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Abstract
The acquisition of channel state information (CSI) is essential in millimeter wave (mmWave) multiple-input multiple-output
(MIMO) systems. The mmWave channel exhibits sparse scattering characteristics and a meaningful low-rank structure, which
can be simultaneously employed to reduce the complexity of channel estimation. Most existing works recover the low-rank
structure of channels using nuclear norm theory. However, solving the nuclear norm-based convex problem often leads to a
suboptimal solution of the rankminimization problem, thus degrading the accuracy of channel estimation. Previous contributions
recover the channel using over-complete dictionary with the assumption that the mmWave channel can be sparsely represented
under some dictionary. While over-complete dictionary may increase the computational complexity. To address these problems,
we propose a channel estimation framework based on non-convex low-rank approximation and dictionary learning by exploring
the joint low-rank and sparse representations of wireless channels. We surrogate the widely used nuclear norm theory with non-
convex low-rank approximation method and design a dictionary learning algorithm based on channel feature classification
employing deep neural network (DNN). Our simulation results reveal the proposed scheme outperform the conventional dictio-
nary learning algorithm, Bayesian framework algorithm, and compressed sensing-based algorithms.

Keywords Sparse representation . Non-convex theory . Low-rank approximation . Channel state information . Deep neural
network

1 Introduction

With the rapid increase of demand for high-speed wireless
transmission communication systems, massive multiple input
and multiple output systems (MIMO) have attracted extensive
attention in academy and industry due to their outstanding
ability to improve system capacity and spectrum utilization
rate [1, 2]. MIMO technology has been widely used in ad-
vanced communication standards, such as IEEE 802.11 ac
[3], IEEE 802.16m [4], and 3GPP Long Term Evolution
Networks [5, 6]. Owing to the extremely high attenuation
and serious signal absorption at the mmWave frequency
bands, mmWave communication systems employ large anten-
na arrays at the base station. Obtaining accurate channel state
information is a prerequisite for gaining optimal system per-
formance. In the aspect of CSI detection, Time Division

Duplex (TDD) mode takes advantage of the reciprocity of
the uplink and downlink link. In Frequency Division Duplex
(FDD) mode where the channel reciprocity condition is no
longer satisfied, the base station sends a downlink pilot signal,
the mobile station receives and detects the pilot signal and
then feeds back CSI to the base station. As for traditional
channel estimation method, the length of pilot sequence must
be proportional to the number of base station antennas, which
makes it difficult to complete channel estimation within co-
herent time. Moreover, the uplink feedback load is high.
Therefore, it is unrealistic to use traditional methods for the
channel estimation of massive MIMO systems.

However, recent advances in sparse representation and
compressed sensing have inspired new approaches, e.g., dis-
tributed compressive sensing (DCS) [7], matrix completion
[8], and deep neural network (DNN) [9], aiming at reducing
heavy pilot load and high uplink feedback quantization over-
head. Distributed compressed sensing channel estimation al-
gorithm based on channel joint sparse structure characteristics
in multi-user environment was proposed to reduce pilot load
and uplink feedback overhead in Rao and Lau [7]. Z. Gao [10]
originally proposed a structured compressed sensing
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framework based on joint channel estimation of space and
time by exploring the common sparse support set of MIMO
channels to reduce pilot load. However, this method increases
the computational load of the terminal, and the signal recovery
probability based on subspace tracking algorithm needs to be
improved. In Fang et al [11], the author proposed an adaptive
channel estimation and feedback framework based on spatial
common sparsity in FDD massive MIMO communication en-
vironment. According to the low-rank characteristics of mas-
siveMIMO channels, the author in Sun et al. [12] investigated
a method for FDD downlink channel estimation which mines
the low-rank or near-low-rank characteristics of the channel
covariance matrix. However, the computation of the channel
covariance matrix is too large to be suitable for the actual
communication scenarios of multi-user cells. Downlink chan-
nel estimation for FDD was performed by using the low-rank
characteristics of massive MIMO channel with iterative opti-
mization and deep learning methods in [2]. However, there
exist several major problems with the above methods:

(1) Only the sparse or low-rank characteristics of the channel
are utilized, while the joint channel estimation with
sparse and low-rank characteristics can further reduce
the training and feedback load and overhead.

