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Abstract
The internet of things (IoT) faces tremendous security challenges. Machine learning models can be used to tackle the growing 
number of cyber-attack variations targeting IoT systems, but the increasing threat posed by adversarial attacks restates the 
need for reliable defense strategies. This work describes the types of constraints required for a realistic adversarial cyber-
attack example and proposes a methodology for a trustworthy adversarial robustness analysis with a realistic adversarial 
evasion attack vector. The proposed methodology was used to evaluate three supervised algorithms, random forest (RF), 
extreme gradient boosting (XGB), and light gradient boosting machine (LGBM), and one unsupervised algorithm, isolation 
forest (IFOR). Constrained adversarial examples were generated with the adaptative perturbation pattern method (A2PM), 
and evasion attacks were performed against models created with regular and adversarial training. Even though RF was the 
least affected in binary classification, XGB consistently achieved the highest accuracy in multi-class classification. The 
obtained results evidence the inherent susceptibility of tree-based algorithms and ensembles to adversarial evasion attacks 
and demonstrate the benefits of adversarial training and a security-by-design approach for a more robust IoT network intru-
sion detection and cyber-attack classification.

Keywords Adversarial attacks · Adversarial robustness · Machine learning · Tabular data · Internet of things · Intrusion 
detection

1 Introduction

The internet of things (IoT) is accelerating the digital trans-
formation. It represents decentralized and heterogeneous 
systems of interconnected devices, which combine wireless 
sensor networks, real-time computing, and actuation tech-
nologies [1]. Due to the integration of physical and busi-
ness processes, as well as control and information systems, 
IoT is bridging the gap between operational technology and 
information technology [2]. However, the convergence of 

previously isolated systems and technologies faces tremen-
dous security challenges because of the software vulnerabili-
ties and weak security measures of IoT devices [3]. A self-
propagating malware can compromise numerous devices and 
establish a botnet to launch a wide range of cyber-attacks 
[4], which is particularly concerning for IoT systems that 
control critical infrastructure like healthcare facilities [5], 
energy markets [6], and water supply networks [7].

Machine learning (ML) can be very valuable to tackle 
the growing number and increasing sophistication of cyber-
attacks targeting IoT systems, but it is susceptible to adver-
sarial examples: cyber-attack variations specifically crafted 
to exploit ML [8]. For instance, tree-based algorithms and 
ensembles are remarkably well-established for network 
intrusion detection [9, 10]. However, even though the mali-
cious purpose of a cyber-attack causes it to have distinct 
characteristics that could be recognized in a thorough anal-
ysis by experienced security practitioners, an attacker can 
create perturbations in IoT network traffic to deceive these 
algorithms and be misclassified as benign. The increasing 
threat posed by adversarial attacks restates the need for 
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better defense strategies for intelligent IoT network intru-
sion detection systems [11, 12].

To ensure that ML is used in a secure way, organiza-
tions should proactively search for vulnerabilities in their 
intelligent systems. By simulating realistic attack vectors, 
ML engineers and security practitioners can anticipate 
possible threats and use that knowledge to improve their 
countermeasures [13]. But throughout the current scientific 
literature, various studies apply adversarial evasion attacks 
to intrusion detection and provide the examples as direct 
input to an ML model without questioning if they are viable 
for a real deployment scenario [14], which may result in 
misleading robustness evaluations where a model seems to 
be robust because it was tested against examples that it will 
not encounter in real IoT network traffic [15].

This work addresses the challenge of improving the 
robustness of tree-based algorithms and ensembles for IoT 
network intrusion detection. The main contributions are 
(i) a description of the types of constraints required for an 
adversarial cyber-attack example to be realistic, (ii) a meth-
odology for a trustworthy robustness analysis with a real-
istic adversarial evasion attack vector, and (iii) an analysis 
of several tree-based algorithms and ensembles in binary 
and multi-class classification scenarios, following the pro-
posed methodology. The initial evaluation carried out in [16] 
was extended to include adversarial attacks performed with 
the adaptative perturbation pattern method (A2PM). Three 
supervised algorithms, random forest (RF), extreme gradi-
ent boosting (XGB), and light gradient boosting machine 
(LGBM), and one unsupervised algorithm, isolation for-
est (IFOR), were evaluated using the IoT-23 and Bot-IoT 
datasets. In addition to regular training, the effectiveness of 
performing adversarial training with realistically perturbed 
samples was also analyzed.

