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Abstract
This paper provides a comprehensive review of recent challenges and results in the field of generative AI with application
to mobile telecommunications networks. The objective is to classify the literature using an approach that encompasses the
type of generative AI technology employed, the functional purpose, and the specific component of the mobile network that
each solution targets. Moreover, performance requirements for generative AI applications are considered. Thereafter, state-
of-the-art generative AI algorithms and an examination of their use cases across various industry verticals are presented.
The discussion extends to the current level of AI integration in telecom standardization bodies, such as the 3rd Generation
Partnership Project (3GPP). Finally, the open research challenges that the generative AI technology aims to address are
thoroughly investigated.
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1 Introduction

Recent breakthroughs in generative Artificial Intelligence
(AI), such as transformer-based Large Language Models
(LLMs), have attracted attention from both the scientific
community and industry alike. Generative Pretrained Trans-
formers (GPTs), for example, such as OpenAI’s GPT−3.5
and recently GPT-4, have formed the basis for a number
of Natural Language Processing (NLP) applications ranging
from text summarizers and generators to language transla-
tors. Finetuned versions of these transformers have evolved
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into advanced chatbots that allow easy accessibility of vast
corpora of knowledge to humans. Teaching and sales assis-
tants, product troubleshooters, and assistants for upskilling of
employees and personnel are all use cases where generative
AI has recently found good popularity.

1.1 Generative AI and relevance tomobile networks

The telecommunications industry and in particular Fifth
Generation of Mobile Networks (5G) use AI algorithms to
analyze, optimize, and troubleshoot network functionality,
from resource allocation and sharing to anomaly detection
and path loss prediction [1]. SuchAI algorithms are known as
“discriminative,” as they trainmachine learning (ML)models
using network data that is either readily available, in form of
historical datasets (“offline learning”), or is retrieved in real
time from the mobile network (“online learning”).

Sixth Generation of Mobile Networks (6G) is expected
to serve more demanding use cases in terms of connectiv-
ity, capacity, data rates, latency, mobility, and reliability [2].
These requirements also introduce a set of challenges for use
of Machine Learning (ML) models.

One challenge is about data observability, meaning the
collection and transport of data needed for training of ML
models. The overall process consumes computational, stor-
age, and transport resources that can otherwise be used to
servemobile network traffic.The challenge compoundswhen
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considering that model training is not an isolated process
happening once; instead, models may need to be retrained
several times during their lifetime. Furthermore, datamay not
always be available, for example, in cases where data collec-
tion involves User Equipment (UE). Generative AI models
may be used in this case to provide data for ML model train-
ing and can be deployed close to where training takes place.

Another challenge is about safe learning, and specifi-
cally, cases where discriminative models are trained in real
time, using online learning approaches such as Reinforce-
ment Learning (RL) and Active Learning (AL). Contrary
to observing data a priori, building a dataset, and using the
dataset to train the model, in online learning, the model is
trained serially, as data becomes available. However, in such
cases, predictions of models can be inaccurate, inadvertently
leading to potentially bad predictions that can negatively
impact network operation. In this case, generative AI can
assist in creation of Digital Twins (DTs), which provide a
safe environment to improve RL-trained models.

Customer-related tasks such as creating subscription plans
and product bundles given mobile subscriber requirements
and network deployment configurations given mobile opera-
tor requirements are also expected to become more complex,
as 6G will diversify in terms of use cases, radio access tech-
nologies, and types of supportedUE.Additionally, with strict
privacy and legal requirements which often vary across coun-
tries, collecting customer usage data required for training
discriminative algorithms is often a challenge. This is an area
where generative AI-related solutions such as transformers
can help, using digital assistants and NLP, to elicit require-
ments from the user, and converting those requirements into
machine-readable parameters that can be further actuated
upon.

The aforementioned challenges are not only limited to
6G networks. In particular, as 5G deployments grow denser,
these challenges also apply to existing mobile networks and
call for undertaking research efforts to address them.

1.2 Paper overview

The main contribution of this paper is to provide a historical
perspective and highlight recent work in the field of gen-
erative AI with application to mobile telecommunications
networks. For classifying the literature, we use an orthogonal
system that is based on both the type of generative AI tech-
nology used and functional purpose, but also the part of the
mobile network each solution is applied to. The paper also
describes outstanding challenges and open research ques-
tions that can potentially be explored.

The rest of the paper is structured as follows: Section 2
provides an overview of the state of the art of generative AI
algorithms and use cases for these algorithms in industry ver-
ticals. The section ends by discussing the current level of AI

in telecom standardization bodies such as Third Generation
Partnership Project (3GPP). Section 3 describes performance
requirements for generativeAI and how they are linked to 6G
requirements. Section 4 describes current research on genera-
tive AI for telecommunication networks. Section 5 describes
open researchquestions andopportunities for future research,
as well as outstanding challenges. Finally, we conclude in
Section 6 with a recapitulation of the paper content.

2 Background

2.1 Generative AI algorithms

Generative approaches date back to the 1950s, one of the
first being Markov Chains, i.e., statistical models predicting
the probability of an event occurring given the present state.
However, it was not until the 1980s, when neural network-
based Boltzmann Machines (BMs) were introduced, that
generative approaches became relevant in solving real-world
applications [3]. Restricted Boltzmann Machines (RBMs) in
particular, that were introduced in mid-2000s, have found
application in a wide range of fields, from natural language
processing to computer vision [4]. RBMs are shallow, 2-layer
generative models that are able to learn a probability distri-
bution from their inputs. Stacking multiple RBMs one after
the other is the basis of more complex Deep Belief Networks
(DBNs), which compound advantages of single RBM [5].

Generative Adversarial Networks (GANs) are another
architecture for training of generative neural models [6].
GANs have enjoyed success in the computer vision field, in
areas such as image and texture synthesis and manipulation,
image translation, but also NLP and music [7].

Variational Autoencoders (VAEs) are also generative neu-
ralmodels that, given highly dimensional input data, generate
a more compact representation of this input data [8]. This
representation is also known as “latent space” and proba-
bilistically represents the input by describing the probability
distribution of every input value. Given an “encoding,” i.e.,
a latent space representation, every distribution in this space
can be sampled to generate new output that approximates
the input. Compared to GANs, VAEs produce a less accurate
representation of input (e.g., images of lower fidelity) but
train faster [9].

Departing from the visual domain and moving towards
linguistics, Recurrent Neural Networks (RNNs) and RNN-
based Long-Short Term Memory networks (LSTMs) have
long been the de-facto models for text generation type of
use cases [10]. RNNs are sensitive to sequential data, where
the prediction of the model is not only dependent on current
input, but also previous predictions. Given that sentences are
sequences of words, RNNs are theoretically a good match
for text generation type of problems. Such problems may
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include, for example, text completion, translation, and sum-
marization. In the literature, it has been acknowledged that
vanilla RNNs suffer from the vanishing gradient problem,
which creates challenges when learning long sequences of
data, such as text [11]. LSTMs, a special type of RNN, were
introduced in order to solve this type of problem [12].