(2) In many practical application scenarios, the channel state
information only shows sparsity under the conversion of
suitable bases. Therefore, the above algorithm based on
channel sparsity will degrade the accuracy of channel
state estimation in some actual communication scenario.
According to the channel sparsity in the angular domain,
Wei [13] introduced the learning dictionary instead of the
predefined dictionary to estimate the downlink channel
of FDD massive MIMO system and obtains better chan-
nel sparse representation performance. However, the
learning dictionary of this method comes from the actual
measured values of the channel, and the experimental
operation is complex, which is not suitable for industrial
information transmission systems with high real-time
requirements.

In addition to the sparse scattering nature, mmWave chan-
nels may exhibit a low-rank structure. The rank minimization
problem is challenging to solve. Thus, rank function is usually
substituted by the convex nuclear norm, leading to a relaxed
convex formulation of channel estimation problem [14–19].
However, the obtained recovery of channels by convex nucle-
ar norm is usually suboptimal because the nuclear norm is a
loose approximation of the rank function [16]. In Lu and Tang
[16], the authors proposed a non-convex approximation of l0
norm to approximate the rank function, which is solved by
iterative reweighted nuclear norm algorithm.

In this study, a novel channel estimation framework is pro-
posed, which utilizes the joint low-rank and block sparsity

feature of mmWave channels in the angle domain and deep
learning network-based sparsity representation. For the low-
rank characteristics of the channel, a non-convex method is
used for low-rank approximation, with its iterative optimiza-
tion algorithm designed. Besides, we present a deep learning
network-based dictionary learning method such that a dictio-
nary is learned from the output of deep learning network
which extracts key characteristics of mmWave channel mea-
surements. The learned dictionary adapts specifically to the
key characteristic of the cell and promotes a more efficient
and robust channel sparse representation, which in turn boosts
the performance of the channel estimation.

Notations: l0 norm is the number of non-zero elements in a
vector. l1 norm is the sum of the absolute values of elements in
the vector.

2 System model

We consider a single-cell massive MIMO system working in
FDD mode. The BS is equipped with N antennas, and each
mobile station employs M antennas. To realize downlink
channel estimation, the base station sends training pilot se-
quence to the mobile station. The mobile station feeds back
CSI to the base station. The pilot signal received at the mobile
station at the jth time slot (j = 1, 2, ⋯, T) is expressed as

y j ¼
ffiffiffi
ρ

p
hTx j þ n j ð1Þ

where h ∈ℂN × 1 is the downlink channel response vector be-

tween the BS and the mobile user and n∈ℂTd�1 is the noise
vector at the receiver such that n∼CN 0; Ið Þ. xj ∈ℂ1 ×N repre-
sents the downlink pilot sequence vector transmitted during

the training period of Td symbols, where pk k2F ¼ ρd Td such
that ρd is the training SNR. The concatenated received signals
in T time slots y = [y1, y2,⋯, yT] ∈ℂ1 × Tis expressed as

y ¼ ffiffiffi
ρ

p
hTX þ n ð2Þ

where X = [x1, x2,⋯, xT] ∈ℂN × T and N = [n1, n2,⋯, nT] ∈
ℂN × Tare the aggregated signal and noise, respectively.
Using a conventional channel estimation method such as the
least square method, the channel estimation is given by the
following formula:

ĥ
LS ¼ X†y ð3Þ

where X†is the Moore-Penrose pseudoinverse. Accurate ac-
quisition of channel state information by conventional method
requires Td ≥N; the length of pilot sequence must be greater
than or equal to the number of antennas. For a massive MIMO
system, N is large, making conventional algorithm infeasible.
It takes a long training period to complete channel estimation,
which makes it impossible to complete channel estimation
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within the channel coherence time. In addition, the terminal
needs to feed back the channel state information to the base
station, which also requires the feedback load proportional to
the dimension of the channel matrix.

In order to complete the downlink channel estimation with
limited training overhead, the channel estimation technology
based on compressed sensing has attracted much attention. In
the compressed sensing framework, as long as the original
signal is sparse on some bases, fewer measurements (Td <N)
can be used to represent high-dimensional signals (in this pa-
per, high-dimensional signals refer to Massive MIMO
channels).

