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Abstract
Localization is the process of determining the position of an entity in a given coordinate system. Due to its wide range
of applications (e.g. autonomous driving, Internet-of-Things), it has gained much focus from the industry and academia.
Channel State Information (CSI) has overtaken Received Signal Strength Indicator (RSSI) to achieve localization given
its temporal stability and rich information. In this paper, we extend our previous work by combining classical and deep
learning methods in an attempt to improve the localization accuracy using CSI. We then test the generalization aspect
of both approaches in different environments by splitting the training and test sets such that their intersection is reduced
when compared with uniform random splitting. The deep learning approach is a Multi Layer Perceptron Neural Network
(MLP NN) and the classical machine learning method is based on K-nearest neighbors (KNN). The estimation results of
both approaches outperform state-of-the-art performance on the same dataset. We illustrate that while the accuracy of both
approaches deteriorates when tested for generalization, deep learning exhibits a higher potential to perform better beyond the
training set. This conclusion supports recent state-of-the-art attempts to understand the behaviour of deep learning models.

Keywords Indoor localization · Channel state information · MIMO · Deep learning · Neural networks · KNN ·
Ensemble learning · Generalization

1 Introduction

The location of entities is generally determined by 2D or
3D coordinates in some coordinate system. This knowledge
serves a wide range of applications such as autonomous
driving, routing, environmental surveillance, etc. Localiza-
tion solutions vary depending on several factors including
the available sensors (e.g. cameras, LiDARs, GPS) or the
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environment (e.g. indoors or outdoors). Each context intro-
duces some constraints that require a solution that takes
them into account. For example, in an outdoor context, GPS
is widely used for localization, whereas in indoor context,
GPS service is not reachable and thus some other forms of
information are needed to compensate for the absence of
GPS.

One family of localization methods is known as range-
based localization. In this method, a physical phenomenon
is used to estimate the distance between nodes. Then, the
relative positions of nodes within a network can be com-
puted geometrically [1]. One of the most used phenomena
is the Received Signal Strength Indicator (RSSI). RSSI is an
indication of the received signal power. It is mainly used to
compute the distance between a transmitter and a receiver
since the signal strength decreases as the distance increases.
In [2], the distances between nodes along with the posi-
tion information of a subset of nodes, known as the anchor
nodes, are used to locate other nodes in a Mobile Adhoc
Network (MANET). This is achieved using a variant of the
geometric triangulation method. The upside of RSSI is that
it does not need an extra hardware to be computed and is
readily available. Another physical measure to compute the
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distance between devices is the Time-Of-Arrival (TOA) or
Time-Difference-Of-Arrival (TDOA). Here, the time taken
by the signal to reach the receiver is used to estimate the dis-
tance between devices. Using TOA in localization proves to
be more accurate than RSSI, but requires external hardware
to synchronize nodes [3]. In the case where only the distance
information is available, a minimum of three anchor nodes
with previously known positions are needed to localize other
nodes with unknown positions.

Due to the sensitivity of RSSI to multipath fading
and environmental noise [4], the localization trend shifted
towards a more stable form of information known as
Channel State Information (CSI). With the use of Multiple
Input Multiple Output (MIMO) antennas and orthogonal
frequency-division multiplexing (OFDM) each antenna
receives multiple signals on adjacent subcarriers at which
CSI is computed. CSI contains richer and more stable
information than RSSI. Thus, it is more suitable for accurate
finger-printing-based localization.

CSI represents the change that occurs to the signal as
it passes through the channel between the transmitter and
the receiver, e.g. fading, scattering, and power loss [5].
Equation 1 specifies the relation between the transmitted
signal Ti,j and the received signal Ri,j at the ith antenna and
the j th subcarrier. The transmitted signal is affected by both
the white noise N and the channel which is represented by
the complex number CSIi,j .