However, RNNs and LSTMs suffer from performance
problems, as they have to sequentially process the input.
For example, considering a sentence used as input, process-
ing is done token by token, i.e., word per word. To address
these issues, the transformer architecture was introduced,
allowing for parallelization of input processing and there-
fore resulting in reduction of training time [13]. Transformers
also introduced the concept of self-attention. Traditionally,
LSTM-based models tried to remember the whole input
sequence, for example, the whole sentence, before producing
the output (e.g., a translation of that sentence). The problem
with this approach is that loss of information can occur, espe-
cially for longer sequences, as the LSTM-based models have
to implicitly remember the complete input sequence. Instead,
transformers focus only on relevant parts of the sequence, for
example, words that are related to each other in a sentence.
This allows transformers to remember larger parts of input
sequences and also produce output faster. Transformer-based
models such as GPT [14] and Bidirectional Encoder Repre-
sentations fromTransformer (BERT) [15] have demonstrated
ability to capture large corpora of information, earning the
name LLMs. In addition, with relatively small effort, such
models can be fine-tuned to serve real-world applications.
ChatGPT is one such popular example—finetuned fromGPT
using supervised learning and Reinforcement Learning with
Human Feedback (RLHF), it provides a dialogical, Question
andAnswer (Q&A) type of functionality accessible to human
users [16].

Figure1 provides a taxonomy of AI algorithms, based on
previous taxonomy presented in [6]. The generative algo-
rithms are split into three main categories, depending on the
technique they follow to generate content.

• Explicit density models model the probability distribu-
tion of the data, by learning the Probability Density
Function (PDF) of the input. Depending on the com-
putational complexity of the operations, explicit density
models are either tractable or approximate (also known
as intractable). Intractable models are better suited for
complex, high-dimensional spaces, whereas tractable
models, being simpler and more computationally effi-
cient, are better suited for low-dimensional input. Some
of the explicit density function learning examples are two
neural network architectures, including Neural Autore-
gressiveDensityEstimation (NADE) andMaskedAutoen-
coder for Distribution Estimation (MADE) for tractable
density. However, Variational and Markov Chain Monte

Fig. 1 Taxonomy of generative AI algorithms

Carlo (MCMC)models are two examples of approximate
density.

• On the other hand, implicit density function models—
such as GANs—do not model the PDF. Instead, they
learn them indirectly by generating output from the data
distribution. As these models do not require a paramet-
ric form of PDF, they can sample from more complex,
multimodal distributions than their explicit density coun-
terparts. Under implicit density models lies Markov
chain models, Generative Stochastic Network (GSN),
and GAN.

• The last category of generative AI algorithms is trans-
formers. Transformers are not explicitly density models,
but instead rely on an internal attention mechanism to
learn relationships between input tokens and generate
new data out of these learned relationships.

2.2 Use cases and industrial applications

There are several use cases inwhichgenerativeAI has already
been applied in. In this section,we present some of the promi-
nent areas of application.

• Text generation includes any type of text content such
as summaries, suggestions, translations, answers to user
queries, production of original text such as poems,
speeches, or novels, captioning, etc. [17, 18]. Tools such
as ChatGPT, for example, may impact all aspects of a
business, from marketing and sales to operations, engi-
neering, legal, Human Resources (HR), and employee
working efficiency [19]. Text generators are not lim-
ited to natural language text, but may also generate
code. Tools generating code can be used by their human
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Fig. 2 Potential for generative AI application in mobile network standardization

counterparts in pair-programming sessions, increasing
the overall quality of the code and turnaround time [20].

• Image generation is another area where generative AI
approaches excel in. Text-to-image generation (T2I),
where the generative model uses a textual description
to produce an image [21], and image-to-text (I2T) gen-
eration, where the generative model produces a textual
description from an image [22], are both areas that are
heavily researched and wherein generative AI models
enjoy wide industrial applicability.

• Audio generation is another prominent category. Audio
diffusion models, for example, generate speech from
text [23], while music generation models implicitly learn
properties such as harmony, structure, melody, and tex-
ture aswell as instrumentation and orchestration ofmusic
pieces to produce new music [24].

• Video generation, or synthesis, is still in early stages com-
pared to other domains such as images; however, tools
such as 3D RNNs show promise [25].

Another category of use cases is generation of content in
a form that is not necessarily human-readable, but is com-
pact enough to yield other benefits. One example is use of
generative AI models for semantic communication that aims
to increase transmission efficiency in communication net-
works. In conventional communication and regardless of the
content being transmitted, all information for the communi-
cation is transmitted from sender to receiver. On the other
hand, semantic communication transmits symbols describ-
ing the content of the transmission, which is synthesized
on the receiver side. Transformer-based approaches, such as
DeepSC, encode text input into complex symbol streams,

decoded back to text at the receiver, saving bandwidth during
transmissions [26]. We further discuss semantic commu-
nication and its application in mobile telecommunication
networks in Section 4.6.1.

2.3 AI standardization activities in mobile networks

From the perspective of standardization, and at the moment
of this writing, there are different AI functions being investi-
gated, belonging to different parts of the mobile network (see
Fig. 2).While the AI algorithms used to implement function-
ality are implementation-specific, generative AI algorithms
such as transformers and GANs can be used to implement
standardized functionality. Whereas this section provides an
overview of AI functionality that is being already standard-
ized, generative AI-based implementations of this function-
ality are discussed in greater detail in Section 4.

• In (RAN), normative (i.e., standardization) activities for
AI functionality have started in 3GPP for 5G-advanced
(Release 18) accross all three layers, Layer 1 (L1) to
Layer 3 (L3), of the air interface. Specifically, in L1, a
study on physical layer enhancements referencing use
cases such as compression of Channel State Information
(CSI) reporting [27], beammanagement, and positioning
is ongoing, supported by bothUE chipset andmobile net-
work vendors [28]. Examining the above use cases, we
can identify several areas of interest for generative AI.
Transformer or VAE-based architectures, for example,
can be used for encoding and decoding CSI information.
CSI data can be projected into a size-efficient embed-
ding space. Within this space, relevant information can
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be correlated using a transformer’s attention mechanism.
Subsequently, this embedding space can be transmitted
to the receiver. There, the complete CSI report can be
generated.
In higher layers, network protocols for data collection,
model training, and deployment are currently being stan-
dardized [29]. Specifically, three use cases have been
defined: First, network energy saving, wherein UE and
Radio Base Stations (RBSs) exchange energy-saving
information. This information is used by energy-saving
models to make an energy-related decision, e.g., put a
cell1 to sleep for a given amount of time. Second, load
balancing, whereinAImodels steer UE-destined or origi-
nated data traffic throughdifferent cells, in order to evenly
allocate the load. Third, mobility optimization, which
uses AI models to reduce failed handovers by predict-
ing mobility, location, and performance of UEs.
Complementary to the 3GPP architecture for RAN is
Open Radio Access Network (O-RAN), proposed by
O-RAN Alliance. From an AI perspective, O-RAN stan-
dards enhance 3GPP standards by introducing Radio
Intelligent Controller (RIC), a component that controls
and optimizes RAN functions. A RIC consists of a near-
Real-Time (RT) and a non-RT component. The latter
is a centralized function, which, through applications
known as “rApps,” provides non real-time control of
RAN aspects, with decision loops larger than a second.
The latter is a distributed function, deployed at network
edge,which, through another set of applications knownas
“xApps,” enables near real-time optimization and control
of RAN elements, with decision loops between 10 mil-
lisecond and a second.Within RIC, O-RANAlliance, the
organization responsible for standardizing O-RAN, has
specified an AI architecture, which describes how ML
models are being trained and deployed in near-RT and/or
non-RT RIC [30].
Additional to the three specified use case by 3GPP above,
O-RAN alliance has specified several more use cases,
including control of RAN elements for dynamic envi-
ronments (e.g., radio resource allocation for Unidentified
Aerial Vehicle (UAV) type of UE and handover manage-
ment for Vehicle-To-Everything (V2X) environments,
where UE are moving vehicles, dynamic spectrum shar-
ing, etc.) [31]. Dynamic environments are of interest to
generative AI approaches. As discussed in Section 1,
adapting baseline models to the local UE traffic and
mobility patterns, radio channel interference, etc., will
require observingdata locally andpotentially transferring
to the non-RT RIC for training. Generative AI models