Assume there exists a matrix D ∈ℂN×M(N ≥M) such that
h =Dβ, where the sparse vector β ∈ℂM × 1is sparse, that is
S = ‖β‖0 ≤N, ‖n‖2 ≤ ε.Therefore, the downlink channel esti-
mation problem can be converted into the following mathe-
matical problem:

y ¼ ffiffiffi
ρ

p
hTX þ n ¼ ffiffiffi

ρ
p

DβX þ n ð4Þ

Provided y, X and D, if we are able to solve for β, then the

channel state information could be gained as bh ¼ Dβ. At that
time, if the channel is sparse under certain conditions, the
high-dimensional channel matrix can be recovered. Note the
sparsity of the channel and assume that the channel estimation
can be converted into the following mathematical problem:

bβ ¼ argmin βk k0; s:t: y‐
ffiffiffi
ρ

p
DβX

�� ��
0
≤ε ð5Þ

According to existing theories, when Td ≥ cS log(N/S) (c is
constant) is satisfied, l1 norm is used to replace l0 norm for
relaxation solution, which can be recovered with high preci-
sion. Therefore, accurate channel estimation can be realized
only by using training symbols proportional to channel spar-
sity, and the training period length is no longer required to be
proportional to the number of base station antennas. However,
(4) is an undetermined equation if we intend to employ a small
number of training samples Td <N. Thus, the system has an
infinite number of solutions for β, which must be solved by
sparse constraints. Therefore, it is necessary to study the con-
straint conditions of minimum sparsity. The mmWave chan-
nel could be characterized in matrix form by the following
model

H ¼ ∑
L

l¼1
αlαBS θlð ÞαH

MS ϕlð Þ ð6Þ

where L is the number of paths; αl is the complex gain
associated with the lth path; θl ∈ [0, 2π]and ϕl ∈ [0, 2π] are
the associated azimuth AoA and azimuth AoD, respectively;
and αBS ∈ℂN,αMS ∈ℂMare the array response vector associ-
ated with the BS and mobile station, respectively. Assume a
uniform linear (ULA) antenna array is employed. Thus, the
steering vectors at the BS and the MS can be expressed as

αBS θlð Þ ¼ 1ffiffiffiffi
N

p 1; e j
2π
λ dsin θlð Þ;⋯; e j N−1ð Þ2πλ dsin θlð Þ

h iT
αMS ϕlð Þ ¼ 1ffiffiffiffiffi

M
p 1; e j

2π
λ dsin ϕlð Þ;⋯; e j M−1ð Þ2πλ dsin ϕlð Þ

h iT ð7Þ

where λ is the signal wavelength and d is the distance between
adjacent antenna elements.

3 Block-sparse and low-rank features
of mmWave channels

3.1 Block-sparse property

To formulate the channel estimation as a sparse signal recov-
ery problem, we first express the channel as a beam space
MIMO representation as follows

H ¼ ABSHνAH
MS ð8Þ

where ABS ≜ [αBS(ψ1),⋯,αBS(ψN1)] is an over-complete
matrix (N1 ≥N) with each column a steering vector parame-
terized by a pre-discretized AoA, AMS ≜ [αMS(ω1),
⋯,αMS(ωN2)] is an over-complete matrix(N2 ≥M) with each
column a steering vector parameterized by a pre-discretized

AoD, and Hν∈ℂN1�N2 is a sparse matrix with L non-zero
entries corresponding to the channel path gains {αl}.

By substituting (7) into (3), it yields

y ¼ ffiffiffi
ρ

p
hTX þ n ¼ ffiffiffi

ρ
p

DβX þ n

y ¼ ffiffiffi
ρ

p
ABSHvAH

MSX þ N

¼ AH
MS

ffiffiffi
ρ

p� �T⊗ XABSð Þ
h iehþ N

¼ Xð Þ A*
MS⊗ABS

� �� �ehþ N

ð9Þ

where ⊗ denotes the Kronecker product, ( )∗ is the complex

conjugate, and ehΔvec Hvð Þ. Collecting all measurements {y(t)}

and staking them into a vector yΔ y1⋯yTd

� �
T , we arrive at

y ¼
X 1ð Þ
⋮
XTð Þ

24 35 A*
MS⊗ABS

� �ehþ n

Δψehþ n

ð10Þ

Since eh is sparse, channel estimation now has become a

sparse signal recovery problem. To estimate eh, we can resort
to corresponding algorithms referring to sparse signal recovery.

