
in order to deal with a fully secured system.

4.6 Security

The study in [101] focused on layered architectural design,
identified security issues, and presented security demands
and upcoming prospects. In addition to that, the authors
propose a security architectural framework for agriculture
4.0 that combines blockchain technology, fog computing,
and software-defined networking. The suggested framework
combines Ethereum blockchain and software-defined net-
working technologies on an open-source IoT platform that
prevents erroneous control and information delivery while

improving network management. It is then tested with three
different cases under a DDoS attack. In this proposal, a
first sensor layer is used to acquire meaningful information
from the external environment via sensors to take required
action against it. Then, a fog layer, made up of multiple fog
nodes such as a virtualization node, agricultural sensor data
monitor, block-chain client software, and simulated switch,
hosts all authentic analysis and latency-sensitive applica-
tions. After that, an SDN controller is integrated to help with
networkmonitoring bymanaging all transactions among net-
work and application devices, allowing it to manage and
adjust network flows more efficiently in response to new
requirements. It maintains a consistent glimpse of the net-
work from afar, delivering data to fog nodes via one APIs
and application via other APIs (MQTT, CoAP...). In addi-
tion, the SDN controller employs a blockchain contractor to
properly secure flow tables of SDN in the blockchain, hence
avoiding rule counterfeit. The solution could be improved by
adding an intrusion detection system featuring various deep
learning algorithms to prevent the insertion of fake sensor
data in the intelligent agricultural field.

In this work [12], the authors propose a fog computing
framework for intrusion detection of energy-based attacks
on UAV-assisted smart farming. The framework aims to
enhance the security of smart farming systems, especially
those that are assisted by unmanned aerial vehicles (UAVs).
The proposed framework uses a hierarchical architecture
that includes three levels: the UAV level, the fog level, and
the cloud level. At each level, specific techniques are used
to detect energy-based attacks, including physical intrusion
detection sensors, machine learning-based anomaly detec-
tion algorithms, and statistical anomaly detection methods.
A fog broker, a key central element that manages interactions
between the UAVs and sensors, is utilized for deploying an
intrusion detection system (IDS). IDS implements machine
learning classification to detect and flag compromised UAVs
based on their behaviors as malicious or benign. Flagged
UAVs are then penalized through a coin-based system, where
the greater number of coins collected allows for a greater
amount of charge.

To perform evaluation, various machine learning algo-
rithms, including XGBoost random forest (RF), decision
tree (DT), extra tree (ET), stacking, and k-means, were
utilized and compared through several metrics such as accu-
racy, precision, recall, F1 score, root-mean-square error,
and R-squared score. Results showed that all algorithms
performed well due to hyperparameter optimization, with
XGBoost achieving the best performance with 99.77% accu-
racy, 0.1055 root-mean-square error, and 99.81% R-squared
score. The model was configured with realistic values based
on existing literature and real-world data. Machine vision-
based techniques and extensive deep learning techniques
could improve the effectiveness of such systems.
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This work [44] presents a novel approach to smart
agriculture that combines intelligent decision-making, IoT
technologies, and blockchain for improved water consump-
tion and data security. The system utilizes sensors to collect
real-time data on temperature, soil moisture, light inten-
sity, and humidity from the environment and the field. This
data is stored in an IoT cloud platform for analysis. The
system implements intelligent fuzzy logic and blockchain
technology to make smart decisions for watering plants. The
intelligent fuzzy logic component uses a set of rules to deter-
mine the watering requirements of plants based on input
variables. Blockchain technology was introduced to ensure
data privacy and access control, allowing only trusted devices
to interact with the system. Multiple users can remotely
monitor and interact with the system through an Android
application. The system sends alerts to users regardingwater-
ing requirements and can control the water motor on/off. The
experimental results demonstrate the scalability, efficiency,
and high security of the proposed system. It effectively han-
dles the process of watering plants and provides reliable
notifications to users with an overall accuracy of 96.7%.