1 Note that the terms RBS and cell are used interchangeably in the
context of this publication.

deployed at the non-RT RIC can help reduce bandwidth
requirements for transferring large amounts of data.

• In core network, AI-related standardization activities in
3GPP have been focusing on Network Data Analyt-
ics Function (NWDAF), which is a Network Function
(NF) that provides analytic services to other NFs. These
analytic services enable these NFs to take actions. For
example, NWDAF may provide a prediction of when
a congestion will occur, to the Policy Control Func-
tion (PCF), which in turn will take action to mitigate
the possibility of congestion (e.g., by changing policies
for at least some of the attached UE). In order to pro-
vide this type of service, NWDAF may use ML models,
trained at and served by an internal Model Training Log-
ical Function (MTLF) and consumed by another internal
Analytics Logical Function (ANLF),which also provides
the response by embedding the output of the ML-trained
model. Of specific interest to generative AI is a 3GPP
technical report, outlining key issues with NWDAF and
the suggestions for improvement [32], many of which
are already in “normative” phase (i.e., under standard-
ization). Specifically, solutions around improving the
correctness of NWDAF analytics may necessitate the use
of generative AI-based DTs to evaluate the performance
of MTLF-trained models.

• Beyond 3GPP andO-RAN standardization, telecom ven-
dors andoperators have shown interest in the idea of using
intent-based operations to create autonomous networks.
TheTeleManagement Forum (TMForum)’sAutonomous
Network Project describes a reference architecture for
designing and realizing autonomous networks [33]. Part
of this architecture are hierarchically organized intel-
ligent agents, which participate in the so-called intent
management loop [34]. Given an intent, these agents
observe the network, analyze the observations, propose
decisions, evaluate these decisions, and once a decision is
chosen, execute a series of actions in the network to fulfill
the requirements of that intent. Different phases in this
loop can be of interest to generative AI. For example, the
evaluation phase would need to explore several what-if
scenarios in order to find the better performing proposal.
Such an evaluation could not be done in a live network
and would instead use a virtual environment such as a
generative AI-built DT.

As part of Release 19, 3GPP also performed a study of
use cases for distributed model training and execution2 [35].
Specifically, in one set of use cases, the study describes
splitting computation between UE and the network infras-
tructure (“application server”) for inferencing of MLmodels

2 In context of this publication, the terms “execution” and “inferencing”
are used interchangeably.
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Table 1 KPI requirements for
work task offloading (adapted
from Table 5.1-2 of [35])

Detector Data size Data Upload latency Image
Rate recognition

latency

AlexNet (30 0.15−0.02 4.8–65 2ms (remote driving 1s

frames per second Mbyte per Mbps augmented reality (AR)

(FPS)) frame gaming, robotics)

VGG-16 (30 FPS) 0.1−1.5 24–720 10ms (video recognition) 1 s

Mbyte per Mbps 100ms (person identification

frame photo enhancement)

for visual object detection. The layers of the Artificial Neural
Network (ANN), for example, a Convolutional Neural Net-
work (CNN)-based visual object detector, are split, and part
of the computation is shared between the UE and is sent to
the network infrastructure. The decision on where to transfer
the computation is based on the available radio resources on
the uplink (UL) interface of the UE running the application
and latency of inferencing task. Some of these requirements
are illustrated in Table 1.

Generative AI algorithms can play a role in reducing
the data size required to be transferred between compute
nodes. Specifically, VAEs have proven to create efficient
latent space representations, resulting in smaller sizes of data
to be exchanged between nodes [36]. Semantic communica-
tion, a process where a source content, such as an image,
is described, is transmitted in semantic information (e.g.,
text) to the receiving node, which then uses generative AI
to recreate the source content, is also achieved with genera-
tive AI [37]. The semantic information being transmitted is
comparatively much smaller in size than the actual content,
therefore saving bandwidth. In terms of the use cases in the
3GPP report, visual object detectors work by so-called fea-
ture extraction, wherein hidden layers extract intermediate
features, that can be described using semantic information.

In conclusion, many standardization activities currently
exist for AI functionality in RAN and core parts of mobile
networks.We see several opportunities for generative AI that
can be synopsized into two categories. First is content gener-
ation for training ML models to be deployed at the network
edge, targeting RAN use cases. Second, safe learning, in use
cases involving training ML models, wherein generative AI
algorithms can be used for the creation of DTs.

3 Performance and requirements
for generative AI

This section discusses methods used to evaluate the perfor-
mance of generativeAI algorithms.As discussed in Section 2
and shown in Fig. 1, generative AI algorithms may have
tractable likelihood (e.g., RNNs), meaning that they have

knowledge of the underlying probability density function, or
intractable likelihood (e.g., VAEs and GANs), meaning that
they do not have any knowledge of the probability density
function.

In the case of tractable likelihood models, the approach
follows the normal evaluation route used for discriminative
AI models, where evaluation methods such as accuracy, pre-
cision, and recall (in case of classification models) and mean
square error and explained variance (in case of regression
models) are used.

On the other hand, for intractable generative AI models
or for transformers such as LLMs relying on the attention
mechanism, it is impossible to estimate the probability den-
sity function and compare it to the ground truth. Therefore,
other types of evaluation methods need to be used.

3.1 Evaluation approaches for generative AI models

ForGANmodels, there exist a series ofworks in the literature
for measuring the perceptual quality, diversity of samples,
and generalization ability [38].

Specifically, the evaluation problem can be formalized as
follows: how to learn the original distribution of a given
dataset or domain to generate new samples that are realis-
tic and close enough to the data instance.

Beyond labor-intensive, manual inspection of generated
content, two common approaches for computing the quality
and diversity of generated samples are Inception Score (IS)
[39] and and Fréchet Inception Distance (FID) [40]. Both are
limited to the visual domain and make use of a pre-existing
classifier trained on the image dataset [41]. The use of a pre-
trained classifier, however, also means that both FID and IS
are limited by what the pre-trained classifier can detect. Test
set log-likelihood is another evaluationmethod for evaluating
GANmodels, although it is not directly applicable to models
from which we can only draw samples from.