Ri,j = Ti,j · CSIi,j + N (1)

In the following section, we discuss and compare differ-
ent state-of-the-art machine learning models used to solve
the localization problem. We compare their structure and
how the model’s architecture affects the estimation results.
In Section 3, we briefly present our MLP NN-based solu-
tion from our previous work [6] which we are extending
here in this publication. Then, the MLP NN predictions are
combined with that of the KNN-based solution [7] using
ensemble learning. In Section 4, we evaluate the accuracy
of the presented learning techniques in indoor and outdoor
environments and introduce two methods of test set selec-
tion to evaluate the generalization aspect. Section 5 includes
the conclusion and our insights for possible future work to
enhance the generalization aspect of the learning process.

2 Related work

With the availability of access to cheap data and cheap
computational resources, machine learning methods have
been intensively used in a plethora of applications [8].
Deep learning in particular has emerged in recent years
as the dominant solution to multiple problems, e.g. image
recognition [9] and natural language processing [10]. The

principal evaluation criterion of machine learning models
is the value of error. The error can be the percentage of
correct predictions in classification contexts or the differ-
ence between prediction and ground truths in continuous
contexts. In the localization context, the error is commonly
chosen to be the root mean square error (RMSE) between
the estimated position and the ground truth position in local-
ization context. We argue that the model’s ability to gener-
alize beyond the training data must be considered alongside
the absolute error value for performance evaluation.

One classical machine learning model is K-Nearest
Neighbor (KNN). In [7], KNN has been used to localize
a transmitter based on the magnitude component of CSI
calculated at a 2 × 8 MIMO antenna. KNN requires a choice
of neighboring criteria and the value k which is the number
of neighbors used in estimating the position. The Euclidean
distance is chosen as the neighboring criterion and the value
of k is set to one. This method achieves a 2.3-cm RMSE
which is, to the best of our knowledge, the lowest error on
the dataset provided in the indoor positioning competition
prepared by IEEE’s Communication theory workshop [11].
This result is interesting since the classical KNN approach
outperformed the MLP NN method [12] tested on the same
dataset achieving an error of 4.5 cm. Even when ensemble
learning was used by combining predictions of multiple
different MLP NNs [6], the KNN method still achieved a
better mean error.

KNN method outperformed deep learning methods from
a localization error perspective. We are interested in eval-
uating the ability of the deep learning model to generalize
which can give it a decisive edge over the KNN method
despite the higher error localization error. An impressive
indoor localization accuracy has been achieved using a
larger MIMO antenna (8 × 8) and a very deep Convolutional
Neural Network (CNN) [13]. The proposed CNN archi-
tecture is based on the DenseNet architecture [14] which
was originally created for the well-known image recogni-
tion competition ImageNet [15]. The DenseNet [14] proved
itself as one of the best solutions in terms of classifica-
tion accuracy. The CNN-based solution [13] is tested on a
dataset different from the dataset on which our methods are
tested. However, we are not aware of a CSI-based indoor
localization solution that is able to achieve an error lower
than the 17 mm error of [13].

The generalization aspect was tested in [13] where the
highly accurate CNN was trained on data collected in a
room with Line-of-sight (LoS) transmissions. The test set
was made up of LoS CSI readings using the same MIMO
antenna, and the same distance to transmitter but in a
different room. Even though the surrounding conditions are
similar (same antenna and LoS transmissions), the CNN
completely fails to predict the position of the transmitter in
the new room. More precisely, the error jumps from 17 mm
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to ≈ 700 mm. This result is quite surprising considering
the fact that the localization area is less than 8 m2. The
authors conclude that while the LoS component should
be the same in both rooms, the multipath component is
not the same because of reflection against different set of
objects. Thus, their take away is that a good model needs
to learn multi-path components of the environment to be
able to perform well. While this conclusion sounds legit,
we believe there might be other reasons for the failure
of the learning model. The experiments performed in this
work makes us lean towards believing that the failure
could be related to the learning model’s architecture, and
other solutions might open the door towards generalizing to
different environments.