The present paper is organized into multiple sections. 
Section 2 provides a survey of previous work on ML robust-
ness for IoT network intrusion detection. Section 3 describes 
the constraints required to achieve adversarial realism and 
defines a methodology for a trustworthy robustness analysis. 
Section 4 describes the experimental evaluation performed 
following the proposed methodology, including the sce-
narios, datasets, adversarial method, models, and evalua-
tion metrics. Section 4.4 presents a comparative analysis 
of the results obtained by each ML model in each scenario. 
Finally, Sect. 5 addresses the main conclusions and future 
research topics.

2  Related work

In recent years, the susceptibility of tree-based algorithms 
to adversarial examples has been drawing attention for net-
work intrusion detection [17, 18]. To better protect these 

ML models from adversarial attacks, several defense strat-
egies have been developed. Some attempt to improve the 
intrinsic robustness of entire tree ensembles at once [19, 20], 
whereas other address each individual decision tree at a time 
[21, 22]. Nonetheless, the most effective and widespread 
defense is adversarial training because it anticipates the data 
variations that an ML model may encounter [23]. Augment-
ing a training set with examples created by an adversarial 
evasion attack method enables a model to learn additional 
characteristics that the samples of each class can exhibit, so 
it becomes harder for an attacker to deceive it [24].

However, performing adversarial training with unrealistic 
examples will make a model learn distorted characteristics 
that will not be exhibited by real samples during its inference 
phase [25]. This raises a major security concern because 
training with unrealistic data may not only deteriorate a 
model’s robustness against adversarial data, because it will 
not learn the subtle nuances that an attacker can exploit, but 
it may also be significantly detrimental to a model’s gener-
alization to regular data, leading to accidental data poison-
ing and to the introduction of hidden backdoors that make a 
model even more vulnerable to attacks [26].

Since the focus of adversarial ML has been the computer 
vision domain, the common attack vector is to freely exploit 
the internal gradients of artificial neural networks to gen-
erate random data perturbations in the pixels of an image 
[27], which can lead to unrealistic adversarial examples in 
tabular data. Consequently, most state-of-the-art evasion 
attack methods do not support other settings nor models that 
do not have loss gradients [28], which severely limits their 
applicability to the IoT network intrusion detection domain. 
To adversarially train a model and improve its robustness 
with realistic cyber-attack examples, a defender will need 
to resort to methods that support the specificities of a com-
munication network.

Even though most methods were intended to attack 
images, a few could be adapted to tabular data. Both the 
Jacobian-based Saliency Map Attack (JSMA) [29] and the 
OnePixel attack [30] were developed to minimize the num-
ber of modified pixels, which could be used to solely perturb 
a few features in a network traffic flow. Nonetheless, the per-
turbations are still randomly generated, so the resulting val-
ues for those few features are commonly incompatible with 
the remaining features of a flow [31]. On the other hand, 
A2PM [32] was specifically developed for communication 
networks, assigning an independent sequence of adaptative 
patterns to analyze the characteristics of each class and cre-
ate realistic data perturbations that preserve the purpose of 
a cyber-attack. Due to its suitability for IoT network traffic, 
it was selected for this work.

To determine the most adequate ML models for IoT net-
work intrusion detection, it is important to understand the 
results and conclusions of previous performance evaluations. 
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A comprehensive survey [33] analyzed studies published 
until 2018, highlighting the advantages and limitations of 
each model. Tree-based algorithms and ensembles obtained 
good results in the reviewed performance evaluations, 
although their robustness was not addressed. In more recent 
studies, the best performances were achieved by RF in a 
testbed replicating an industrial plant [34], XGB with the 
CIDDS-001, UNSW-NB15 and NSL-KDD datasets [35], 
LGBM with an industrial dataset [36], and IFOR in an IoT 
testbed for zero-day attacks [37]. Due to their promising 
results, RF, XGB, LGBM, and IFOR were selected for this 
work.