4.7 Data processing

The work in [43] studies the application of fog-based IoT
systems in smart agriculture for processing complex events.
The authors, first, explore the challenges faced in traditional
cloud-centric architectures and then propose amulti-tier hier-
archical fog-based approach that brings computation closer
to the data source in agricultural environments. The pro-
posed approach is geolocation and context-aware, in which
the new sensor nodes in a network connect to a fog node based
on the data type and the Euclidean distance between them.
The main objective is to enable real-time decision-making
in smart agriculture. Simulation results showed promising
performance in different scenarios, with accuracy, precision,
and recall consistently above 99%. This indicates that the
proposed approach provides reliable and consistent informa-
tion about the monitored environment. The effectiveness of
the complex event processing (CEP) engine, which includes
rules and events, was validated through tests in an irriga-
tion scenario, and the tests were successfully completed.
The average actuator response time obtained was approxi-
mately 7.15 ms on a local network, demonstrating that the
CEP engine also meets the application’s requirements for
the timely activation of irrigation. The proposed approach,
however, could be improved with a self-configuration of the
nodes regarding the best characteristics to be considered for
the choice of the fog node, such as the processing power.
Moreover, instead of rule-orientedmodeling, the data stream-
oriented CEP mechanism which is similar to SQL worth
exploring.

The authors in [28] propose an edge-assisted data collec-
tion approach for critical events, such as natural disasters or
pest outbreaks, in the context of the software-defined wire-
less sensor network (SDWSN)-based Agricultural Internet
of Things (IoT). The main contribution is the development
of an effective edge-assisted data collection approach that
addresses the challenges of data transmission and storage.
The proposed approach involves the use of edge computing
and ensures a balance between the main information on an
event and the corresponding data volume, which allows the
processing and storage of data at the edge of the network,
to decrease the data redundancy, reduce the amount of data
transmitted to the cloud, and improve the efficiency of data
collection in the agricultural IoT. The authors of this work
conduct automatic data type selection using mutual informa-
tion, events categorization, and related data sensing to realize
essential event sensing and reduce the cost of data collec-
tion.An experimental prototype is designed in an agricultural
greenhouse to verify the proposed strategy and compare it
with the existing methods.

The findings of this work demonstrate that the proposed
strategy provided a larger margin in balancing between data
validity, energy consumption, and latency. However, it may
increase the deployment cost of edge servers, which could
be solved by a cooperative strategy between edges and cloud
servers to share computing resources.

MARbLE, a platform for developing and managing
swarms, was proposed in [46]. It is a multi-agent reinforce-
ment learning (MARL) approach at the edge of digital agri-
culture applications. Themain contribution of thiswork is the
development of a framework that can enable autonomous and
decentralized decision-making in edge computing systems,
which may reduce the amount of data that needs to be trans-
mitted to the cloud and improve the efficiency of the overall
system. The platform automatically compiles and deploys
swarms and continuously updates the reinforcement learn-
ing models that govern their actions, which helps developers
experiment their solutions with multiple swarm and edge
resource configurations both in simulation and with actual
in-field runs.

The evaluation focused on a crop scouting workload, and
the performance of MARbLE was compared to autonomous
and automated approaches in various swarm sizes. The paper
presents the results for 8 mission configurations, 4 of which
prioritize maximum accuracy, while the other 4 prioritize
maximum profit by minimizing labor costs while providing
sufficiently accurate maps with shorter missions. The perfor-
mance of MARbLE was assessed based on the time taken
by swarms of different autonomy settings to accomplish
the same task. Shorter times were preferred to reduce labor
costs and allow more missions to be performed. Although
MARbLE simplifies building MARL systems by replac-
ing handcrafted reward functions with Map() and Eval()
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functions that are easier to program, it requires, however,
available, realistic, and representative traces from the target
environment which could be challenging and costly in novel
and dynamic environments. Also, the trade-offs in conver-
gence time and learning efficacy could be more explored by
implementing learning techniques other than Bayesian opti-
mization.