3Methodology

3.1 Experimental setup

The experiment on which our solution is tested is carried
out by the authors and organizers of the IEEE CTW indoor
positioning competition [16]. In [11], the authors present the
MIMO antenna used in the competition. They carry out an
experiment where a robot carrying a transmitter traverses a
4 × 2 meter table and communicates with the 8 × 2 MIMO
antenna. The transmission frequency is 1.25 GHz and the
bandwidth is 20 MHz. Signals are received at each of the
16 subantennas over 1024 subcarriers from which 10 % are
used as guard bands. Using a convolutional neural network
(CNN), the authors used the real and imaginary components
of the CSI as input to the learning model to estimate the
robot’s position. The authors publish the CSI readings and
the corresponding positions (≈ 17,000 samples) readings
which are used as the test bed for our algorithm. Figure 1
demonstrates the experimental setup as well as a sketch
of the MIMO antenna and the position of its center. The
lower part of the figure shows the table which is traversed
through the experiment and the MIMO antenna. The upper
part shows a sketch of the MIMO antenna displaying its
center at (3.5, − 3.15, 1.8)m in the local coordinate system.
The distance between adjacent antennas is lambda/2 which
is computed from the carrier frequency.

The CSI can be represented in polar or cartesian coor-
dinates. Thus, the learning model input can be magnitude,
phase, real, or imaginary or a combination of these com-
ponents. The magnitude was found to be statistically stable
with respect to time. In other words, transmitting from the
same position at different times yields very similar mag-
nitude components. On the other hand, the values vary
strongly with phase, real, and imaginary components [7, 12,
18]. Thus, the magnitude component is chosen as the input
feature to the MLP NN model.

In order to reduce the noise and dimensionality of
magnitude values, the magnitude values at each antenna are
divided into 4 subdivisions. Polynomial regression is then
performed with different degrees to predict a polynomial
line that accurately presents each of the four regions.
Figure 2 shows the magnitude values at one of the 16
antennas and the 4 polynomial lines approximating the
values. The four lines are concatenated and smoothed
at the borders between adjacent lines using a weighted
averaging method. More information on the fitting process
is detailed in [12]. Instead of using all points along the
fitted line to represent the magnitude component, a reduced
number of equidistant values are selected based on the
chosen learning model. The number of values is selected
empirically aiming to reduce the input’s dimension without
affecting the stability of the learning model’s accuracy.

3.2 MLP NN ensemblemethod

The input to the MLP NN model is chosen empirically to
be 66 equidistant points along the fitted line. In ensemble
learning, multiple learning models are trained and their
predictions are combined to yield better results. We built
different learning models by making changes to the input
format, hyperparameters, and training input samples. As
for the input format, some models train on magnitude
values, while other models train on the differences between
consecutive magnitude values along the fitted lines. These
differences represent the slope values between two points
along the line. Hyperparameter values are manually varied
creating different learning models. Table 1 summarizes
some of the hyperparameters and the attempted ranges to
train different learning models.

Data augmentation is also used to generate more training
examples and to enhance the model’s ability to learn. This is
achieved by jiggling the magnitude values and the predicted
positions. More details on the data augmentation process are
found in [6].

We chose the most accurate 19 learning models, and
their predictions are averaged using different methods to
predict the location of the transmitter. The tested averaging
methods are:

1. Mean: The simplest way to mix the results is to compute
the arithmetic mean position of all the predictions.

2. Weighted mean: Each of the MLPs is given a weight
that is proportional to its individual localization accu-
racy. Thus, predictions from more accurate models are
given higher weights. The final prediction is a weighted
average of the individual predictions.