To the best of our knowledge, no previous work has ana-
lyzed the adversarial robustness of these four algorithms 
against realistic adversarial examples of cyber-attacks tar-
geting IoT systems nor the effectiveness of an adversarial 
training approach with realistically perturbed samples.

3  Adversarial realism

This section describes the types of constraints required for 
an adversarial cyber-attack example to achieve realism and 
defines a methodology for a trustworthy adversarial robust-
ness analysis with a realistic evasion attack vector.

3.1  Data constraints

In the IoT network intrusion detection domain, cyber-attacks 
can be identified by analyzing the characteristics of network 
traffic flows, which are represented in a tabular data format. 
The features of a flow may be required to follow specific data 
distributions, according to the specificities of a communica-
tion network and the utilized protocols. Furthermore, due to 
their distinct malicious purposes, different cyber-attacks may 
exhibit entirely different feature correlations. Since a data 
sample must represent a real traffic flow, either benign activ-
ity or a cyber-attack class, it must fulfill all the constraints 
of this complex tabular data domain.

To generate adversarial cyber-attack examples that could 
evade detection in a real IoT system, the constraints must 
be carefully analyzed. For instance, a key characteristic of 
an IoT network traffic flow is the inter-arrival time (IAT), 
which represents the elapsed time between the arrival of two 
subsequent packets. Its minimum (MinIAT) and maximum 
(MaxIAT) values are valuable features for the detection of 
several cyber-attack classes, such as denial-of-service (DoS). 
A low MinIAT can indicate a short DoS that quickly over-
loads a server with requests, whereas a high MaxIAT can 
indicate a lengthy DoS that overwhelms a server by keeping 
long connections open [38].

When perturbing these features, validity is essential 
because a successful adversarial attack is not necessarily a 

successful cyber-attack. If MinIAT was increased to a value 
higher than MaxIAT, a flow could become an adversarial 
example that a model would misclassify as benign. However, 
that would be an invalid network flow that a model would 
never encounter in a real deployment scenario because it 
could not be transmitted through a communication network. 
Therefore, to preserve validity within the network traffic 
structure, a domain constraint must be enforced: MinIAT 
must not be higher than MaxIAT. These types of constraints, 
including value ranges and multiple category membership, 
have started being investigated in [31] to improve the feasi-
bility of adversarial attacks for intrusion detection.

Nonetheless, validity is not enough for an adversarial 
attack to be a successful cyber-attack. It is imperative to 
also address class coherence. Even if the previous domain 
constraint was fulfilled when increasing MinIAT, the result-
ing flow could still not be coherent with the intended pur-
pose of a cyber-attack class. Valid adversarial examples 
with increased MinIATs could be misclassified as benign, 
but not be quick enough to overload a server in a real sce-
nario. Consequently, those supposed adversarial examples 
would not actually belong to the short DoS class. Instead, 
they would represent just regular traffic that would not be 
useful for a cyber-attack, so an ML model would be correct 
to label them as benign. Therefore, to preserve coherence, 
it is necessary to also enforce a class-specific constraint: 
MinIAT must not be higher than the highest known value 
of that feature for the short DoS class. These types of con-
straints are based on the idea initially introduced in [32], 
where data perturbations were created according to feature 
correlations.

Even though validity and coherence have previously been 
investigated, sometimes with different designations, it is per-
tinent to address them together in a single unifying concept: 
adversarial realism. Hence, for an adversarial example to 
be realistic, it must be valid within its domain structure and 
coherent with the characteristics and purposes of its class, 
by simultaneously fulfilling all domain and class-specific 
constraints. Regarding cyber-attacks targeting IoT systems, 
realistic adversarial examples must be valid traffic capable of 
being transmitted through a communication network, as well 
as coherent cyber-attacks capable of fulfilling their intended 
malicious purpose.