3.2 Low-rank property

Due to the spatial correlation and the unsymmetric angular
spreads over different domains, mmWave channels may ex-
hibit a meaningful low-rank structure that can be utilized to
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improve the sample complexity. Such a low-rank structure can
be observed from recent real-world mmWave channel mea-
surements in [20].

4 Overall framework of our proposed
algorithm

The overall algorithm framework of this paper is shown in
Fig. 1. Our proposed algorithm is divided into three stages:

(1) Preprocessing: in terms of joint low-rank and sparse
characteristics of massive MIMO channels, a mathemat-
ical model for channel state acquisition is established and
a non-convex weighted low-rank approximation method
is used to surrogate the traditional nuclear norm low-rank
approximation model.

(2) Construction of incomplete learning dictionary: obtain
channel measurements as training data set from a specific
cell, convert the training data set fromone-dimensional data
to two-dimensional images, construct channel response
samples, and construct the deep neural network to identify
the transmission features of the mmWave channels.

(3) Block-sparse compressed sensing [20] method is utilized
to obtain the channel state information and complete
high-precision estimation of channel state information
in FDD downlink massive MIMO.

5 Channel estimation algorithm combining
low-rank approximation and dictionary
learning

In this section, we divide our proposed framework into two sep-
arate stages. In the first stage, we investigate the received down-
link pilot signals in (2) as a low-rank matrix completion process.
In the second stage, we measure channel responses in a specific
cell and construct an incomplete learning dictionary such that the
dictionary adapts well to the key features of mmWave channels.

5.1 Low-rank approximation based on non-convex
theory

The received model in (2) can be formulated as sampling from
a low-rank matrix:

Y ijΔ
ffiffiffi
ρ

p
HTX

� �
ij ð11Þ

where YΔ
ffiffiffi
ρ

p
HTX is a low-rank matrix with rankrank(Y) =

L and Yij represents the (i,j)th element of matrix Y. Since
mmWave channels exhibit low-rank structure, the matrix
Ysatisfies the low-rank property as well [19]. Therefore, under
the joint conditions of low-rank and sparse constraints, the chan-
nel state acquisition model can be expressed as the following
model:

argmineh;β Yk k* þ λ βk k1 þ μ Y−ψeh��� ���2
F
; subject to Hv ¼ Dβ ð12Þ

Measurement of 

channel response
DNN training

construction of 

incomplete 

dictionary

Acquisition of 

CSI

Downlink received pilot 

signals

Estimation of received pilot 

signals based on non-convex 

rank approximation method

Block-sparse 

compressed 

sensing

Stage one:

Stage Three

estimation of CSI

Fig. 1 Block diagram of the
proposed method
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The first term of formula (12) is the nuclear norm approxima-
tion of the low-rankmatrix; i.e., it represents the singular value of
the matrix. The second term is l1 norm of sparse components,
which aims to constrain sparsity. The third term is Frobenius

norm (defined as Ak k2F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i¼1
∑
n

j¼1
ai; j
�� ��2s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr AHA
� �q

),

which is used to ensure consistent continuity of observed sig-
nals. Equation (12) is regarded as a convex optimization prob-
lem and can be effectively solved by various methods.
However, its solution is always suboptimal because the nuclear
norm is only a loose approximation of the rank function.
Regarding norm relaxation function, nonconvex penalty func-
tion outperforms traditional norm relaxation in accuracy of so-
lution. The nonconvex penalty function is defined as f(t) = η(|t|),
where η(t) is a monotonically non-decreasing nonconvex func-
tion in the real field ℝ and η(0) = 0.

The rank of the matrix is equal to the norm of the singular
value vector of the matrix, and the nuclear norm of the matrix
is equal to the norm of the singular value vector of the matrix,
so the nonconvex penalty function of the vector is naturally
extended to the singular value vector of the matrix, thus
obtaining the nonconvex weighted kernel norm of the matrix.

Definition: The nonconvex weighted nuclear norm of any
matrix X is defined as the sum of singular values of the matrix
after nonconvex function mapping; that is, the nonconvex
weighted kernel norm of matrix X is defined as

Xj jnw ¼ ∑
n

i¼1
g σX

i

� �
, where n ≤m and σX

i is ith singular value

of matrix X. g(t) is a non-convex penalty function acting on
the singular value of the matrix, so the real function g(t) only
needs to satisfy two conditions: g(0) = 0 and g(t) is a non-
monotonically decreasing non-convex function in interval [0,1].