3. Weighted power mean: The impact of weights is further
magnified by raising them to a certain power before
computing the weighted average.
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Fig. 1 Experimental setup
(bottom) and a sketch of the
MIMO antenna (top) [11]

Fig. 2 Fitting a line through the
magnitude values [6]
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Table 1 Hyperparameters ranges

Hyperparameter Range

Number of layers [4,5,6,7,8]

Units per layer [128,256,512,1024,1200]

Epochs [50,100,150,200]

Activation function [relu, selu, tanh, softmax]

Learning rate [25 × 10−5, 5 × 10−4, 1 × 10−3]

L2 regularization [without, 1 × 10−4, 1 × 10−5, 1 × 10−6]

Dropout percentage [1%, 2%, . . . , 10%]

4. Median: The idea is to pick one of the predictions that is
closest to all other predictions. This makes sense when
the ensemble has three or more MLPs. This mitigates
the effect of the large errors of some predictions.

5. Random: The final prediction is a randomly selected
individual prediction.

6. Best pick: This is used as an indication of the best
possible result that could be attained from the individual
predictions. The final prediction is the closest individual
prediction to the actual position. This is not feasible in
the normal test scenario where the actual positions are
not known.

3.3 K-nearest neighbors method

With KNN [7], the estimation accuracy was found to be
stable using only 33 equidistant points. The neighboring
criterion is the Euclidean distance between CSI magnitude
values which is defined in Eq. 2. A is the number of
antennas, S is the number of selected equidistant points
along the polynomial line, and M1 and M2 are two sets of
S × A magnitude values for all 16 antennas.

distM1,M2 = 1

A

A∑

a=1

√√√√
S∑

n=1

(
M1

a,n − M2
a,n

)2 (2)

With k value chosen to be 1, for each test sample, the
whole training set is traversed and the position of the
training sample that is closest to the test sample according
to Eq. 2 is chosen as the predicted position.

4 Evaluation

4.1 Accuracy evaluation

The dataset is split into 90% training set and 10% test
sets. The validation set is provided by the IEEE CTW
indoor positioning organizers on the competition day. The
validation set is composed of 2000 CSI samples without the
corresponding positions. Participants used their prepared

models to predict the corresponding positions. The position
predictions are sent by each team to the organizers for
evaluation.

The best RMSE achieved by the MLP NN ensemble
learning method [6] is ≈ 3.1 cm. This error was achieved
using the most accurate 11 MLP NN models. While the
best individual MLP NN achieves 3.9-cm RMSE, using
data augmentation and combining its predictions with less
accurate models yield better results.

This outcome encouraged us to combine the predictions
of KNN with that of the MLP NN ensemble. KNN method
[7] achieves a 2.3-cm RMSE which is, to the best of our
knowledge, the lowest achieved error with this particular
dataset. While the ensemble yields lower accuracy, it might
be possible to further improve the accuracy when combining
both methods together.

Figure 3 illustrates the result of using ensemble learning
with MLP NNs and KNN methods. Three categories of
results are depicted:

1. Deep MLP NNs estimations are combined using differ-
ent combination methods: mean, median, best pick, and
stochastic pick.

2. KNN method estimation error.
3. Averaging KNN predictions with the median predic-

tions of the MLP NN ensemble.

The x-axis shows the number of MLP NNs used in the
ensemble. The number between brackets is the individual
RMSE of the added NN to the ensemble. To clarify, the
first MLP NN has a 3.9-cm RMSE. As we move to the
right, at each step, an MLP NN is added to the ensemble
with the error between brackets. The stochastic pick yields
the worst results as it randomly selects the prediction of
one of the MLP NN models in the ensemble. The other
extreme is the best pick which gives an intuition about the
possible accuracy if there is a way that ensures selecting
the best prediction among all models in the ensemble. The
remaining combination methods (excluding KNN) show an
improvement in localization accuracy when more MLP NNs
are added to the ensemble. However, the accuracy starts
to deteriorate when models with larger errors are added.
The horizontal dashed line represents the use of KNN alone
which yields an error of 2.3 cm. The KNN + median
line is the averaging between the KNN prediction and the
median combination of the MLP ensemble. It is clear that
combining the predictions of KNN and the ensemble does
not break new grounds in the estimation accuracy but rather
yields an error between both paradigms.