The paper [96] presents a novel architecture for imple-
menting a digital twin (DT) for a farm that encompasses a
variety of fields. The proposed approach incorporates the use
of multi-agents, microservices, linked data, and ontologies
for an efficient deployment of the digital twin in a cloud-fog-
edge infrastructure. The proposed architecture is based on (i)
a cloud layer which serves as the primary domain for big data
and data analytics, providing data storage and anonymiza-
tion services for farm data, and machine learning and data
analysis support; (ii) fog layer which represents the farm
management system providing local data storage and com-
puting services for in-situ farmdata analysis; and, finally, (iii)
edge layer which includes any agricultural devices hosting
sensors, allowing service composition within the smart farm-
ing scenario. The use of linked data concepts fosters service
discovery while allowing data to be available and reducing
redundancy. One of the main benefits of this approach is the
ability to adapt and evolve the DT’s decision-making ser-
vices over time by extending the model to new data streams
or incorporating newmodeling techniques. TheMulti-Agent
Micro Services (MAMS) architectural style has been cru-
cial to the success of this approach, as it enables seamless
integration of agents and microservices. Unlike traditional
approaches that rely on proprietary data silos and vertical
architectures, the proposed architecture is designed to break
down these barriers and promote better data exchange and
collaboration. This work could be improved to enable greater
interoperability. The authors, also, may explore alternative
models than Zadok for a better crop growth stage prediction
and evaluation. This could improve the accuracy and preci-
sion of their digital twin and could lead to more informed
decision-making and better crop management strategies.

4.8 Precision and optimized prediction

Alonso et al. [45] present an intelligent platform oriented to
the application of IoT, edge computing, artificial intelligence,
and blockchain techniques in smart farming environments,
by means of the novel Global Edge Computing Architecture.
They designed this platform to monitor the state of dairy
cattle and feed grain in real-time, as well as ensure the trace-
ability and sustainability of the different processes involved
in production. The collected data is then used to generate
real-time alerts and recommendations for farmers. The pro-
posed platform was deployed and evaluated in a real-world

dairy farm and reported promising results and important
improvements in the reliability of communications between
the IoT-Edge layers and the cloud. As the evaluation of this
work was only conducted in one real-world dairy farm, this
made their contribution somehow specific and may not be
generalized to other use cases. Additionally, the paper does
not provide a detailed analysis of the cost-effectiveness of
the proposed solution, which could be a concern for farmers
who are considering adopting the platform.

The paper [52] proposes an approach for detectingMildew
vine diseases based on multispectral images captured by
unmanned aerial vehicles (UAVs) and using optimized image
registration and deep learning segmentation. The method is
based on the combination of the visible and infrared images
obtained from two different sensors. A new image regis-
tration method was developed to align visible and infrared
images, enabling fusion of the information from the two sen-
sors. A convolutional neural network (CNN) approach is then
applied to classify each pixel according to different instances,
namely, shadow, ground, healthy, and symptom. The authors
propose using the drone’s onboard computer as an edge com-
puting device to perform these tasks in real time and without
the need for an internet connection. The proposed solution
was evaluated on a dataset of 1004 images of grapevines
with and without diseases, achieving an accuracy of 96.7%.
However, one of the limitations of this research is the small
size of the training sample which reduced the performance of
the deep learning segmentation and the lack of comparative
analysis with other learning techniques.

The paper’s [33] main contribution is proposing a method
for yield estimation in cotton crops by combining a cotton
“Boll Area Index” with in-season unmanned aerial multi-
spectral and thermal imagery. The authors demonstrated that
the combination of these techniques can provide more accu-
rate yield estimation compared to traditional methods. They
also showed that the use of unmanned aerial vehicles (UAVs)
can provide a cost-effective and efficient way to collect the
necessary data for yield estimation. Additionally, the authors
provided recommendations for future research to improve
the accuracy and practicality of this method, such as explor-
ing the use of machine learning algorithms for data analysis.
The authors have usedmobile edge computing as part of their
methodology. The proposed method may require specialized
equipment and expertise, which may not be readily available
to all farmers. The study is also limited to cotton farming and
may not be directly applicable to other crops.

In conclusion, the use of flying edge computing in preci-
sion agriculture has emerged as a hot topic in recent years.
The reviewed literature shows that this paradigm can address
many of the challenges faced by traditional cloud-based solu-
tions, including high latency, limited bandwidth, and security
concerns. The various works studied here propose different
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architectures to improve the performance of precision agri-
culture systems and have demonstrated promising results in
terms of accuracy, efficiency, and scalability. Table 3 classi-
fies some research works based on their application domain.