3.2  Analysis methodology

To perform a trustworthy adversarial robustness analysis of 
multiple ML models, it is imperative to carry out realistic 
evasion attack vectors that use valid and coherent examples. 
The proposed methodology is meant to enable a security-
by-design approach during the development of an intelli-
gent system and to be regularly replicated with new data 
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recordings to ensure that the models continue to be adver-
sarially robust.

Considering that network intrusion detection systems are 
developed in a secure environment and deployed with secu-
rity measures to encapsulate the utilized models, an attacker 
will not likely have access neither to a model’s training set 
nor to its internal parameters. Therefore, in addition to ful-
filling all domain and class-specific constraints, an adversar-
ial attack method will have to rely solely on a model’s class 
predictions in a black-box or gray-box setting, depending on 
the available system information about the model and feature 
set [39]. This attack vector can be simulated by solely giving 
an evasion attack method access to a holdout set with IoT 
network traffic that a model has not yet seen. The analysis 
can be performed in four steps:

1. Prepare the data, creating training and holdout sets.
2. Train and validate an ML model, using the training set.
3. Perform an evasion attack to create a model-specific 

adversarial holdout set, using the regular holdout set 
and the model’s class predictions.

4. Evaluate the model’s performance on the regular and 
adversarial holdout sets, analyzing its generalization to 
regular data and its robustness to adversarial data.

In addition to a regularly trained model, an adversarial 
training approach can be included to analyze the trade-off 
of performance on regular data to improve the performance 
on adversarial data. The complete analysis can be performed 
in five steps:

1. Prepare the data, creating training and holdout sets.
2. Create a simple data perturbation in a copy of each sam-

ple of the regular training set, creating an augmented 
adversarial training set with more data variations.

3. Train and validate two ML models, the first using the 
regular training set and the second using the adversarial 
training set.

4. Perform two evasion attacks to create two model-specific 
adversarial holdout sets, using the regular holdout set 
and each model’s class predictions.

5. Evaluate each model’s performance on the regular and 
adversarial holdout sets, comparing their generaliza-
tion to regular data and their robustness to adversarial 
data.

From the comparison performed in the last step, the 
model with the most adversarially robust generalization 
can be selected for deployment. Posteriorly, if new data 
is recorded, this methodology can be replicated to antici-
pate possible threats and use that knowledge to improve the 
defense strategy (see Fig. 1).

4  Experimental evaluation

This section describes the experimental evaluation per-
formed following the proposed methodology, including the 
considered scenarios and datasets, and the utilized adver-
sarial method, ML models, and performance evaluation 
metrics. The analysis was carried out on a machine with 
16 gigabytes of random-access memory, an 8-core central 
processing unit, and a 6-gigabyte graphics processing unit. 
The implementation relied on the Python 3 programming 
language and the following libraries: numpy and pandas 
for data preparation and manipulation, scikit-learn for 
the implementation of RF and IFOR, xgboost for XGB, 
and lightgbm for LGBM. The previously developed a2pm 
library was used to perform a constrained adversarial 
example generation.

4.1  Scenarios and datasets

Two distinct scenarios were considered for IoT net-
work intrusion detection: binary and multi-class 
classification. In the former, the aim of a model was 
to detect that a network traffic f low was malicious, 
whereas in the latter, a model had to correctly identify 
each cyber-attack class and distinguish between them.

Both scenarios included the IoT-23 [40] and Bot-IoT 
[41] datasets. These are public datasets that contain multi-
ple labeled captures of benign and malicious network flows 
within IoT systems. The recorded data is extremely valu-
able because it manifests real IoT network traffic patterns 
and includes various classes of common cyber-attacks. 
The former was created in the Stratosphere Research 
Laboratory and contains twenty-three labeled captures of 
malware attacks targeting real IoT devices between 2018 
and 2019. Despite the latter also incorporating simulated 
devices and services, it resulted from a realistic testbed of 
botnet activity developed at the University of New South 
Wales. Table 1 provides an overview of the main char-
acteristics of the datasets. The class labels were either 
benign or the name of a cyber-attack class, such as Dis-
tributed DoS (DDoS) and Command and Control (C&C).