4.2 Generalization evaluation

Combining the predictions of KNN and MLP NN ensemble
did not improve accuracy. In this section, we compare the

349Ann. Telecommun. (2022) 77:345–357



Fig. 3 Ensemble learning using MLP NNs and KNN

generalization ability of the KNN method against that of
the MLP NN method. Since we focus on generalization
rather than accuracy in this section, we use a light MLP
NN model that achieves ≈ 6.5 cm error. The generalization
capabilities of MLP NN and KNN are tested by altering
the splitting technique of the train and test sets from the
available dataset. Commonly, the splitting is achieved by
uniform random selection of samples for the train and test
sets. To test the generality of each model, we maintain
the 90% and 10% sizes of train and test sets, respectively.
However, the test set samples are selected such that no test
set position intersect with any of the training set positions.
In this case, a model with good generalization ability must
be able to interpolate or extrapolate from the train set
samples to predict sensible estimations for the test set
samples. We propose two methods for test set selection,
square and sequential selections that test the extrapolation
and interpolation capabilities, respectively.

4.2.1 Square test set selection

The test set samples in this selection technique are selected
from a square in the middle of the table which the
transmitter traverses. The size of the square is adjusted so
that the size of the test is ≈ 10% of the whole dataset. The
training set and test set are shown in Fig. 4.

The test sample square area makes the prediction task
very challenging. The blue square region is like a blind spot
which the learning model has to predict without having any
experience (data) in it. This test set distribution examines
the extrapolation capability of the algorithm as most of the
test set samples are confined in a region where no training
samples exist. Figure 5 shows KNN’s predicted sample
positions linked with edges to the corresponding ground
truths. Figure 6 demonstrates the error distribution of the
predicted positions.

It can be seen from Fig. 5 that all predicted positions
are outside the test square region. This is expected because
the value of k is one and, thus, the KNN finds the closest
training sample which is always outside the test region.
The error distribution presented in Fig. 6 does not show a
particular known distribution. The mean error is 0.73m and
the standard deviation is 0.53 m. This large errors indicates
a complete failure of the model since the error is 0.023 m
when the test set samples were drawn randomly.

The chosen MLP NN achieves a mean error of 0.065
m with random test set selection. Since the aim of this
experiment is to test the generalization ability, there is no
need to train a very complex NN. The difference between
the error in the random test set and the square test set
is enough to indicate the generalization ability. Figure 7
illustrates a map relating the predicted positions to the

350 Ann. Telecommun. (2022) 77:345–357



Fig. 4 Square test set selection

ground truths. A clear difference between the estimations
of the MLP NN and that of the KNN is that some of
the estimations are inside the test set region. This can be
explained by the fact that the MLP NN forms a function
of the input without a restriction related to the train set

positions. Thus, some of the test set samples yielded
some estimations inside the test set region. The estimated
positions still appear to be random. Figure 8 shows the error
distribution of the MLP NN estimations. While the mean
error and standard deviation are less than that of KNN,

Fig. 5 KNN predicted positions vs actual positions for square test set
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Fig. 6 KNN error distribution for square test

0.54m and 0.33m, respectively, the error is still much larger
than that of the random test sample selection. Even though
the error distribution seems more structured than that of
the KNN, it is difficult to draw a conclusion of a decent
extrapolation ability of the model with such large error.

4.2.2 Sequential test set selection

The square test set selection is very difficult for the learning
model to learn because the test set region is a relatively large

Fig. 7 MLP NN predicted positions vs actual positions for square test set

Fig. 8 MLP NN error distribution for square test set

blind spot. The model has to achieve a very challenging
extrapolation outside the train set region to make adequate
estimations within the square region.