Recent developments in GAN evaluation have improved
on the weaknesses of the aforementioned evaluation meth-
ods and broadened their applicability beyond the image
domain [42, 43]. Some examples include modifications to
the original FID method to accelerate the evaluation pro-
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cess [44] and reduce bias [45]. FID also does not distinguish
between fidelity and diversity of generated content.3 Tomea-
sure fidelity and diversity separately, other methods inspired
by and building on the precision-recall metric were intro-
duced. An example of such metric is density and coverage
[46].

In addition to the above quantitative metrics, GAN eval-
uation state of the art also includes qualitative evaluation
methods. These methods focus on the perception of the gen-
erated content from human audience and therefore include
humans-in-the-loop [47].

Transformers are models with encoder-decoder structures
that use the attention mechanism. The encoder generates
the encoding of inputs, and the decoder generates the
output using all the encodings and their incorporated contex-
tual information. In the original transformers, the attention
mechanism utilizes softmax to capture the long-range depen-
dencies in the sequence of tokens (for texts) or of patches (for
images).

The transformers are widely used in BERT and GPTmod-
els. BERT-like models [48] adopt two objectives: Masked
Language Modeling (MLM) and Next Sentence Prediction
(NSP). MLM is a fill-in-the-blank task consisting of pre-
dicting tokens of the input sequence that have been masked,
whereas NSP is a binary classification task to predict whether
two segments are adjacent in the original text. Some models
eliminate theNSP task in their pre-training to address its inef-
fectiveness, such as XLM-R, CamemBERT, and FlauBERT
models. Some models (such as FrALBERT) pre-train MLM
and Sentence Order Prediction (SOP) to predict whether a
sentence order in a given sentence pair is swapped.

Transformer-based models are mostly focused on lan-
guage understanding at the beginning and, more recently, on
image processing; therefore, they have beenwidely evaluated
on text representations for natural language understand-
ing. Some of their important benchmarks are crowdsourced
questions derived from Wikipedia articles (SQuAD) [49],
multiple-choice reading (RACE) [50], and diverse set of text-
based tasks covering paraphrasing, sentiment, and linguistic
acceptability (GLUE) [51]. For LLMs in particular, their per-
formance is determined bymultiple factors such as the layers
specification, the dataset size [52], or the pre-training objec-
tives. These objectives define several language models that
can be evaluated by the common or separate methods.

For use cases involving text (e.g., translation, generation,
summarization) in a telecommunication context, [53] has
proposed several benchmark datasets, including TeleQuAD
and mTeleQuAD, to evaluate telecome question answering
task. The data is mainly collected from 3GPP specifications.

3 Fidelity refers to the degree to which the generated content matches
the real content. Diversity measures whether the generated content cov-
ers the full variability of the real content.

On the other hand, image-based transformers focus on a
series of tasks, including image classification, object detec-
tion, and multi-modal learning. Different loss functions have
been used to train these models considering the data and
label types. As an example, cross-entropy [54], distillation
loss basedonKL-divergence [55], negative log-likelihood (of
masked patches), Hungarian loss [56], etc. The same evalu-
ation measures can be used for applications such as channel
estimation and passive beamforming since these use cases
can be modeled as images or videos [57].

Training and pre-training transformers in a self-supervision
manner play a crucial role in their scalability and generaliza-
tion. In order to take advantage of pre-trained transformers
and fine-tune them to unseen data, GPT models have been
developed. They contain two main components: pre-training
and fine-tuning (it can be improved by the help of human in
the loop). Although each component’s performance depends
on the target task, there exist a series of evaluations to asses
them regardless of the selected task. For instance, perplex-
ity, sample generation quality, transfer learning, and diversity
and coherence of generated samples are important for evalu-
ating thepre-traningpart.On theother hand, cross-validation,
human evaluation, error analysis, and generalization are the
list of important parameters for fine-tuning aGPTmodel [14].

The VAE is a balance between two components: the log-
likelihood that improves the reconstruction quality in the
latent space and the Kullback-Liebler component that acts
as a regulizer pushing the inference distribution towards
the desired distribution. Log-likelihood and KL-divergence
can be frequently balanced using a regulator parameter as
a normalizing factor for the reconstruction component. Pre-
ferring the reconstruction component improves the quality
of the reconstruction regardless of the generation effects and
the latent space shape, while preferring the KL-divergence
improves the smoothness and normalization of the latent
space with more detached features

4 Applications of generative AI in mobile
networks

In this section, we describe existing approaches of applying
generative AI algorithms to mobile networks. Figure3 illus-
trates a general categorization of such approaches based on
their functionality and part of the mobile network they are
applied in. In the context of this publication, we consider a
mobile network to include a network management and expo-
sure layer. The former includes all the necessary functions
to operate the network throughout its lifetime, while the lat-
ter exposes functionality of the network to applications used
by mobile subscribers such as private individuals and enter-
prises. In addition, we consider UEs to be part of the mobile
network as well, as 3GPP increasingly recognizes their role
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Fig. 3 Taxonomy of generative AI algorithms for 5G and envisioned 6G mobile networks

as compute nodes in execution of distributed AI algorithms
(see Section 2.3).

4.1 Generative AI in RAN

In this subsection, we present approaches of generative AI
algorithms aiming to improve several aspects of RAN.

We start with air interface enhancements, as illustrated
also in Fig. 3. As “air interface,” we define the network
between the UE and RBSs in a mobile communications net-
work. It is arguably the most valuable resource, as it is finite,
but its use is also very unpredictable as it depends on factors
external to the mobile network (e.g., UE traffic and inter-
ference from the environment). Starting from the physical
(PHY) layer, also known as L1, there are several problems
which are addressed using generative AI:

• Wireless channelmodeling: A first set of approaches aims
to learn implicit probability distributions of multiple-
input and multiple-output (MIMO) channels. Learning
these models is important as they are widely used
for benchmarking and creation of simulation scenar-
ios. Rather than gathering measurements of the wireless
channel andfitting them to a knownmodel such asTapped
Delay Line (TDL) or Clustered Delay Line (CDL), a
number of researchworks use aGAN to learn the channel
distribution, resulting in a more accurate channel model
[58–60].

• Spectrum sensing is the process where a radio monitors
a frequency at certain bandwidth to gather information
about spectrum availability. Finding or even predicting
unused spectrum dynamically is important as it can be

reallocated for use in other communication tasks. Deep
learning has already been applied to prediction of free
spectrum by use of CNNs; however, collecting a training
dataset for all spectrum conditions is expensive, while
the network requires retraining should the underlying
spectrum environment changes. Instead, authors in [61]
develop aGANgenerating synthetic data that can be used
later to create a classifier that predicts available spectrum.
In [62], authors use an Enhanced Capsule Generation
Adversarial Network (ECGAN) that itself uses a VAE to
estimate the wireless channel occupancy.

