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Abstract
In this paper, we revisit proportional fair channel allocation in IEEE 802.11 networks. Traditional approaches are either based
on the explicit solution of the optimization problem or use iterative solvers to converge to the optimum. Instead, we propose
an algorithm able to learn the optimal slot transmission probability only by monitoring the throughput of the network. We
have evaluated this algorithm both (i) using the true value of the function to optimize and (ii) considering estimation errors.
We provide a comprehensive performance evaluation that includes assessing the sensitivity of the algorithm to different
learning and network parameters as well as its reaction to network dynamics. We also evaluate the effect of noisy estimates
on the convergence rate and propose a method to alleviate them. We believe our approach is a practical solution to improve
the performance of wireless networks as it does not require knowing the network parameters in advance. Yet, we conclude
that the setting of the parameters of the algorithm is crucial to guarantee fast convergence .
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σ Time slot duration
m Maximum back-off stage
n Number of stations
τ Slot transmission probability
D Average packet size
S Individual throughput
Psucc Probability of a successful packet

transmission
Pidle Probability that the channel is idle
Tc Duration of a busy time slot
Tfra Duration of data transmission

This article is an extension of paper G. Famitafreshi, C. Cano
Achieving Proportional Fairness in WiFi Networks via Bandit
Convex Optimization. International Conference on Machine
Learning for Networking, 2019.

� Golshan Famitafreshi
gfamitafreshi@uoc.edu

Cristina Cano
ccanobs@uoc.edu

1 IN3 - Universitat Oberta de Catalunya, Av. del Canal Olimpic
s/n, 08860 Castelldefels, Barcelona, Spain

Tack Duration of the acknowledgment
transmission

x Transformed variable x = τ
(1−τ)

Z̃ Log-transformed rate region
K A convex subset of a d-dimensional

Euclidean Space
T Number of iterations
y Auxiliary point
η Gradient descent step size
g̃ Gradient estimate
ε A random number
δ Length of the exploration interval
f Cost function
c A positive integer
Δ Gradient descent timer
Tplcp PLCP preamble and header duration
Tsym Symbol duration
Ls PLCP service field
Ldel MAC delimiter field
Lmac-h MAC header
Lt Tail bits
Lack ACK length
nsym Number of symbols
nagg Number of aggregated packets
h Some increasing function
ω Exploration parameter
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t1 Contention window timer 1
t2 Contention window timer 2
α Exponential moving average coefficient
WiFi Wireless Fidelity
BCO Bandit Convex Optimization
OCO Online Convex Optimization
MMSE Minimum Mean Squared Error
WLAN Wireless Local Area Network
DCF Distributed Coordination Function
CSMA/CA Carrier Sense Multiple Access/Collision

Avoidance
DIFS Distributed Inter-Frame Space
CW Contention Window
ACK Acknowledgment
SIFS Short Inter-Frame Space
KKT Karush-Kuhn-Tucker
OGD Online Gradient Descent
OGD-SEMP Sequential Multi-Point Gradient Estimates
LTE Long-Term Evolution
MAC Medium Access Control
PLCP Physical Layer Convergence Protocol
EIFS Extended Inter-Frame Space
MIMO Multiple-Input and Multiple-Output

1 Introduction

Bandit Convex Optimization (BCO) is a type of Online
Convex Optimization (OCO) in which we deal with partial
information. In BCO, decisions are made between a player
and an adversary repeatedly. In each iteration, the player
selects a point from a fixed and known convex set. Then the
adversary chooses a convex cost function. At the end of the
iteration, the only available feedback for the player is the
cost of the function at the selected point. In this framework,
the player does not have any knowledge about the specific
function nor the gradient [1]. The main emphasis of BCO
in the machine learning community has been on rigorous
theoretical performance analysis of algorithms. However,
practical application of BCO algorithms still requires more
attention.

BCO has two important advantages in wireless network
communication. The first advantage is that the player only
needs the cost function feedback of a given action, which
facilitates practical implementation. Second, in BCO, the
adversary is able to choose among a set of convex functions
which can capture network dynamics such as changes in
the number of nodes and channel conditions. We argue that
since many wireless network optimization problems can be
easily formulated as convex problems; BCO is appealing
for the wireless networking community. Some potential
applications of the convex optimization formulation are
pulse shaping filter design, transmit beamforming, network

resource allocation, MMSE precoder design for multi-
access communication, robust beamforming and optimal
linear decentralized estimation.