In parallel with this architectural evolution, in the last
decade, deep learning (DL) methods have gained increas-
ingly more attention and become the de facto mainstream
of machine learning (ML). In most of the farming scenar-
ios, UAV nodes utilize images captured by cameras as their
data inputs, i.e., they are computer vision-related tasks. In
this way, UAV tasks in precision agriculture that use DL
methods, mainly including crop pest and disease detection,
crop growth monitoring and yield estimation, and crop type
classification, can be divided into three typical and prin-
cipal computer vision tasks: classification, detection, and
segmentation. Table 4 shows a compilation of typical UAV
applications in smart farming using ML and DL methods.

The reviewed papers provide evidence that the adoption
of flying edge computing in precision agriculture can sig-
nificantly improve crop yields, reduce operational costs, and
increase overall profitability. The potential benefits of this
technology have encouraged many researchers to investigate
its applications in various agricultural domains, including
hydroponics, smart farming, and dairy farming. Table 5
summarizes numerous research works based on the hybrid
computing paradigm where cloud, fog, edge, and or flying
edge computing are jointly used.

In summary, the reviewed literature underscores the
importance of jointly usingUAVs and edge computing in pre-
cision agriculture and its potential to revolutionize the way
we grow crops. This is a promising topic that has attracted the
attention of many researchers, and there is still much room
for exploration and innovation in this field.

5 Open challenges

Although cloud-fog-edge-based technologies are being widely
used in agriculture and offer several advantages, the research
and practice of edge intelligence, especially in precision agri-
culture, are still in an early stage. Below, we list some notable
challenges and specific issues that need to be addressed
within the scope of this paper.

• Security: When agricultural applications deal with CC,
data security and privacy, authorization and trust, authen-
tication, secure communication and compliance with
regulations are the significant challenges [56]. Smart
farms accumulate vast amounts of data generated by dif-
ferent types of data sources, such as sensors, actuators,
and edge equipment. Therefore, data stored in the cloud
may be leaked, which can lead to serious economic losses
to farmers and agribusinesses. Moreover, as smart agri-
culture is still emerging and has a low level of security
features, recent solutions will demand data availability
and accuracy as key points to help farmers build robust
and efficient systems. Secure proposals may require an
architecture that can handle compatibility, heterogeneity,
and interoperability with numerous devices and should
allow multiple access, in a secure and coordinated way,
to avoid data loss and compromise the system efficiency.
Papers [44, 48, 56, 60, 62, 101] address this challenge
and propose security features such as IDs, cryptography,
firewalls, and blockchain technology that may improve
smart farm security in different scenarios. In particu-
lar, thanks to the peer-to-peer (P2P) network, blockchain
technology eliminates the need for a central authority
and avoids the single point of failure problem. It was

Table 3 Research papers and
their application domain

Computing paradigm Application domain Reference Year

Cloud computing Crop monitoring [29] 2020

Soil management [30] 2021

Animal management [35] 2020

Water management [37] 2021

Fog computing Intrusion detection [12] 2023

Irrigation management [39] 2020

Animal management [35] 2021

Edge computing Aqua farming [36] 2022

Environmental disaster management [31] 2021

Crop management [24] 2022

Flying edge computing Crops monitoring [33] 2023

Disaster management [32] 2022

Livestock management [38] 2022
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Table 4 ML and DL-based methods for typical UAV applications in smart farming

Application task Learning method Data type Dataset Performance References

Counting cattle CNN Images 1st dataset of 19,097
images + 2nd

dataset of 826
images

Accuracy of 90% [51]

Complex event
processing

CEP Time series 360 moisture reading
+ 540 temperature
reading

Accuracy of 98% [43]

UAV intrusion
detection

XGBoost, random
forest, decision
tree, extra tree,
stacking, and
k-means

Network traffic 80 messages Accuracy of 99.7% [12]