A preprocessing stage was applied to both datasets, 
considering their distinct characteristics. First, the fea-
tures that did not provide valuable information about a 
flow’s benign or malicious purpose, such as origin and 
destination addresses, were discarded. Then, one-hot 
encoding was employed to convert the categorical fea-
tures to numeric values. Due to their high cardinality, 
low-frequency categories were aggregated into a single 
category to avoid encoding qualitative values that had 
a small relevance. Finally, the data was randomly split 
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into training and holdout sets with 70% and 30% of the 
samples, respectively. To preserve the imbalanced class 
proportions, the split was performed with stratification. 
The resulting IoT-23 sets were comprised of four classes 
and 42 features, 8 numerical and 34 categorical. Similarly, 
the Bot-IoT sets contained four classes and 35 features, 15 
numerical and 20 categorical.

4.2  Adversarial method

The realistic data perturbations required for a trustworthy anal-
ysis were created with A2PM [32]. It relies on sequences of 
adaptative patterns that learn the characteristics of each class. 
The patterns record the value intervals of individual features 
and value combinations of multiple features of tabular data. 
The learnt characteristics are then used to generate constrained 
adversarial examples that are coherent with the characteristics 
of their class and simultaneously remain valid within a domain.

Considering that the benign class represents regular 
IoT network traffic that is not part of an attack, A2PM 
was applied solely to samples of cyber-attack classes. The 
method was configured to use independent patterns for 
specific feature subsets, accounting for the constraints of 
numerical features and the correlation between encoded cat-
egorical features like the destination port, the communica-
tion protocol, and the connection flags. Then, two different 
functionalities were used to perform a simple perturbation 
and a full evasion attack. These exhibit distinct behaviors 
and were adapted to different data to prevent any bias in the 
evaluation of the adversarially trained model.

Fig. 1  Adversarial robustness 
analysis methodology

Table 1  Main characteristics of utilized datasets

Dataset Selected cap-
tures

Total samples Class samples Class label

IoT-23 1–1
34–1

1,031,893 539,587 POAHPS
471,198 Benign
14,394 DDoS
6714 C&C

Bot-IoT Full5pc-4 668,522 576,884 DDoS
91,082 Recon
477 Benign
79 Theft
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Simple adversarial perturbation The method was adapted 
solely to the characteristics of the regular training set, and 
then a single perturbation was created in a copy of each 
malicious sample of that set. This resulted in an adversarial 
training set with twice as many malicious samples as the 
regular set, so a model could learn not only from a recorded 
cyber-attack, but also from a simple variation of it.

A security practitioner could perform these simple pertur-
bations manually by analyzing the entire dataset and adding 
modified samples according to the characteristics of each 
cyber-attack class. Nonetheless, the automated process of 
A2PM was preferred. When compared to the training time of 
an ML model, the few additional seconds required to create 
the simple sample variations were negligible.

Realistic adversarial evasion attack The method was adapted 
solely to the characteristics of the regular holdout set, and 
then a full evasion attack was performed, creating as many 
data perturbations as necessary in a copy of each malicious 
sample of that set until every flow was misclassified or a 
maximum of 30 misclassification attempts were performed. 
This resulted in an adversarial holdout set with the same 
size as the regular set, but where each malicious sample was 
replaced with an adversarial example.

In the multi-class scenario, the performed adversarial 
evasion attacks could be untargeted, causing any misclas-
sification of malicious samples to different classes, as well 
as targeted, seeking to misclassify malicious samples as the 
benign class. In turn, in the binary scenario, both types of 
evasion attacks were equivalent because all cyber-attacks 
were aggregated into a single class.