The main goal of this article is to evaluate the
convergence rate of applying a bandit convex optimization
algorithm to achieve proportional fair resource allocation
in wireless networks. This approach can be implemented
by the access point allowing learning of the optimal
slot transmission probability only by monitoring the cost
function to optimize, i.e., the throughput of the network.
This research can help academia as well as practitioners to
assess whether bandit convex optimization algorithms can
be a practical solution for commercial use. The ultimate goal
is to bring optimal channel allocation in WiFi to practice
by addressing the limitations of traditional approaches
that need to be fed with as well as track changes in
network parameters (such as the packet size and data
rate used by each node). In this article we perform a
comprehensive evaluation of the algorithm, with the aim to
assess its convergence rate. To do so, we have evaluated the
sensitivity of the algorithm to different learning and network
parameters as well as its response to nodes entering/leaving
the network. We also evaluate the algorithm behavior
when applied in practical settings, where estimates instead
of the true value of throughput is fed to the algorithm.
Additionally, we evaluate a solution to alleviate the effects
of these noisy estimates.

This paper is organized as follows. We first describe
the two building blocks needed for understanding the rest
of the article. These are, first, the main background on
proportional fair allocation in WiFi networks, which is
described in Section 2. Second, we describe bandit convex
optimization and the proposed algorithm in Section 3.
The application of the algorithm to the WiFi setting is
then presented in Section 4. After this, we describe the
methodology used to evaluate the algorithm in Section 5.
Then, Section 6 presents the performance results. Section 7
summarizes the related work in the area of WiFi network
proportional fair optimization. Finally, in Section 8 some
final remarks are given.

2 IEEE 802.11 background

In this section, we first describe the random back-off
operation, then summarize proportional fairness throughput
optimization in WiFi networks.

2.1 Random back-off operation

The IEEE 802.11 protocol consists of physical layer and
media access control specifications for WLAN commu-
nications in various frequency bands ranging from 900

282 Ann. Telecommun. (2022) 77:281–295



MHz to 60 GHz. The protocols that define WiFi regula-
tions are based on the standards and amendments versions.
The fundamental mechanism of the 802.11 protocol is
known as the Distributed Coordination Function (DCF). It
employs a Carrier Sense Multiple Access/Collision Avoid-
ance (CSMA/CA) method with binary exponential back-off.
The DCF default access technique is a two-way handshak-
ing scheme called basic access mechanism, which consists
of sending a data packet and waiting for the reception of an
acknowledgment.

In DCF when a station wants to send a packet, it monitors
the channel. If it senses the channel idle for a specific
interval it starts a back-off countdown. This time interval is
known as distributed inter-frame space (DIFS). Otherwise,
if a station senses the channel busy, it continues to monitor
the channel until it is sensed idle for a DIFS. After the
channel is sensed idle for a DIFS, the back-off countdown
timer starts. DCF operates in a discrete-time back-off scale.
The time after each DIFS is slotted and each station is
able to start a transmission only at the beginning of each
slot time. The duration of this time slot (σ ) is specified in
the standard and accounts for the propagation delay. Each
time a station starts the back-off procedure it initializes
CW to CWmin and chooses a random number in (0,CW-1),
where CW is the contention window. The back-off timer is
then computed as CWσ and it decrements as long as the
channel is sensed idle for a time slot. When a transmission
is detected on the channel, this timer freezes. The back-
off timer is reactivated when the channel is sensed idle
for more than DIFS. The CW is doubled after each failed
transmission (either due to channel errors or collisions with
other simultaneous transmissions). The maximum value of
the contention window is equal to 2mCWmin. The value
m is the maximum back-off stage and it is a configurable
parameter. Once a packet is transmitted, the sender waits for
an ACK confirming the correct reception of the packet. If
the station that started the transmission does not receive an
ACK during the ACK timeout period, it understands that a
collision has happened.1 Therefore, the station retransmits
the packet according to the back-off process. The packet
is discarded if it experiences more collisions than the
maximum retry limit.