• Channel quality estimation is the process of determining
the state of a wireless channel in a mobile network. This
is typically achieved by means of RBSs, either periodi-
cally or on event basis, sending requests for transmission
of reference signals to attached UE. Subsequently, this
information is used by the RBS to determine correct
modulation and code rate, select the correct beam in a
beamforming scenario, etc. The information reported by
the UE is known as Channel State Information (CSI).
CSI is represented as a high-dimensional matrix which
is large, resulting in high computational and storage
requirements. In [63], the authors propose a transformer-
based architecture that by learning correlations between
subcarriers using the attention mechanism compresses
an original CSI to an efficient representation that can
be reconstructed at the destination. The computational
requirements are lower than other deep learning-based
solutions, while the size of the latent space is kept com-
pact. In another approach, authors use VAEs to estimate
channel state in massive MIMO scenarios [64]. The
model is found to perform well not only in optimal
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conditions, but also in the presence of additive white
Gaussian noise.

• Hybrid beamforming (HBF) is a solution used in 5G and
expected to be used in 6G that uses digital precodingwith
analog beamforming, in order to support throughput-
demanding, multi-user environments. HBF optimization
is a challenge, as the process is non-convex and highly
complex on a high-dimensional space that require a large
number of iterations in order to find the optimal precoders
needed for data communication [65]. In addition, opti-
mization methods require near-perfect CSI feedback that
may be difficult to obtain in practice. In [66], authors
suggest use of a GAN to create a low-dimensional rep-
resentation of the high-dimensional search space, then
perform a search for the optimum precoders in this low-
dimensional space. By incorporating domain knowledge
of each iteration in the neural network, the authors show
that the complexity of HBF optimization is decreased,
while at the same time decreasing CSI feedback over-
head. In [63], authors propose using a tranformer model
that outperforms existing or CNN-based methods sug-
gested in the literature in terms of CSI feedback overhead
and spectral efficiency. Spectral efficiency is expressed in
the paper as sum-rate of concurrent transmissions.

• Network traffic generation: In addition to the above, as
mentioned in Section 2.3, O-RANAlliance has also spec-
ified a number of use cases that relate to use ofMLmodels
in highly dynamic scenarios such as V2X and UAV com-
munication. In many cases, training such models may
require large amounts of data, which are expensive to
observe and transport at the point of model training.
Therefore, network traffic data generation is one field
that is of interest, as it can contribute to reducing the
bandwidth and computational requirements for discrim-
inative ML model training. In [67], the authors leverage
several GAN variants to generate realistic network traffic
data,whichmatch the original data traffic distributions. In
some cases, especially in RAN, some ML models may
require data with such fine granularity that the obser-
vation framework in place may be unable to provide.
For example, algorithms for Radio Resource Manage-
ment (RRM) may require data gathered in millisecond
granularity (e.g., 1 or 2 ms), whereas the observation
framework collects aggregated data measurements every
minute. In [68], authors combine a Zipper Network (Zip-
Net) with a GAN to propose a solution that generates
network traffic data on a granularity that is two orders
of magnitude higher than normal probing, while main-
taining remarkable accuracy. Network traffic analysis is
another aspect that is useful in many use cases.

• Network traffic analysis and anomaly detection is also
an area of interest as detecting or predicting anomalies
may trigger corrective action from the mobile network.

In [69], the authors propose the use of a VAE together
with unsupervised deep learning for anomaly detection.
Contrary to other approaches, the solution proposed in
this paper does not require large amounts of labeled data
for training, thus making it likely to detect “zero-day”
attacks. In addition, VAE creates a comparatively small
latent space representation and therefore allows scalabil-
ity of the solution both in terms of data size as well as
number of features that can be considered.

• Network selection may also be a future application areas
for UE with multi-connectivity capabilities. In [70],
authors propose aGAN-based load estimation algorithm,
which provides input to a network selection algorithm,
that is used by UEs to select networks with lighter loads.

4.2 Networkmanagement

In this section, we present existing approaches of genera-
tive AI that target network management, including network
planning, deployment, and operation. Some of theworks pre-
sented in this section are not exclusively limited to 3GPP
mobile networks and are applicable to other network types.

4.2.1 Customer incident management

In this section, we refer to previous approaches to solutions
contributing to automation of customer incident manage-
ment, from detection of the incident, to drafting of customer
support requests and trouble reports, to resolution.

• Incident detection refers to methods used to detect
anomalous behavior using as source machine readable
data such as logs (e.g., alarms, program traces). In [71],
the authors transform raw logs into multi-dimensional
numerical vectors with the help of transformer models.
Next, a RNN-based LSTM parses those embeddings in
sequence of arrival in order to identify anomalous behav-
ior that could be considered as an incident. Results show
robustness of approach to alteration of log content (e.g.,
due to a software upgrade), but also good accuracy of
detecting anomalous behavior. In [72], the authors pro-
pose LogFit, a BERT-based LLM, finetuned on log data
patterns, and used for log anomaly detection. Results
show that the model is also robust to vocabulary changes
in the logs and can also outperform legacy methods for
log anomaly detection.

• Trouble report drafting refers to methods used to auto-
matically create trouble reports on detection of an inci-
dent.One aspect of this drafting is the ability to parse logs,
i.e., to convert them from raw-format to a more compact,
machine readable format, either to be included in the trou-
ble report as is or to be used as prompt to another model
for summarization. In [73], authors present LogPPT, a
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LLM that uses a novel prompt tuning method to rec-
ognize keywords and parameters from a few labelled log
data selected by an adaptive random sampling algorithm.

• Trouble report classification concerns automatically clas-
sifying customer incidents specified in trouble reports or
customer support requests in order of severity, so themost
critical incidents are addressed first. In [74], the authors
train a number of classifiers including deep learningmod-
els but also BERT-type transformers. The results showed
that the transformer-basedmodels outperformed all other
approaches.

• Given an existing customer support request, Trouble
Report similarity search concerns finding similar pre-
vious customer support tickets by comparing ticket
contents. Similar tickets can be solved in similar ways
or can be dealt by the same support team. In [75], the
author used BERT-type transformers to create embed-
dings of trouble reports, then using clustering techniques
for grouping trouble reports with similar embeddings in
clusters, and finally labeling the clusters using an extrac-
tive summarization model.

4.2.2 Network planning and deployment

This section describes generative AI approaches to facilitate
network planning, but also deployment and configuration of
network nodes once planning is complete. Specifically, we
distinguish the following areas:

• Radio map estimation: A radio map is an important tool
for network planning, as it provides information about
the spatial distribution of signal strength and can there-
fore identify network blind spots or areas that have weak
coverage. Creation of radio maps is a challenging task,
as radio measurements are sparse due to environment
and UE availability. In [76], the authors describe a GAN-
based approach for estimating radiomaps based on sparse
measurements. The results show that this approach has
better performance than state-of-the-art methods, par-
tially using non-variational autoencoders. In [77], authors
describeRadioNet, a transformer-based solution for radio
map estimation, that not only reduces validation loss and
increases prediction reliability when compared to the
state of the art, but also increases prediction speed by
4 orders of magnitude.