4.3  Models and fine‑tuning

The RF, XGB, LGBM, and IFOR algorithms were used to 
create distinct models for each dataset and scenario, which 
were fine-tuned through a grid search of well-established 
hyperparameter combinations for cyber-attack classification. 
To determine the optimal configuration for each model, a 
fivefold cross-validation was performed. Therefore, in each 
iteration, a model was trained with 4/5 of a training set 
and validated with the remaining 1/5. The macro-averaged 
F1-score was selected as the validation metric to be maxi-
mized in both regular and adversarial training, which will 
be detailed in the next subsection. After being fine-tuned, 
each model was retrained with a complete training set and 
evaluated using the corresponding holdout set.
Random forest RF [42] is a supervised ensemble of decision 
trees, which are decision support tools that use a tree-like 
structure. Each individual tree performs a prediction accord-
ing to a specific feature subset, and the most voted class is 
chosen. It is based on the wisdom of the crowd—the concept 

that the collective decisions of multiple classifiers will be 
better than the decisions of just one.

The default Gini impurity criterion was used to measure 
the quality of the possible node splits, and the maximum 
number of features selected to build a tree was the square 
root of the total number of features of each dataset. The opti-
mized value for the maximum depth of a tree was 16, and 
the minimum number of samples required to create a leaf 
node was 2 and 4 for the binary and multi-class scenarios, 
respectively. Table 2 summarizes the configuration.

Extreme gradient boosting XGB [43] performs gradient 
boosting using a supervised ensemble of decision trees. A 
level-wise growth strategy is employed to split nodes level 
by level, seeking to minimize a loss function during the 
training of the ensemble.

The acknowledged cross-entropy loss was used for both 
binary and multi-class scenarios, and the histogram method 
was selected because it computes fast histogram-based 
approximations to choose the best splits. The key param-
eter of this model is the learning rate, which controls how 
quickly the model adapts its weights to the training data. It 
was optimized to relatively small values for each training set 
and scenario, ranging from 0.01 to 0.2. Table 3 summarizes 
the configuration.

Light gradient boosting machine LGBM [44] also utilizes 
a supervised ensemble of decision trees to perform gradient 
boosting. Unlike XGB, a leaf-wise strategy is employed, fol-
lowing a best-first approach. Hence, the leaf with the maxi-
mum loss reduction is directly split in any level.

Table 2  Summary of RF configuration

Parameter Value

Criterion Gini impurity
No. of estimators 100
Max. depth of a tree 16
Max. features

√

No. of features

Min. samples in a leaf 2 to 4

Table 3  Summary of XGB configuration

Parameter Value

Method Histogram
Loss function (objective) Cross-entropy
No. of estimators 80 to 120
Learning rate 0.01 to 0.2
Max. depth of a tree 8
Min. loss reduction (gamma) 0.01
Feature subsample 0.7 to 0.8
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The key advantage of this model is its ability to use gra-
dient-based one-side sampling (GOSS) to build the deci-
sion trees, which is computationally lighter than previous 
methods and therefore provides a faster training process. The 
cross-entropy loss was also used, and the minimum samples 
required to create a leaf were optimized to 16. To avoid fast 
convergences to suboptimal solutions, the learning rate was 
also kept at small values for the distinct datasets and sce-
narios. Table 4 summarizes the configuration.

Isolation forest IFOR [45] isolates anomalies through an 
unsupervised ensemble of decision trees. The samples are 
repeatedly split by random values of random features until 
outliers are segregated from normal observations. Unlike the 
previous algorithms, IFOR can only perform anomaly detec-
tion with unlabeled data. Nonetheless, it can be compared 
to the remaining models in the binary scenario, so cross-
validation was also utilized to optimize its configuration.

This model relies on the contamination ratio of a train-
ing set, which must not exceed 50%. Hence, the number of 
samples intended to be anomalies must be lower than the 
number of remaining samples; otherwise, outliers cannot be 
detected. To reduce the contamination of the training data, 
each cyber-attack class was randomly subsampled with 
stratification. The optimized ratios of the total proportion of 
malicious samples were 0.4 and 0.5 for IoT-23 and Bot-IoT, 
respectively. Therefore, the training data contained 40% and 
50% of anomalies. Table 5 summarizes the configuration.

4.4  Evaluation metrics

To analyze a model’s robustness, its performance on the 
regular holdout set was compared to its performance on its 
respective adversarial holdout set. The considered evalua-
tion metrics and their interpretation are briefly described 
below [46, 47].