2.2 Throughput optimization inWiFi networks

Throughput in the 802.11 standard depends on the number
of active stations and the contention window used by each
station. In particular, in multi-rate IEEE 802.11 WLANs,
stations that use the DCF and transmit at lower transmission
rates make use of the channel for longer periods of time to
transmit the same amount of data compared to stations using

1Note that this can also occur due to channel errors.

higher transmission rates. This reduces the throughput of
high-rate stations in the WLAN, since less time is available
for transmission in the shared medium. This effect is known
as performance anomaly. One solution to approach this
problem is proportional fair allocation [2].

As done in [2], we formulate proportional fairness as a
convex optimization problem whose objective is the sum
of logs of throughput of the different stations, which will
intrinsically capture fairness while trying to achieve high
performance even in a multi-rate scenario. We assume
that all the stations (n) are saturated (i.e., stations always
have a packet to send) and generate uplink traffic to the
network. The optimization problem defined in [2], as many
others, considers no doubling of the contention window at
each failed attempt, and assumes nodes use a fixed slot
transmission probability (τ ). Note that τ is then reciprocal
of the CW. Let Si(τ ) be the throughput of node i, then:

Si(τ ) = Psucc,iDi

σPidle + Tc(1 − Pidle)
. (1)

The average packet size of the ith station is defined by
Di in bits. Psucc,i is the probability of a successful packet
transmission of the ith station, i.e., the probability that only
station i transmits a packet, and is given by Psucc,i =
τi

∏n
k=1,k �=i (1 − τk). The term Pidle is the probability that

the channel is idle. When none of the stations attempt to
transmit a packet, the probability is defined as Pidle =∏n

k=1(1 − τk). The term 1 − Pidle is the probability that
the channel is busy due to the successful, unsuccessful
(collisions) or other stations’ packet transmissions and it is
defined by 1 − Pidle = 1 − ∏n

k=1(1 − τk). The time that
the medium remains idle is of duration of an empty timeslot
(σ ) and the duration of a busy timeslot is denoted as Tc.
Therefore, Eq. 1 is the amount of data transmitted at each
successful slot over the average duration of a slot.

The duration of a busy timeslot (Tc) considers the mean
duration of a successful or collided transmission of node
i or other stations’ packet transmissions. A successful
transmission includes a DIFS, the data transmission (of
duration Tfra ), a short inter-frame space (SIFS), which is the
amount of time required before sending a response frame,
and the transmission of the ACK (of duration Tack). For
simplicity, we consider this duration equal for successful
transmissions and collisions but the analysis can be easily
extended to consider both [3]. Tc can be calculated as
follows:

Tc = Tfra + SIFS + Tack + DIFS. (2)

In the following, it will be more useful to use the
transformed variable xi = τi

(1−τi )
rather than τi , xi ∈ [0, ∞)

for τi ∈ [0, 1):
Si(x) = xi

X(x)

Di

Tc

, (3)
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where X(x) = a + ∏n
k=1(1 + xk) − 1 with a = σ/Tc.

The proportional fair optimization problem can then be
formulated as [2]:

max .
n∑

i=1

S̃i (x),

s.t .S̃i (x) ≤ log
xiDi

X(x)Tc

. (4)

The constraint certifies that the sum of logs of
throughputs is feasible and sits in the rate region. Since the
log-transformed rate region Z̃ is strictly convex, there exists
a unique solution that satisfies strong duality and Karush-
Kuhn-Tucker (KKT) conditions, which implies a global
maximum [2].

The optimization problem in Eq. 4 can be solved
explicitly but our aim here is to formulate this problem
in a bandit framework so that knowledge of the network
parameters is no longer required. This facilitates practical
implementation and can help towards the adoption of
optimization approaches in commercial WiFi cards, where
the selection of the CW used by the stations is generally
static.

3 Bandit convex optimization

In bandit convex optimization (BCO) three steps are
repeated between the player and the adversary. These three
steps can be written for iteration t as:

• The player chooses a point xt ∈ K ⊆ Rd .
• The adversary chooses a cost function ft ∈ F ⊆ Rk .
• The player observes ft (xt ).

Here, xt is a point from a fixed and known convex set.
K represents a convex subset of a d-dimensional Euclidean
space (K ⊆ Rd ). In addition, all the functions in F are
convex [4].