Based on the above theory, in this section we propose a
non-convex algorithm for channel low-rank function approx-
imation, thus converting the downlink channel estimation of
Eq. (12) into the solution of the following function:

mineh;β α∑
i
g σi Yð Þð Þ þ λ βk k1 þ μ Y−ψeh��� ���2

F
ð13Þ

It can been seen from Eq. (13) that the nuclear norm in Eq.
(12) is surrogated by a non-convex function as an approxima-
tion of the low-rank matrix and that the third term is a loss
function to constrain the estimation error. Eq. (13) includes
continuous variables together with discrete variables, com-
bined with nonconvex functions. However, the solution to
the weighted nuclear norm low-rank approximation of non-
convex function is a tricky as it cannot be directly solved.
Thus, we utilize the Alternating Direction Method of
Multipliers (ADMM) to address the problem.

In terms of ADMM algorithm, formula (13) is obtained by
fixing one variable while solving another variable. Accordingly,

when the dictionary matrixD is fixed, the acquisition in Eq. (13)
can be regarded as a matrix completion problem. Therefore, the
low-rank approximation of the received signals Y can be con-
verted into the following equation:

min
Y

α∑
i
g σi Yð Þð Þ þ μ Y−ψeh��� ���2

F
ð14Þ

The function g(t) is a non-convex on the interval and sat-
isfies the following formula:

g σk
i

� �þ ωk
i σi−σk

i

� �
≥g σið Þ ð15Þ

The kth iteration of matrix Y is denoted as Yk, and σk
i is ith

singular value of Yk in the kth iteration, denoted as

σk
i ¼ σi Y k

� �
. Since g(t) is a nonconvex function, it is difficult

to directly solve Eq. (14). Equation (15) gives a linear approx-
imation of non-convex functions, so Eq. (14) can be iteratively
solved employing the following methods:

Y kþ1 ¼ argmineh α∑
i

g σk
i

� �þ ωk
i σi−σk

i

� �� �þ μ
2

Y k−ψeh��� ���2
F

¼ argmineh
μ
2

Y k−ψeh��� ���2
F
þ α∑

i
ωk
i σ

k
i

ð16Þ

where ωk
i is the sub-gradient of g(t) acting on the interval [0, +

∞). To solve Eq. (16) more easily, we utilize first-order Taylor
expansion for function (16). Thus, the first-order Taylor ex-
pansion at the matrix Κ ∈RM ×N is denoted as

Γ Yð Þ≈Γ Κð Þ þ ∇Γ Κð Þ;Y−Κh i þ μ
2

Y−Κk k2F
¼ 2 Y−XDΚ−XDβð Þ;Y−Κh i þ μ

2
Y−Κk k2F

ð17Þ

Therefore, the iterative function (16) can be converted to

Y kþ1 ¼ argmin
h∼

α∑
i
ωk
i σi Y k� �

þ μ
2

Y k− Y k þ 1

μ
Y k−Ψ h

∼	 
� ����� ����2
F

ð18Þ

Equation (18) remains still a nonconvex optimization prob-
lem, but according to the following theorem, there is an ana-
lytical solution to this problem.

As was proved in Menglu [14]: for any arbitrary λ > 0 and
Y ∈ℝm × n, if 0 ≤w1 ≤w2⋯≤wn, then the optimal solution to

the minimization problem min
X

λ ∑
n

i¼1
wiσ

Y
i þ 1

2
X−Yk k 2

F can

be obtained by weighted singular value operators, denoted as
X∗ =USλw(Σ)V

T,where Y =UΣVT is the singular value de-
composition of matrix Y and the singular values are expressed

as σY
1 ≥σY

2 ≥⋯σY
n ≥0. Sλw(Σ) is the diagonal matrix with
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diagonal elements (Σii − λwi)+, i ∈ {1, 2,⋯, n}, where t−að Þ
þ ¼ t−a t > af 0 t≤a. Based on the above derivation, we
develop Algorithm 1 to separate and extract low-rank received
signals matrix Y, which is shown in Table 1.