Accuracy is a standard metric for classification tasks that 
measures the proportion of correctly classified samples. It 
uses the true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN) reported by the confu-
sion matrix. However, its bias towards the majority classes 
must not be disregarded when the minority classes are par-
ticularly relevant, which is the case of cyber-attack classifi-
cation. Since A2PM generated adversarial examples solely 
for malicious samples, even if all examples evaded detection, 
an accuracy as high as the proportion of benign flows could 
still be achieved. Therefore, to correctly exhibit the misclas-
sifications caused by the performed attacks, the accuracy 
score was calculated using the samples of all classes except 
the benign class. It can be expressed as:

Despite the reliability of accuracy, there are other suitable 
metrics. For instance, precision measures the proportion of 
predicted attacks that were actual attacks, which indicates 
the relevance of a model’s predictions. On the other hand, 
recall, which corresponds to TPR, measures the proportion 
of actual attacks that were correctly predicted, reflecting a 
model’s ability to identify malicious flows. Another valu-
able metric is the false positive rate because it measures the 
proportion of benign flows that were incorrectly predicted 
to be attacked, leading to false alarms.

These metrics are indirectly consolidated in the F1-score, 
which calculates the harmonic mean of precision and recall. 
A high F1-score indicates that malicious flows are being 
correctly identified and there are low false alarms. It can 
be macro-averaged to give all classes the same relevance, 
which is well-suited for imbalanced training data. Due to 
the consolidation of multiple metrics, the macro-averaged 
F1-score was the preferred metric for the model fine-tuning. 
It is mathematically defined as:

where Pi and Ri are the precision and recall of class i , and C 
is the number of classes.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Macro-averaged F1-Score =
1

C
∗

C
∑

i=1

2 ∗ Pi ∗ Ri

Pi + Ri

Table 4  Summary of LGBM configuration

Parameter Value

Method GOSS
Loss function (objective) Cross-entropy
No. of estimators 80 to 120
Learning rate 0.01 to 0.2
Max. depth of a tree 16
Max. leaves in a tree 32
Min. loss reduction (gamma) 0.01
Min. samples in a leaf 16
Feature subsample 0.7 to 0.8

Table 5  Summary of IFOR 
configuration

Parameter Value

No. of estimators 100
Contamination 0.4 to 0.5
Max. features 0.9
Max. samples 256
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5  Results and discussion

This section presents the results obtained by the four tree-
based algorithms in the binary and multi-class scenarios, as 
well as a comparative analysis of their robustness against 
adversarial network flow examples, with regular and adver-
sarial training approaches.

5.1  Binary classification

In the binary scenario, the models created with regular train-
ing exhibited reasonable performance declines on the IoT-
23 dataset. Even though all four models achieved over 99% 
accuracy on the original holdout set, numerous misclassifi-
cations were caused by the adversarial attacks. The lowest 
score on an adversarial set, 68.35%, was obtained by XGB. 

In contrast, the models created with adversarial training kept 
significantly higher scores. By training with one realistically 
generated example per malicious flow, all models success-
fully learnt to detect most cyber-attack variations. IFOR 
stood out for preserving the 99.98% accuracy it obtained on 
the original holdout set throughout the entire attack, which 
highlighted its excellent generalization (see Fig. 2).

Regarding the Bot-IoT dataset, the declines were signifi-
cantly higher. The inability of these tree-based algorithms 
to distinguish between the different classes evidenced their 
high susceptibility to adversarial examples. The score of 
LGBM dropped to 26.04%, followed by IFOR, with 34.31%. 
Regarding the latter, it could not reach 85% in the original 
holdout set, possibly due to the occurrence of overfitting. 
Despite some examples still deceiving them, the models cre-
ated with adversarial training were able to learn the subtle 
nuances between each cyber-attack class, which mitigated 

Fig. 2  Accuracy on IoT-23 
binary classification

Fig. 3  Accuracy on Bot-IoT 
binary classification
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the impact of the generated examples. Apart from IFOR, the 
remaining models consistently achieved scores over 97%, 
which indicated a good robustness (see Fig. 3).