The aim of BCO algorithms is to achieve low regret:

RT =
T∑

t=1

ft (xt ) − minx∈K

T∑

t=1

ft (x). (5)

This formulation is known as cumulative regret, which
measures the difference between the cumulative loss that
is revealed to the player and the best-fixed decision in
hindsight after T iterations [1]. To achieve low regret
most of the BCO algorithms use Online Gradient Descent
(OGD) with estimations of the gradient. In fact, the main
complication of BCO is to estimate the gradients of the
cost functions. Therefore, many researchers in BCO have
investigated methods for estimating these gradients and
used their results in BCO algorithms [1].

Flaxman et al. [5] proposed a scheme that combined
the estimated gradients with the OGD algorithm of
Zinkevich [6], who showed that a simple gradient descent
strategy for the player incurs an O(

√
T ) regret bound [7].

The algorithm of Flaxman et al. uses point evaluations of
convex functions to approximately estimate the gradient.
The regret bound of this algorithm is shown to be O(T 3/4).
Agarwal et al. showed that in each round knowing the value
of each cost function at two points is almost as useful as
knowing the value of each function everywhere, therefore
their algorithm has a regret bound of O(T 2/3) improving
the O(T 3/4) bounds achieved by Flaxman et al. However,
Flaxman et al. and Agarwal et al. approaches cannot be used
in a practical implementation and realistic setting in wireless
networks. First, in many settings it is impossible to query
cost functions twice in one iteration. Second, the variance
of the single point estimators in the approach of Flaxman
et al. [5] is large; consequently, speed of convergence is not
practical for wireless applications [4, 8].

3.1 Sequential multi-point gradient estimates

We use the multi-point BCO algorithm defined in [4] as it
considers a simpler assumption than that of Agarwal [7].
This algorithm is called Online Gradient Descent with
Sequential Multi-Point Gradient Estimates (OGD-SEMP)
and combines queries from two consecutive iterations to
estimate the gradient. The algorithm considers a sequence
of auxiliary points y1, y2, ... and updates gradient descent as
follows:

yk+1 =
∏

k

(yk − ηkg̃k), (6)

where g̃k is the gradient estimate used to update yk+1.
The parameter ηk is the gradient descent step size and
η = {η1, η2, η3, ...} is a sequence that shrinks over
time. This coefficient affects the speed of convergence of
gradient descent. To compute the gradient estimate (g̃k),
let’s consider yk as the kth point in a one-dimensional
convex set within the interval [yk − εkδk, yk + εkδk], with
εk a random number that can be either − 1 or 1 and δk a
parameter that shrinks over time and determines the length
of the interval (see Fig. 1). In the first step, we choose the
point x̄t and obtain its cost function evaluation (gk

+) as:

x̄t = yk + εkδk,

gk
+ = ft (x̄t ). (7)

In the second step, we choose x̄t+1 and obtain its cost
function evaluation (gk

−) as:

x̄t+1 = yk − εkδk,

gk
− = ft+1(x̄t+1). (8)
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Fig. 1 Sketch of OGD-SEMP

The gradient can be then estimated as follows:

g̃k = gk
+ − gk

−

2εkδk

. (9)

g̃k is an unbiased estimator of the gradient.

4 Application of BCO to optimizeWiFi
networks

The Sequential Multi-Point Gradient Estimates algorithm
presented in the previous section was applied in a wireless
networking optimization use case in [4]. In that article the
authors provided the theoretical analysis of this algorithm
and evaluated its performance in an unlicensed LTE/WiFi
fair coexistence use case. Here we aim to use this method
for achieving proportional fair allocation of resources in an
IEEE 802.11 network. Using this algorithm, we only need
to know the throughput of each station, regardless of other
parameters of Eq. 4, to achieve proportional fairness.

Let’s consider a WiFi network with a set of stations
transmitting data to an access point in the uplink. Each
station might be experiencing different conditions and
serving different types of traffic and so its network access
parameters (data rate, packet length, etc.) may differ. To
optimize the network throughput considering fairness, the
access point may select the value of the transmission attempt
rate (controlled by the value of CW) of each station so
that, as we previously described, proportional fairness is
maximized.