Data privacy and
security

Fuzzy logic Time series of
humidity,
temperature, soil
moisture and
intensity of light

219 entries accuracy of 96.7% [44]

Vine disease
detection

CNN Visible and infrared
images

105.515 patches of
visible images and
98,895 patches of
infrared images

Accuracy of 92% at
grapevine level and
87% at leaf level

[52]

Risk quantification
and task offloading

DRL Network traffic 100 network
simulations

Remaining energy
level, uplink delay
and convergence
time

[55]

Object detection for
yield estimation

CNN, RNN Images 900 images Accuracy greater
than 90%

[53]

Crop type
classification

CNN RGB images 3770 images Accuracy of 99.25% [86]

Sensing and yield
estimation maps
for apple orchads

RCNN (region
CNN)

Images 806 pictures (354 for
training)

Accuracy of 88.96% [90]

introduced first for product tracking, as transactions are
timestamped and the history is preserved.Added to that, it
is adequatewhen integratedwith data-driven applications
thanks to its immutability characteristics that provide
reliable information. Blockchain is also used as a secure
infrastructure to manage UAVwork, and it performs well
in many areas, especially when talking about swarm of
UAVs [63].

• Mobility: This challenge arises from the dynamic nature
of farming operations, which involve mobile assets such
as vehicles, machines, robots, and livestock. Ensuring
real-timemonitoring, tracking, and management of these
assets poses several challenges, such as network latency,
unreliable connectivity, bandwidth limitations, central-
ized dependency, and delayed decision-making arise. To
overcome these issues, leveraging fog and edge com-
puting becomes crucial. By deploying edge devices or
fog nodes on intermediate layers between mobile assets,
data processing and decision-making can occur locally,
reducing dependence on the cloud, minimizing latency,

and enabling real-time monitoring and management in
agricultural environments. These papers [64]–[69] pro-
pose fog/edge-based architectures to address themobility
challenge by reducing dependence on cloud infrastruc-
ture and facilitating seamless monitoring and manage-
ment of mobile assets in agricultural environments. Such
architectures need, on the other side, an efficient deploy-
ment/placement of fog servers and/or edge nodes that
maximizes coverage and throughput.WhileUAVdeploy-
ment in a three-dimensional space remains an NP-hard
optimization problem [34], different optimization heuris-
tics, such as ant colony, particle swarm, and genetic
algorithm, are already used to solve this problem with
low complexity.

• Task offloading: The task offloading challenge in pre-
cision agriculture revolves around efficiently distribut-
ing computational tasks between different computing
resources, such as edge devices, fog nodes, and cloud
infrastructure. In fact, precision agriculture heavily relies
on sensor data, including information from drones,
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Table 5 Review of research works based on hybrid computing paradigm

Ref. Main contribution The computing paradigm
CC FC EC FEC

Sakthi and Rose [14] Proposed smart
agricultural
knowledge support
system to provide
real-time information
about soil and water
pollution for better
pesticide and fertilizer
usage

Cloud applications Fog node, gateway Sensors

Alonso et al. [45] Presented a platform
based on EC, AI, and
blockchain techniques
in smart farming
environments to
monitor the state of
dairy cattle and feed
grain in real time

Cloud applications,
APIs

− Sensors, edge gateway,
local data store

−

Montoya-Munoz and
Rendon [41]

Proposed a
reliability-oriented and
fog-based architecture
that detects outliers
and inferring data in
the data collection
process

Data centers Fog controllers Sensors −

Tsipis et al. [40] Developed a latency
adjustable cloud/fog
computing
architecture for
accurate, reliable, and
almost real-time
monitoring olive crops

Cloud servers Fog servers − −

Popescu et al. [26] Designed optimized
trajectories for
UAV-enabled field
data collection and
processing that allows
efficient use of limited
ground sensor network
resources

Cloud servers Fog gateway IoT devices, edge
gateways

−

Apolo-Apolo et al. [90] Proposed a cloud-based
environment for
generating yield
estimation maps from
apple orchards using
UAV images and DL
techniques for apple
detection