• Cell load and traffic estimation is another area where
generativeAI algorithms are used, in the absence of aUE-
dependent, rich measurement set. In [78], the authors use
GANs to produce realistic samples of user spatial distri-
bution in various scenarios, based on the day, week, and
time of day. This information is then provided in a simpli-
fied form to a control plane of Software Defined Network
(SDN) controllers that take actions on the mobile net-

work (e.g., traffic routing and load balancing). Results
show that with this approach improves network coverage
and spectrum utilization over the state of the art.

• Configuration of network elements is another area where
generative AI algorithms can be of good use. Specifi-
cally, many network elements, either virtual (e.g., NFs,
SDN controllers, virtual routers) or physical (e.g., base-
band boards, radios),may have a number of configuration
parameters that need to be adjusted manually prior to
deployment of this equipment on a production envi-
ronment. However, this kind of parameter tuning also
requires a deep knowledge of the system that may be
beyond the abilities of the average user. In pioneering
work of [79], authors introduce “ACTGAN,” an algo-
rithm that leverages a GAN that generates configurations
by learning and utilizing structures of existing good
configurations. The authors test ACTGAN on a num-
ber of open-source software including databases, com-
putational frameworks, and event streaming platforms
to show that the generated configuration outperforms
default configurations and state-of-the-art configuration
algorithms. In another approach, authors make use of a
ConditionalVariationalAutoEncoder (CVAE) to propose
improved network configurations for sustaining end-user
quality of experience (QoE) in a video streaming scenario
[80].

4.2.3 Network operations support

In this subsection, we describe several areas of network oper-
ations where generative AI algorithms can be of service.

• Fault diagnosis. In 3GPP Release 10, Model Drive Test
(MDT) functionality was introduced, which allows oper-
ators to use UE to collect mobile network data, thus
reducing need for drive testing. However, in practice,
MDTreports are sparse as theydependonUEavailability.
In [81], the authors counter the spase availability ofMDT
reports by using an image translation GAN (also known
as “Pix2Pix”) to generate MDT coverage maps from
sparsely available data, which are subsequently used as
input to a CNN classifier that provides a potential fault
diagnosis.

• Resource allocation for network slicing is another area
where generative AI algorithms can be of assistance. In
[82], the authors use double deep-Q learning RL algo-
rithm to train a GAN to allocate certain bandwidth to
each network slice, given the number of data packets
arriving for every network slice. The authors show that
the hybrid RL-GAN solution they call “GAN-DDQN”
outperformes vanilla DQN. In [83], the authors suggest
using a GAN for forecasting resource utilization.
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• Network security is an important area of network man-
agement that needs to be part of everyday network
operations. There are several active resarch areas within
network security for generative AI.

– One body of work considers the problem ofmalware
detection. Malware is software installed on a comput-
ing device without the consent of the owner and may
perform various malicious actions. State-of-the-art,
deep learning-based malware detection models are
trained to detect malware. Generative AI approaches
challenge the detection capability of these models by
using GANs to generate examples that can be used
with purpose to avoid detection [84, 85]. Generated
malware examples can be subsequently used to train
new malware detectors.

– Another body ofwork considers the problemof rogue
device detection, wherein identifying and localising
malicious devices that might threaten the security of
the mobile network or its users. In [86] and [87], the
authors use a GAN to detect rogue radio frequency
(RF) transmitters. Detection of rogue devices could
be especially valuable inmulti-access, heterogeneous
6G networks, or in Internet of Things (IoT) type
of scenarios where not all terminal devices beyond
the IoT gateway are authenticated to the mobile
network.

4.3 Requirements engineering

In this section, we describe the set of approaches that given
requirements from the exposure layer generate network-
specific configurations to fulfill these requirements. As
discussed in Section 2.3, TMForum-led intent-driven
autonomous network management is a stepping stone of net-
work evolution towards a fully autonomous paradigm. As
described in [88], intent is an abstract notion of a high-level
policy that is interpreted in greater detail in lower layers.
This is a process also known as requirements extraction and
is a natural place for generative AI algorithms that can inter-
pret natural language models and transform them to machine
readable specifications.

In [89], the authors describe a GPT-finetuned transformer
model for extracting use cases, actors, and their relation-
ships from a specification document in natural language. In
[90], the authors use a GPT-J transformer to extract technical
requirements from natural language sources.

In the context of a mobile network, an intent can be
considered as requirements from mobile subscribers (e.g.,
UE applications) about quality of service (QoS), billing
plan, feature list, etc. Oftentimes, these requirements can
be expressed in natural language or in an abstract for-
mat that can be translated to technical specifications. These

technical specifications can be further translated into action-
able network configuration instructions using a GAN such
as the one mentioned in Section 4.2.2. The potential
applications are presented in greater detail in Section 5
as future research direction. To the best of our knowl-
edge, no work exists yet in context of telecommunication
networks.

4.4 Applications

In this section, we cover the use of generative AI algorithms
for potential future applications. The generative capabili-
ties of these algorithms may allow for reduced bandwidth
demands and lower communication latency. The reader
should note that the use cases presented in this section are
non-exhaustive, but may function as an inspiration for using
generative AI in similar use cases in the future.

4.4.1 Optimization of (XR) network datastreams

XR, including AR and Virtual Reality (VR), is one of the
applications expected to drive demand for next-generation
networks. In [91], authors describe the use of GANs to
generate content for XR applications, based on observed pat-
terns of everyday use. Such content generation algorithms
can be placed close to network edge and therefore reduce
the bandwidth requirements and communication latency. In
another example, generative AI algorithms can be used to
also compress XR datastreams. In [92], authors use a GAN
for compressing high-quality video, outperforming previous
methods.

4.4.2 Data generation for industry applications

• Generative AI for robotic surgeries and remote diagno-
sis: Improved connectivity using 5G has opened doors
for robotic surgery and remote diagnosis. This makes it
possible to conduct a preplanned surgery by an expert
physician for a patient in another part of the world.
Today, most of such procedures are conducted on an
experimental basis [93] with low latency [94] visual and
robotic control. However, to replicate the surgeon’s phys-
ical proximity, such a surgery requires real-time transfer
of at least four senses—haptic, tactile, audio, and visual
signals—with low latency and high levels of assurance.
For the same, sophisticated control and precise coordina-
tion across all domains of the network are needed, which
today is a challenge to achieve in a commercial roll-
out. However, with generative AI, information exchange
of all 5 senses may become feasible as the data pro-
duced by edge devices may be recreated at the user’s
(doctor’s) end. This would enable remote surgeries and
interventional medicine to be carried out in scale. In
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one approach, multiple streams of data (e.g., from all 5
senses) can be multiplexed and represented efficiently in
latent spaceusing a transformer, later to bedecodedon the
user end.

• Vehicle teleoperation is another application, where gen-
erative AI can be used. In this application, a vehicle
is driven by a remote operator, using mobile network
communication. During teleoperation, there can be situ-
ations where, due to poor network performance, video
feed coming from the vehicle and control feedback
sent back to the vehicle is poor (e.g., due to cov-
erage, load, or environmental reasons). In [95], for
example, the authors presented real-worldmeasurements
in a semi-urban environment, which revealed network
blind spots, where teleoperation would not have been
possible. In such situations, teleoperation data can be
compressed on the originating end and regenerated on the
receiving end.