To do so we apply the OGD-SEMP algorithm as
follows. We assume homogeneous conditions for clarity
of illustration. The access point at time t selects a point

yt = τt

(1−τt )
, then computes xt (as described in Section 3.1),2

it disseminates the corresponding CW value to the stations
and observes the resulting throughput experienced by each
station. It can then compute the cost function: ft =∑n

i=1 S̃i (xt ). At t + 1 the access point selects xt+1 and
computes ft+1 = ∑n

i=1 S̃i (xt+1) similarly.
In more detail, in each round t = {1, 2, ..., T }:

• The WiFi access point chooses xt .
• The WiFi network selects the parameters of Eq. 4 (ft ),

which represent the status of the network (n,Di and Tc).
• The WiFi access point observes ft (xt ).

Note that the notation can be easily extended to het-
erogeneous conditions by considering x̄t = {x1, x2, ..., xi}
a vector defining xi for all the stations at time t and
x̄t+1 = {x1, x2, ..., xi} a vector defining xi for all the sta-
tions at time t + 1 instead of xt and xt+1.

5Methodology

To evaluate the algorithm’s performance in the WiFi use
case we have considered two simulation tools. In the first
one we have implemented the algorithm in Matlab and
used the true value of the cost function evaluation (Eq. 4)
as feedback to the algorithm. This setup allows us to test
the performance of our proposed method varying different
parameters. Additionally, we have used a custom IEEE
802.11 network simulator to model more realistic situations
in which the cost function is not directly available to the
access point but needs to be measured.

The custom network simulator consists of two main
parts: a channel and a node module. The node module
includes a device model with physical, MAC, network
and application layers. This simulator was previously used
for evaluating OGD-SEMP performance in an unlicensed
LTE/WiFi fair coexistence use case [4]. In this article we
have extended the simulator to consider the particularities
of the WiFi proportional fair use case. In particular, since
the contention window values are discrete in our network
simulator while the slot transmission probabilities in our
model are continuous, we need to convert continuous values
of contention window to the desired discrete ones in the
simulator. To achieve this, we use CW1 for t1 seconds and
CW2 for t2 seconds in a way that the average contention
window matches that of the model. We set CW1 and CW2

to the immediately lower/higher allowed value in IEEE
802.11 and compute t1 and t2 accordingly. Recall that τ =
1/CW. The gradient descent algorithm is executed every Δ

seconds, with Δ = c(t1 + t2), with c a positive integer. The

2Recall that xi is a transformed variable xi = τi

(1−τi )
rather than τi ,

xi ∈ [0, ∞) for τi ∈ [0, 1) (as seen in Section 2).
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throughput used by the algorithm as feedback is the average
throughput during Δ seconds.

Note that the estimation of throughput in the network
simulator is affected by noise caused by the random
nature of the back-off and collision probabilities as well
as the discretization of the slot transmission probability as
described above. These errors are expected to decrease with
longer sampling duration (Δ) at the cost of increasing the
time of convergence of the bandit algorithm.

In both simulators we have used parameters according to
the IEEE 802.11ac standard, we have considered:

Tfra = Tplcp+
⌈

Ls + nagg(Ldel + Lmac-h + D) + Lt

nsym

⌉

Tsym,

(10)

Tack = Tplcp +
⌈

Ls + Lack + Lt

nsym

⌉

Tsym, (11)

with physical and channel access parameters as listed in
Table 1.

We evaluate the performance of the algorithm using the
individual throughput metric at time t (St ). By comparing
the evolution of throughput over time for different settings
we evaluate the algorithm’s performance regarding the time
to convergence to the optimum value.

6 Performance evaluation

In this section we present the results of the performance
evaluation of the algorithm in the WiFi use case. As

Table 1 Simulation parameters according to IEEE 802.11ac [9]

Parameter Value

Slot Duration (σ ) 9 μs

DIFS 34 μs

SIFS 16 μs

PLCP Preamble + Header Duration (Tplcp) 40 μs

EIFS 364 μs

TimerACK 314 μs

Propagation Time 1 μs

Tsymbol (Tsym) 4 μs

PLCP Service Field (Ls) 16 bits

MAC Delimiter Field (Ldel) 32 bits

MAC Header (Lmac-h) 288 bits

Tail Bits (Lt ) 6 bits

ACK Length (Lack) 256 bits

Payload (D) 12000 bits

nsymbol (nsym) 1040 bits

number of aggregated packets (nagg) 64

MIMO 4

described in the previous section we have considered:
(i) true cost function evaluations and (ii) noisy gradient
estimates coming from an IEEE 802.11 network simulator.
This has allowed us to evaluate the sensitivity of the
algorithm to the learning parameters (gradient step size,
exploration parameter and schedule), packet length, number
of nodes and node dynamics as well as noisy cost function
evaluations.