In the sequential test set selection, we make use of the
order in which the dataset is provided. As previously men-
tioned, the dataset was created by moving the transmitter
along the table using a small vacuum cleaner robot. The
dataset is provided in the order in which the transmissions
were sent. This means that the path of the transmitter can be
tracked by traversing the positions in order. We make use of
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Fig. 9 Sequential test set selection

Fig. 10 KNN predicted positions vs actual positions for sequential test set
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Fig. 11 KNN error distribution for sequential test

this order by setting the test set to be the first 10% of sam-
ples read sequentially in order from the provided dataset.
This ensures that there is no intersection between the posi-
tions of the train and test sets since moving randomly along
the table makes it improbable to visit the exact same posi-
tion twice. Figure 9 demonstrates the train set and test set
selection using the sequential method.

Fig. 12 MLP NN predicted positions vs actual positions for sequential test set

Fig. 13 MLP NN error distribution for sequential test

The test set samples in this selection method are rela-
tively spread along the table. Test set positions are close
to train set positions but not superposing. The prediction
task appears easier than the square selection since the model
does not need to extrapolate in a blind region. Rather, the
model needs to be able to relate test set samples to their
nearby training samples then interpolates to estimate the test
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Table 2 Indoor vs outdoor characteristics

Aspect Indoor [16] Outdoor [17]

Measurements CSI CSI

Antennas 2 × 8 8 × 8

Subcarriers 924 924

Environment Conference room Residential area

Noise Low High

Area Table: 8 m2 Streets: several kms

sample position. We start with the KNN estimations, Fig. 10
shows the KNN’s predictions and the corresponding ground
truths of the test samples. KNN predictions are not far from
the test set region since the training set samples are spread
along the table. However, KNN still suffers from very large
errors with an error of 0.72 m. The error distribution for the
KNN estimations is shown in Fig. 11.

The error of the KNN model is as large as that of the
square test selection. Using k values larger than 1 does
not improve performance. The experiment is repeated using
MLP NN; Fig. 12 shows the MLP NN predictions and
the corresponding ground truths positions. The dispersed
predictions prove that even the MLP NN is not able to
perform well for the sequential test. This conclusion is
backed up by the high mean square error of 0.55 m. The
error distribution of the MLP NN method depicted in Fig. 13
appears more structured that the KNN error distribution.
However, the error is as high as the experiment with the

Fig. 14 Traversed roads in a residential area in Stuttgart [17]

square test selection making it difficult to conclude that it
has a better generalization ability.

4.2.3 Outdoor experiment

To further reinforce the obtained results, we tested the
generalization aspect of machine learning models in an out-
door experiment prepared for the IEEE Communication
Theory Workshop 2020 Data Competition [17]. The event
was postponed due to the COVID-19 pandemic but the
experimental dataset was shared with the scientific com-
munity. Both the indoor and outdoor experiments are
CSI-based. Table 2 compares the characteristics of both
experiments. The MIMO antenna used in this experiment
is 8 × 8 which means more information is available for
each transmission. However, the outdoor context introduces
larger noise and NLoS transmissions. Figure 14 shows
the map of the traversed region in the left subfigure and
the Cartesian positions at which transmissions occurred in
the right subfigure where the antenna is positioned at the
origin.

The dataset is divided into 5k labelled samples and 36k
unlabelled samples. In this paper, we focus on the super-
vised aspect using only labelled dataset. In order to cope
with the richer information content, we propose the use of
Fourier transform [19] to reduce noise and dimensional-
ity instead of polynomial regression. This leads to a faster
processing and higher control on the flexibility of the rep-
resenting function. The Fourier series approximates any
function in terms of infinite sums of sines and cosines

355Ann. Telecommun. (2022) 77:345–357



Table 3 Performance of MLP NN and KNN with different preprocess-
ing methods

Learning model Preprocessing RMSE

KNN Polynomial regression 118 m

KNN Fourier fitting 130 m

MLP NN Polynomial regression 44 m

MLP NN Fourier fitting 37 m

of increasing frequencies. Thus, we control the fluctuation
flexibility by limiting the number of used sines and cosines.
Furthermore, computation speed is improved with the use
of the fast Fourier transform [20].