5.2  Multi‑class classification

In the multi-class scenario, the targeted and untargeted 
attacks had different impacts on a model’s performance. 
The former caused malicious flows to be solely predicted 
as the benign class, whereas the latter caused malicious 
flows to be predicted as different classes, including other 
cyber-attack classes. Both attacks decreased the accuracy 
of the three supervised models on IoT-23, with LGBM 

being significantly more affected. Nonetheless, it can be 
observed that its targeted accuracy, 57.78%, was signifi-
cantly higher than the untargeted, 32.11%, with more mis-
classifications occurring between different cyber-attack 
classes. Therefore, despite LGBM being susceptible, the 
benign class was more difficult to reach in multi-class 
intrusion detection. Even though performing adversarial 
training further increased the high scores of XGB, it was 
surpassed by RF on the targeted attack, which achieved 
99.97% (see Figs. 4 and 5).

As in the previous scenario, higher declines were exhib-
ited for the Bot-IoT dataset. The untargeted attacks per-
formed by A2PM dropped the accuracy of RF and XGB to 

Fig. 4  Untargeted accuracy on 
IoT-23 multi-class classification

Fig. 5  Targeted accuracy on 
IoT-23 multi-class classification
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nearly 65%, although the targeted attacks only decreased it to 
87.50% and 97.14%. Adversarial training contributed to the 
creation of more robust models, leading to fewer incorrect 
class predictions. Regarding RF, it could even preserve the 
99.98% score it obtained on the holdout set throughout the 
entire attack. Even though some malicious flows still evaded 
detection, the robustness of both XGB and LGBM was also 
successfully improved. Overall, the adversarial robustness 
of the analyzed tree-based algorithms was significantly 
improved by augmenting their training data with a simple 
variation of each cyber-attack (see Figs. 6 and 7).

6  Conclusions

This work addressed the use of ML for IoT network intru-
sion detection from an adversarial robustness perspective. The 
types of constraints required for an adversarial cyber-attack 
example to be valid and coherent were described, and a meth-
odology was proposed for a trustworthy adversarial robust-
ness analysis. The methodology was followed to analyze the 
robustness of four algorithms, RF, XGB, LGBM, and IFOR, 
using the IoT-23 and Bot-IoT datasets. Targeted and untar-
geted adversarial evasion attacks were performed with A2PM, 

Fig. 6  Untargeted accuracy on 
Bot-IoT multi-class classifica-
tion

Fig. 7  Targeted accuracy on 
Bot-IoT multi-class classifica-
tion
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and both regular and adversarial training approaches were 
evaluated in binary and multi-class classification scenarios.

The models created with regular training exhibited signif-
icant performance declines, which were more prominent on 
the Bot-IoT dataset. Even though RF was the least affected in 
the binary scenario, XGB consistently achieved the highest 
accuracy on multi-class classification. Furthermore, when 
adversarial training was performed, all four models suc-
cessfully learnt to detect most cyber-attack variations and 
kept significantly higher scores when attacked. The adver-
sarially trained IFOR and RF stood out for preserving the 
highest accuracy throughout entire attacks, on binary IoT-
23 and multi-class Bot-IoT, respectively. Regarding LGBM, 
the obtained results suggest that it is highly susceptible to 
adversarial examples, especially on imbalanced multi-class 
classification. Nonetheless, this vulnerability can be suc-
cessfully tackled by augmenting its training data with one 
realistic adversarial example per malicious flow.

The performed analysis evidenced the inherent suscepti-
bility of tree-based algorithms to adversarial examples and 
demonstrated that they can benefit from defense strategies 
like adversarial training to create more robust models. In 
the future, it is pertinent to further contribute to robust-
ness research by replicating this methodical analysis with 
novel datasets, ML models, and evasion attack methods. As 
the threat of adversarial attacks increases, defense strate-
gies must be improved and a security-by-design approach 
must be followed to ensure that ML models can provide 
a reliable and robust IoT network intrusion detection and 
cyber-attack classification.
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