6.1 True cost function evaluations

We have set the gradient descent step size as ηk =
η/k(3/4) and δk = ω/h(k), with ω as an input parameter
and h(k) as some increasing function. We will refer to
ω as the exploration parameter and h as the exploration
schedule. We vary the number of stations in the network
(n) with n = {5, 20}. To evaluate the sensitivity of the
algorithm to different exploration schedules, we also vary
the increasing function h(k). We consider that stations
always have a packet to transmit (nodes are saturated) and
homogeneous stations (same packet size and transmission
probability).

6.1.1 Sensitivity to the learning parameters

First, we evaluate the performance of the algorithm by
changing the exploration parameter ω—observe that this
parameter controls how far from yk we take the two cost
function evaluations at consecutive iterations—and gradient
descent step size (ηk). We set h(k) equal to k(3/4) which
shrinks the exploration parameter as time goes by.

Figure 2 shows the results of the individual throughput
for 5 nodes during 50 iterations. We repeat the same
simulations for 30 runs to obtain more accurate results.
Therefore, in the figures each color represents one
simulation run. Optimal results from [2] are shown in
Fig. 2 as straight lines. These results are obtained from
the implementation of the algorithm in Matlab with
cost function computed using Eq. 4 and IEEE 802.11ac
parameters from [9]. We show results with different
exploration parameter ω = {0.01, 0.1, 1} and gradient
descent step size η = {0.1, 1}.

Figure 2 illustrates that by fixing η and increasing
parameter ω the rate of convergence increases. As we saw in
Eq. 7 increasing the value of exploration parameter (ω), we
take bigger steps towards the optimum. By fixing parameter
ω and increasing η for the range of values considered, the
rate of convergence increases as well since we also make
larger steps with bigger gradient descent step sizes. It can
be seen that for exploration parameter equal to {0.01, 0.1, 1}
and gradient descent step size equal to 1, the algorithm
converges to the optimum value after a few number of
iterations (< 20).
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Fig. 2 Individual throughput for n = 5 using different ω, η and h(k) = k(3/4). a ω = 0.01, η = 0.1. b ω = 0.01, η = 1. c ω = 0.1, η = 0.1. d
ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

6.1.2 Sensitivity to the number of nodes

Here we keep the algorithm setup same as above and
increase the number of nodes. Figure 3 illustrates the
individual throughput of a network of 20 nodes. By
comparing Figs. 2 and 3, we observe, in case of η =
1, that for the same value of ω the algorithm converges
to the optimum faster when more nodes are considered.
The reason for this behavior is illustrated in Fig. 4. This
figure shows the shape of the objective function for the
different number of nodes. As it is shown, the more
nodes in the network, the steeper the cost function, i.e.,
gradients are larger. Note that the difference between the
minimum value of the convex function and its maximum

is bigger for n = 20. This means that the algorithm
makes larger steps at each iteration and reaches the
optimum faster. For this case the algorithm converges in
around 10 iterations or less for ω = {0.01, 0.1, 1} and
η = 1.

6.1.3 Sensitivity to the exploration schedules

In this set of simulations we use the same setup as in the pre-
vious subsection but we change the exploration schedule to
h(k) = k(1/2). The goal here is to evaluate the sensitivity of
the algorithm to different exploration schedules. Similarly
to Figs. 2 and 3, Figs. 5 and 6 show the individual through-
put for different values of ω, η and h(k) = k(1/2). We can
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Fig. 3 Individual throughput for n = 20 using different ω, η and h(k) = k(3/4). a ω = 0.01, η = 0.1. b ω = 0.01, η = 1. c ω = 0.1, η = 0.1. d
ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

observe that with h(k) = k(1/2), the convergence speed is
almost the same as with h(k) = k(3/4). Only for the case n =
5, ω = 1 and η = 1 (Fig. 2f and Fig. 5f), we observe that the
convergence speed in Fig. 2f with h(k) = k(3/4) is slightly

faster than in Fig. 5f with h(k) = k(1/2). These results
show that the sensitivity of the algorithm to the explo-
ration schedule is negligible for the exploration schedules
considered.