The labelled dataset is split into 90% training set and 10%
test set while ensuring that both sets are not overlapping.
Starting from the best solution in terms of error in the indoor
positioning competition, we apply the K-nearest neighbor
method to the labelled dataset. The value of k is set to one
and the neighboring criterion is chosen to be the Euclidean
distance between CSI magnitude component values. KNN is
experimented with polynomial regression and Fourier fitting
yielding a mean error of 118 m and 130 m, respectively.
The high error can be due to the fact that the data is too
sparse or that KNN is too primitive in nature to capture
useful features. We believe that both factors contribute to
the high error; this is evident by the performance of MLP
NN on the labelled dataset. The MLP NN hyperparameters
are the same as those of the highest performing MLP NN
in the indoor experiment. The MLP NN achieves a mean
error of 44 m with polynomial regression approximation
of the CSI magnitude values and 37 m with the use of
Fourier. The large gap between the error of KNN and MLP
NN shows that MLP NN was able to capture more useful
features that KNN’s simplistic approach failed to detect.
However, the fact that the error is still much higher than
the accuracy of the differential GPS used to record the
ground truth positions (< 1m) shows that the sparsity of the
datapoints hinders the learning process significantly. Table 3
summarizes the experiments with KNN and MLP NN with
some variation of the preprocessing steps.

5 Conclusion and future work

Prior to the generalization experiments, we did not expect
the KNN to be able to generalize due to its simplistic
approach in estimating test set samples. However, we had
better expectations for the MLP NN’s performance. The
experimental results show relatively large errors for both
models and it appears that both models fail to generalize.
Nevertheless, there is a considerable difference between
the mean errors of KNN and MLP NN. MLP NN’s error

is approximately 25% lower than that of KNN in the
indoor experiment and 28% in the outdoor experiment. The
consistent difference suggests that MLP NN has a higher
potential for generalization over KNN.

The indoor experiment [16] helped to explain why KNN
outperformed MLP NN in terms of absolute error when the
test set was randomly selected. The sequential test selection
experiment reveals that both KNN and MLP NN struggle
to relate the test sample to nearby train samples. Yet, CSI
samples measured from the same position are relatable by
both models. Since the number of dataset samples is large
with respect to the traversed area of the table, multiple
transmissions occur at the same positions. When random
test sample selection occurs, at least one of the repetitions
is selected in the train set and at least one resides in the
test set. Thus, at inference time, the learning model is
able to relate one of the repetitions found in the learning
phase to the test sample. However, the model fails when
test set selection is applied in a way that separates the
repetitions, making them all in either the train or test set.
KNN focuses on relating the test set sample to the closest
one in the train set which often turns out to be one of
the repeated measurements at the same position. This gives
the KNN method an edge over the MLP NN that, on the
other hand, forms a highly complex non-linear function
where similar CSI input will get similar but not superposing
positions.

The outdoor experiment [17] required generalization to
obtain low error values. With the focus only on the labelled
dataset, the sparsity of measurements is a large obstacle
for both learning models. MLP NN consistently performed
better than KNN which supports the intuition obtained from
the indoor experiment about the MLP NN’s potential to
generalize. In an attempt to further improve the localization
accuracy, we attempted the use of CNN which showed
an even higher potential for generalization that could be
exploited in further research.

Possible future work to improve the generalization ability
of the deep learning models is to bias the model towards
learning relational features between nearby CSI readings.
In image recognition context, CNNs induce this relational
bias between nearby pixels depending on the size of the
kernel. We believe that a more flexible model to induce such
bias is Graph Neural Networks (GNN) which showed high
generalization abilities in different contexts [8].
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