4.5 Beyond communication functions

4.5.1 Generative AI for JCAS

Joint communication and sensing (JCAS) is a new technol-
ogy expected to be commercialized in the 6G time-frame [96,
97]. In this technology, the network (e.g., gNodeB (gNB))
is capable of providing a map of the surrounding sensed
objects using radio frequency beams. This could help inmany
applications, e.g., autonomous driving and channel model-
ing. Generation of radio rays in an efficient manner is key to
the success of JCAS technology. Generative AI could help in
generating relevant rays to capture and sense the surround-
ing. For instance, this could be done by generating the right
distribution of Azimuth and Elevation Angles of the radio
frequency beam transmitted out of the node (gNB or UE),
see, for example, a GAN-based approach at [98].

4.5.2 Generative AI for positioning and localization

Positioning and localization are functions used by many
industry vertical use cases, for example, asset tracking type of
use cases in logistics and autonomous navigation in robotics,
such as UAV and Automated Guided Vehicle (AGV) type of
devices.

Solutions use Received Signal Strength Indicator (RSSI)
and CSI UE measurements, also known as fingerprints, and
apply further processing to estimate the position of a UE. In
[99], authors propose the use of a GAN to correlate the signal
strength of a device, measured as RSSI, and the position of
the device in space. Given an RSSI measurement from the
UE, a gNBcan localize thisUE in space. In [100], authors use
a Conditional Generative Adversarial Network with Auxil-

iaryClassifier, or “AC-GAN,” to generate realistic fingerprint
measurements to augment real measurements. The latter are
expensive to obtain—thus, the GAN presented saves time,
bandwidth, and computational resources.

4.6 Overarching aspects

4.6.1 Semantic communication

Semantic communication is the process of encoding informa-
tion at the sender in a compact representation that sufficiently
describes this information. Subsequently, this compact rep-
resentation is sent from the sender to a receiver in place of
the raw information itself. Based on the compact represen-
tation, the receiving end can apply an algorithm to decode
the information that should be identical as to the raw infor-
mation encoded at the sender. The advantage of using this
type of communication is that it has the potential to save a
significant amount of bandwidth. Especially considering the
“air interface” between UE and gNB, these bandwidth sav-
ings are very important as they free bandwidth for use for
other type of communication. We have already mentioned in
Section 2.3 that 3GPP is standardizing functionality on CSI
compression, but also in this section of several places in the
network that can benefit from compressed content.

In the literature, DeepSC, a transformer-based system
designed for semantic communication, outperforms other
encoding and decoding methods [63, 101]. In addition,
special purpose-built transformers, variants of DeepSc, are
presented for different data modalities, such as speech [102]
and images [103]. Given the volume and recency of pub-
lished works, we conclude that semantic communication is
an open research area in context of mobile networks.

4.6.2 Generative AI for digital twining

One application of generative AI is creating or assisting in
creating DTs. A DT is a virtual representation of a physical
object, process, or system. It is created using digital data and
simulation software to model the behavior, performance, and
characteristics of the physical object or system.

In the context of this work, a DT is considered to virtu-
ally represent any network entity, from a NF in RAN or core
network, to a gNB, to a complete RAN or core network. In
the most complex case, an end-to-end DT may represent the
totality of themobile network, including transport and infras-
tructure. On the other end of the scale, DTmay represent one
or more wireless protocols from a protocol stack.

In terms of usage, a DT can be utilized to analyze,
optimize, and monitor, e.g., the factory radio environment,
system key performance indicators (KPIs), and its life cycle,
from design and development to operation and maintenance.
An accurate abstraction of DT can enable improved network
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performance, better optimization, and efficient management.
For instance, a DT of gNodeBs (gNBs) and antennas can
help in the coverage, capacity, and management of networks.
Also, DTs can provide enhanced observability and visibil-
ity of wireless network KPIs via emulating the behavior of
different basic functions of the network. Such functionality
allows for a major role of DT in 5G and 6G realization. For
instance, it allows for a faster time of deploying new fea-
tures to market via speeding up the validation process. It also
allows for more efficient risk discovery and management via
realizing risky actions or designs.

In [104], authors suggest the suitability of conditional
GANs (cGANs) as digital twins, as they are able to learn
the distribution or distribution of quantity or quantities of
interest. With generative AI, GANs are a black box, mean-
ing that instead of an approach where the behavior of a DT is
programmed, the approach here is that instead the behavior
is learned, and new behavior can be generated based on what
was learned that is consistent with reality. In [105], authors
present a network digital twin that uses GAN as a data gen-
erator for other network functions to use. In [106], authors
present a GAN that reduces the training time of 5G DTs, by
learning the tail behavior of the train dataset distribution (i.e.,
all rare events), with only a few samples.

4.6.3 Software development, learning services,
and reference agents

OpenAI’s release of ChatGPT, a finetuning of their own GPT
model, has revolutionized the way humans interact. In addi-
tion, the process of finetuning GPT and ChatGPT has yielded
applicability of expert systems in different domains, with rel-
atively little effort. Such expert systems provide a dialogic
interface in which users can ask single questions or chains
of questions, and the expert system provides responses.

Transformermodels can be used as assistants to humans in
different parts of the network operations. First, transformers
can generate code and can, together with their human coun-
terparts, make software developmentmore efficient. One part
of transformers works with code generation and code com-
pletion [107, 108].

Second, transformers can function as reference and learn-
ing agents. In this case, transformers can provide text
generation, translation, and summarization services in a num-
ber of subjects, ranging from product documentation for
troubleshooting or upgrades or installation to 3gpp standards.
For this type of use cases, [53] has proposed several bench-
mark datasets, including TeleQuAD and mTeleQuAD. The
data is mainly collected from 3GPP specifications.

5 Research directions

This section discusses open problems and research trends for
generative AI. The aim is to provide the reader with a gen-
eral impression on where research efforts on application of
generative AI in mobile networks are focused on.We present
each general challenge in the relative subsection.

5.1 Performance versus resource requirements

As discussed in Section 4, several approaches using genera-
tive AI networks were found to perform better than the state
of the art. At the same time though, these approaches come
at a computational cost that is often higher than the methods
used before. For example, looking at semantic communica-
tion, the computational cost of encoding and decoding the
information, in addition to the storage cost of keeping the
encoder/decoder in memory, may be significant. Resource
cost especially impacts RAN applications, where resource-
constrained UE may be involved. Finding ways to compress
the generative AI algoritms as in [109] or distribute the com-
putation would be critical for mass adoption of generative AI
models especially at the network edge.

5.2 Enhancing network exposure functions

Network exposure is the function of the network that exposes
network information to third parties. Currently, 3GPP-
standardized nodes, such as Network Exposure Function
(NEF) and Service Capability Exposure Function (SCEF),
expose certain limited information in the form of APIs. In
the future, this interface will be bidirectional, where third
party requests can be sent to the network and information on
these requests can be pushed from the network back to the
third party. Also, information can be pushed by the network
to the third party without the latter’s request.