Fig. 4 Shape of the objective
functions for a n = 5 and b
n = 20

288 Ann. Telecommun. (2022) 77:281–295



Fig. 5 Individual throughput for n = 5 using different ω, η and h(k) = k(1/2). a ω = 0.01, η = 0.1. b ω = 0.01, η = 1. c ω = 0.1, η = 0.1. d
ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

This means that the impact of h(k) compared to the
gradient descent step size η, exploration parameter ω and
gradients is low. We also see, as before, that by increasing
the number of nodes in the network, the individual
throughput value converges to its optimum value faster, in
general (see Fig. 6).

6.1.4 Sensitivity to the packet length

To evaluate the performance of the algorithm for different
packet sizes, we keep the algorithm setup same as in
Section 6.1.1 but we reduce the number of aggregated
packets from nagg = 64 to nagg = 1, effectively reducing

the packet size transmitted at each transmission attempt.
Figure 7 illustrates the individual throughput for different
values of ω and η. Note, by comparing Figs. 2 and 7,
that the optimal individual throughput—depicted as a blue
line—is now reduced from 45.37 to 10.23 Mbps, which is
a common effect of reducing the packet size in WiFi. We
can also observe, in general, that the convergence speed in
Fig. 7 is slower than in Fig. 2. However, in the long run (for
simulations of 500 iterations, not shown here due to space
constraints) the throughput converges closer to the optimal
value. The reason for this behavior may be the specific
shape of the convex function (see Fig. 8), which for nagg
= 64 (Fig. 8a) is steeper than that for nagg = 1 (Fig. 8b).
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Fig. 6 Individual throughput for n = 20 using different ω, η and h(k) = k(1/2). a ω = 0.01, η = 0.1. b ω = 0.01, η = 1. c ω = 0.1, η = 0.1. d
ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

From Fig. 7 it can be seen that even by decreasing the nagg
value, the algorithm sensitivity to the exploration parameter
does not change. This implies that, again, the algorithm
sensitivity to ω changes is negligible compared to gradient
step size changes.

6.1.5 Node dynamics

Here we keep the algorithm setup same as in Section 6.1.1
but we change the number of nodes in the network in
runtime. During the first 20 iterations n = 5, for iteration
21 to 40, we set n = 20 and for the last 20 iterations n = 5.
We show the results in Fig. 9. Note that the algorithm, for

certain settings of parameters ω and η, is able to quickly
adapt to the new configuration of the network. When η =
1, the algorithm is able to converge to the new optimal
value—depicted as a blue line—in less than 10 iterations.

6.2 Noisy gradient estimates

Here we evaluate the performance of the algorithm by having
noisy estimates of the individual throughput instead of the
true value of the cost function. To achieve this goal we imple-
ment the algorithm in the network simulator. We set the explo-
ration parameter as ω = {0.01, 1} and gradient descent step
size as η = {0.01, 0.1, 1}. We set the gradient descent timer
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Fig. 7 Individual throughput for n = 5 using different ω, η and h(k) = k(3/4) with nagg= 1. a ω = 0.01, η = 0.1. b ω = 0.01, η = 1. c ω = 0.1,
η = 0.1. d ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

Fig. 8 Shape of the objective functions for n = 5 with a nagg = 64 and b nagg = 1
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Fig. 9 Individual throughput when the number of nodes changes using different ω, η and h(k) = k(3/4) with nagg= 64. a ω = 0.01, η = 0.1. b
ω = 0.01, η = 1. c ω = 0.1, η = 0.1. d ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

equal to Δ = 100 s and the value of contention window
timer equal to (t1 + t2) = 0.1 s. The exploration schedule is
set to k(3/4). Each simulation is again run 30 different times
to achieve more accurate results.