Cloud servers − IoT devices, edge
gateways

Edge server

satellites, and ground-based sensors, to make informed
decisions about crop management, irrigation, pest con-
trol, and yield optimization. However, processing and
analyzing the huge amount of data generated by these
sensors can be computationally intensive and time-
consuming. Task offloading aims to alleviate this bur-
den by intelligently distributing tasks from resource-
constrained edge devices to more powerful fog nodes

or cloud servers, where complex computations can be
performed. To that end, several factors need to be consid-
ered such as data volume, latency requirements, network
bandwidth, energy consumption, and real-time analysis
needs. Several recent articles have focused on the task
offloading problem from diverse perspectives, particu-
larly in fog and edge computing-based solutions [55, 77,
80, 83, 84, 87–89]. While, some works focus on opti-
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mizing the delay, energy consumption, or load balance
through fog/edge server placement for enhancing the
performance of the real-time control, other efforts are
dealing with multi-objective optimization.

• Path planning: Path planning in precision agriculture
presents significant challenges that researchers need
to address [74, 75]. Unlike traditional path-planning
scenarios, precision agriculture involves dynamic and
ever-changing environments. The complexity arises from
the need to navigateUAVs through vast agricultural fields
with various obstacles, uneven terrain, and intricate crop
patterns. Precision agriculture requires not only captur-
ing data, but also ensuring optimal coverage of the entire
field. Path planning algorithms must consider factors
such as field boundaries, crop health variations, sensor
limitations, and real-time data processing requirements.
Additionally, UAVs often operate under time constraints,
such as limited daylight hours or specific stages of crop
growth, further complicating path planning. Ensuring
the efficient allocation of resources, reducing redundant
flights, and minimizing energy consumption are addi-
tional challenges. The path planning problem in precision
agriculture demands the development of intelligent algo-
rithms and techniques that can adapt to the dynamic
nature of agricultural environments, optimize data col-
lection efficiency, and enable informed decision-making
for farmers. Overcoming these challenges will unlock
the full potential of UAVs in precision agriculture, revo-
lutionizing farming practices and enhancing crop yields.

• Power management: Smart farms require sensors, actu-
ators, and mobile devices. All of these devices depend
on available power resources to collect data, perform pro-
cessing tasks, communicate, andmove. Energy efficiency
is then considered a key factor in ensuring the successful
completion of tasks in the shortest possible time. Most of
thework proposed so far assumes thatUAVs are equipped
with an unlimited source of energy, based on the assump-
tion that it is always possible to recharge.However, froma
practical point of view, theuseof the recharging step is not
as simple and generally leads to non-negligible delays, to
an alternative scenario, and to the development of fault
tolerance solutions. Existing research [76]–[78]attempts
to address energy efficiency by addressing all these lim-
itations.

All the challenges mentioned above are mainly associated
with cloud-based applications. However, the combination of
different computing paradigms, such as cloud-fog-edge com-
puting, has the potential to address many of these challenges.
In this survey, we have observed that modern hybrid comput-
ing in agricultural applications can solve general cloud issues
like latency, bandwidth, and networking traffic problems.
Moreover, it has been found that most of these applica-

tions are low-cost. It is worthmentioning that cloud-fog-edge
computing can also address larger problems, such as real-
time data processing with low latency and high bandwidth,
unnecessary costs, data security, and data protection. Nev-
ertheless, further research is required to understand how to
overcome these challenges effectively.

6 Conclusion

This paper presented a comprehensive systematic literature
reviewon the role ofmodern computingparadigms—namely,
cloud, fog, edge, and flying edge computing—in smart agri-
culture domains. Our analysis covered various aspects such
as application domains, research approaches, and architec-
tural modeling. Our findings suggest that these computing
techniques, when combined in a complementary way, can
significantly aid the digital transformation of the industry
in terms of network, business, application, and intelligence.
However, data obtained from edge nodes need to be summa-
rized in the cloud for deeper analysis as cloud computing has
a significant impact on data availability by providing scal-
able, on-demand access to computing and storage resources
over the internet. Further research is needed to overcome
some of the challenges identified in this study and to fully
realize the potential of these computing paradigms in the
agriculture industry.
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