The capability of transformer networks in particular to
transform natural language prompts to other representations
would be useful for mobile networks to acquire intent-driven
autonomous network functionality. Specifically, the interpre-
tation of intents expressed in natural language to generate
network QoS policies, billing plans, subscription plans, etc.
GANs can also be trained to generate customer offers using
network consumption data (e.g., suggestion of new billing
plan).

5.3 Generalization of RAN optimization techniques

Radio environments are not stationary and change often
with mobility and user behavior. Time series prediction or
anomaly detection are quite relevant use cases, and here,
the current data is often correlated with previous time steps.
GANs have proved to be effective in capturing temporal cor-
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relations [110] and thereby identifying anomalies in such
time series data. However, as the environment changes often,
existing solutions suffer from poor generalization abilities.
Recent advances in Generative AI [111] make it possible to
develop algorithms which generalize to such changes in time
series distributions.

Similarly, for RL policies, any change in the dynamics
of the system renders the policy ineffective in many regions
of the state space. Using Generative AI, we can build corre-
spondence models [112] such that a cross-domain alignment
can be created between the source and unseen environment.
Such correspondences, once established, can be effective in
addressing generalization of RL-based RAN KPI optimiza-
tion problems specially as environment dynamics changes
[113].

Another example of generative AI is to incorporate gener-
alization abilities on pre-existing models through a hybrid
approach. Such an approach has some similarities with
mixture of expert models, but in such cases, the existing
models may be specific in nature and introduce the neces-
sary inductive bias into the inference process. The attention
mechanisms, on the other hand, possess minimal inductive
bias but can exceed the performance of traditional supervised
neural nets when trained on large data sets. So if the outputs
from both the existing model and the attention mechanism
can be fed into an feed-forward network (decoder), then the
algorithms would generalize better to new contexts as well
as be able to reuse the inductive bias from existing mod-
els. Such a hybrid mechanism [114] may also benefit from
a Gated-Positional Self-Attention mechanism which helps it
to decide when to leverage the inductive bias. In the context
of telecom applications, the industry possesses a plethora
of pre-existing models which have been trained on moder-
ate data volume but contains the relevant domain knowledge
in the form of predictive inferences for specific problems.
Today, with large volumes of data available in cloud storage,
it is possible and also important to adapt such algorithms
to a wider variety of situations without losing the necessary
context or the inductive bias. Also, for use cases like KPI
optimization or predictions in the core, Layer 2 (L2) or L3
layers (defined in [115]), available models can be combined
with attentionmechanisms that can ingest evennewer sources
of data and, in conjunction, can provide more generalized
solutions.

5.4 Digital twinning

In this section, we focus on the potential of applying gener-
ative AI within Digital Twin for Protocol and Connectivity
(DT-PC).

One benefit of such application would be to simplify
high-complexity optimization problems, such as modeling
the interplay between Operation, Administration, and Main-

tenance (OAM) and RAN. In this case, validation of new
OAMfunctionalities would require “realistic” and “relevant”
abstraction of RAN functionalities via generative AI based
on DTing of such functions. Realistic abstraction means that
the accuracy of the DTPC (constructed by generative AI)
is high and close to the performance of the actual product
(e.g., RAN) functions. Relevant abstraction means that the
RAN-DT-PC that interfaces with OAM represents a relevant
function of RAN to the targeted evaluation and/or validation
of OAM.

The above proposal could be realized by dividing themain
representation of RAN into simple-blocks representation
using generative AI to realize higher accuracy of the gen-
erative AI sub-blocks of RAN-DT-PC. Such simple-blocks
representation of the system could be, for instance, the sys-
tem’s traffic model, arrival and departure of UEs, radio small
or large scale channels, or deployment models.

In this context, another application is enabling an interac-
tive dataset, where the data can be a dynamic organism. Such
an application could be used to realize offline RL, where the
vector of “state, action, reward, and next-state” could be gen-
erated via the generative AI model [116]. This data could
then be used to train the model offline devoid of challenges
for online exploration.

DTs created by generative AI techniques also enable safe
exploration for control-based algorithms. A huge variety of
use cases in the radio domainwhich includesL2 andL3 appli-
cations, Core and Orchestration functions could benefit from
autonomous control. This is especially true in intent-based
Future Networks like 6G, where many actions, either in soft-
ware or hardware, may need continuous tuning. However,
RL-based control needs exploration in real networks to learn
optimal actions. This is a challenge, and service providers
are understandably wary given that this may lead to a neg-
ative customer experience. Given this constraint, which is
typical of Telecom environments, a DT could enable close-
to-optimal training of the policywhereby the policy is trained
in the DT and quickly fine-tuned through Domain Adap-
tation/Sim2Real techniques once deployed to production.
Additionally, it is seen in [117] that offline RL may be ben-
efited from using generative models, which approximate a
policy using fixed data, and Action-conditioned Q-Learning
(AQL). The proposed method employs a residual genera-
tive model to reduce policy approximation error for offline
RL.

Another advantage of such a DT would be prediction-
based systems. Often in networks, the model of the system is
too complex, and hence, it requires a large amount of data to
train a prediction model. Hence, even in supervised settings,
it is a challenge to get enough of labeled data for all states of
the network. A DT could either simulate the environment in
totality or could generate a realistic distribution of data across
all states of the network. Such a distribution could enable

123

28 Annals of Telecommunications (2024) 79:15–33



supervised algorithms to play a bigger role in optimization
problems.

6 Conclusion

5G and 6G mobile networks are expected to heavily rely on
AI- and ML-trained models for their operation. However,
there still exist challenges when widely deploying ML
models. In summary, such challenges include training data
observability, efficient and cost-effective data transfer to edge
nodes, and safe learning in network environments are key
challenges in implementing closed-loop AI-native functions
in future networks, which the generative AI techniques may
be able to address.

The paper categorizes generative AI algorithms between
tractable and intractable. Several evaluation approaches for
performance measurement of generative AI algorithms are
highlighted.

The paper also presents a taxonomy to illustrate evidence
in the existing literature around generative AI techniques
across all domains of the network. Generative AI techniques
have been explored across RAN L1 to L3 functions, Core
network, Network Management and Exposure and Appli-
cation layers in order to create effective representations,
generate configurations, and data distributions by learning
complex structures and interactions between entities, create
synthetic data for effective classification or clustering in light
of data sparsity, provide dimensionality reduction for effec-
tive search in high-dimensional space, for anomaly detection
and similarity search, and also extracting use cases, actors,
and their relationships from a specification document in nat-
ural language.

The paper also reviews current and presents potential
future mobile network applications from a generative AI
lens. Such applications include XR, Robotic Surgeries,
Remote Diagnostics, and Vehicle Teleoperation by optimiz-
ing network datastreams and generative AI-based semantic
communications.

We also highlight beyond communication functions, and
in particular how digital twins can be created to provide an
effective representation of the real networks using generative
AI. Such a digital Twin could facilitate ML model training,
data collection, and safe execution.

Finally, we provide some future directions and highlight
how model generalization, continuous learning, and reuse of
existing ML assets could be a possibility with new state-of-
the-art approaches in generative AI.
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