Figure 10 shows that the algorithm still converges in
less than 10 iterations for ω = 1 and η = 1. However,
we see that the evolution of throughput is not following
the desired convergence trend for ω = 0.01. We also
see that convergence is worse for smaller values of the
exploration parameter. The reason for this behavior is,
we argue, the noise: the smaller ω, the less accurate the
estimations of the gradient, making more probable for
gradient descent to move in the opposite direction of the
optimum.

6.2.1 Averaging gradient descent estimates

One solution to alleviate the effect of noise when using
stochastic gradient descent is averaging gradient descent
estimates [10, 11]. Here we apply an exponential moving
average due to its simplicity to implement in practice, as it
implies no need to store samples of the estimates at each
iteration. Thus, we use g̃k = αg̃k + (1 − α)g̃k−1 at each
iteration in which we compute the gradient. Figure 11 shows
the results of the same setup above but using the exponential
moving average just described with α = 0.2.3 As can be

3Similar conclusions as the ones presented here are obtained for
different values of the α parameter. The results are not presented due
to space constraints.
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Fig. 10 Individual throughput for n = 5 using different ω, η and h(k) = k(3/4) (noisy estimates). a ω = 0.01, η = 0.1. b ω = 0.01, η = 1. c
ω = 0.1, η = 0.1. d ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

observed, averaging the gradients allows to slightly alleviate
the effect of noise in some cases (note the improvement in
convergence rate for ω = 0.01 and η = 0.1). However,
when η = 1, the convergence rate of the algorithm is now
worsened (compare Fig. 10f with Fig. 11f). This result is
to be expected as the higher η, the less relevant the past
samples of the gradient. Thus, again, our conclusion is that
care has to be taken when selecting the learning parameters
of the algorithm, even when averaging of gradients is
applied to reduce the effects of noise.

7 Related work

Key articles related to proportional fairness in WiFi
networks include Checco et al. [2] and Patras et al. [3],
which are similar in nature. Checco et al. [2] pioneered

rigorous analysis of proportional fairness in IEEE 802.11
WLANs. They proved that a unique proportional fair
rate allocation exists as the flow total air-time. This
algorithm corrects previous works on air-time quantities
and proves the IEEE 802.11 rate region as a log-convex.
It satisfies per station fairness and per flow fairness. Patras
et al. [3] extends previous work considering different
packet sizes, data rates, and packet errors. Since then,
proportional fairness in WiFi has been extensively studied.
More recently, the focus has been on coexistence of WiFi
networks collocated with other WiFi networks and/or other
technologies, especially unlicensed LTE [12–15].

In general, in these approaches, throughput optimization
is achieved in practice by inferring MAC parameters and
network metrics, such as packet transmission duration, slot
transmission probability, and average packet size of the
stations. Then, the optimization problem is solved. These
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Fig. 11 Individual throughput for n = 5 using different ω, η and h(k) = k(3/4) with exponential moving average (noisy estimates). a ω = 0.01,
η = 0.1. b ω = 0.01, η = 1. c ω = 0.1, η = 0.1. d ω = 0.1, η = 1. e ω = 1, η = 0.1. f ω = 1, η = 1

metrics can be estimated but estimation errors and network
dynamics need to be addressed.

We base our algorithm on these rigorous approaches but
without the need to know all parameters of the function
to optimize. In this way, proportional fairness can be
achieved without the need to infer and keep track of network
parameters and only by estimating the individual throughput
at each station, which can be achieved at the application
layer in a commercial access point with minimal changes.

8 Conclusion

The main focus of this article is on achieving proportional
fairness in WiFi networks by applying bandit convex

optimization. We have applied the OGD-SEMP algorithm
to the WiFi proportional fairness use case. Our results
show that, with the appropriate setting of parameters,
the algorithm converges to the optimum value in a
few number of iterations for different configurations and
settings, including node dynamics. However, the parameter
of the algorithm that controls the degree of exploration
has a significant impact on the algorithm’s performance,
especially when we are faced with throughput estimation
errors. We have seen that using averages of the gradient
estimates can alleviate the effect of noise but that again,
convergence depends on appropriate setting of the learning
parameters. We conclude that the algorithm is a practical
solution for wireless network optimization, but that care has
to be taken when configuring the algorithm parameters.
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