5.2 Channel measurements extraction utilizing DNN

Under normal circumstances, over-complete DFT dictionary is
used to achieve sparse channel recovery. However, the pre-
designed fixed dictionary cannot adapt to the channel structure
information according to the cell propagation environment. In
order to reduce the system complexity in the dictionary training
stage, a better method is to design an incomplete dictionary that
is specific to the transmission environment and suitable for chan-
nel characteristics. Ding Yacong et al. proposed a channel esti-
mationmethod based on learning dictionary for channel thinning
recovery in Liu et al. [17]. Different from the pre-designed dic-
tionary method, the proposed method learns a dictionary from
channel measurements. In the learning process, the sparse repre-
sentation is optimized, and the sparse vector of the channel is
extracted through sparse constraints. Channel characteristics at
different locations in the cell aremeasured indefinitely, and chan-
nel measurement vectors are trained to obtain an adaptive over-
complete dictionary. However, this scheme carries out channel
measurements randomly and indefinitely, thus lacking selection
of typical positions of channels, which may lose channel state
information indicating important structural features of the chan-
nels, decrease the accuracy of dictionary training, and increase
the redundancy of channel measurements.

Therefore, we adopt the DNN-based channel measurement
method to classify and measure the key features of downlink
mmWave channels. On the one hand, the measurement load
of the system is reduced. On the other hand, this method can
fully extract most channel structure characteristics, thus con-
structing an incomplete dictionary suitable for link character-
istics. This part corresponds to the third stage of the overall
framework of the algorithm. The specific implementation pro-
cess is shown in Fig. 2.

We classify path loss and other features utilizing DNN.
Firstly, we set non–line of sight (NLOS) and line of sight
(LOS) path propagation scenes in the actual transmission en-
vironment. Secondly, we use the DNN to classify channel
measurement vectors from the view of path loss, multipath
component energy, delay, phase and angle domains, and other
characteristics. During training, links with similar parameters
are grouped into the same group and group-based channel
measurements are obtained.

Sample the channel measurements to obtain the following
expression:

h mTSð Þ ¼ ∑
L

l¼0
∑
K

k¼0
αk;lδ mTS−Tl−τ k;l

� �
;m ¼ 1; 2;⋯;N ð19Þ

where TS is the sampling interval. We make Modulus
Operation on the sampled signals to obtain

gm ¼ h mTSð Þj j;m ¼ 1; 2;⋯;N ð20Þ

With the evolution of time, the signal gm tends to approach
zero. Therefore, onlyM2(M2 <N) sample signals are required
to construct the input set X of the DNN:

X ¼
g1 g2 ⋯ gM

gMþ1 gMþ2 ⋯ g2M
⋮ ⋮ ⋮ ⋮

gM Mþ1ð Þþ1 gM Mþ1ð Þþ2 ⋯ gM2

2664
3775 ð21Þ

DNN includes three hidden layers, each with 1024 hidden
cells and 64 output cells. Channel measurement matrix x un-
der different transmission environments is obtained from the
input of training samples. The dimension of the input unit is
equal to the dimension of the sparse feature vector. In this
paper, the depth neural network adopts feedforward structure,
the input layer is 1845-dimensional feature vector, the output
layer has classification function, and the channel feature vec-
tor forms an incomplete dictionary. In order to improve the
convergence speed of network algorithm, cross entropy loss
function and Sigmoid are used as activation functions of hid-
den layer elements. Hiding layer initialization adopts He ini-
tialization method. In addition, the depth neural network
covers about 4M adjustable parameters. This paper uses sta-
tistical gradient descent and NAG method to optimize the
parameters. It is assumed that the output layer result is quite
different from the preset result; i.e., the hidden layer feeds
back to the input layer to modify the weight of each unit.
The gradient is calculated by backward propagation based
on the minimum mean square error function; that is, the min-
imum mean square error between the channel measurement
samples and the estimated channel estimation matrix is taken
as the loss function. The basic objective function is defined as

JMSE W ; bð Þ ¼ 1

M
∑
M

m¼1
X̂ m U ;W ; bð Þ−Xm

�� ��2
2

ð22Þ

Table 1 Downlink receivedmeasured signal extraction algorithm based
on non-convex low-rank approximation theory and alternated direction
(ALM) method

Algorithm 1:Estimation of downlink received pilot signals based on
non-convex low-rank approximation

Input:the measurements Y, the matrices ABS, andAMS, pilot sequences X.
output:Y∗ = Yk + 1

Initialization :iterative times k = 0, λ, wk
i ¼ 0i ¼ 1; 2;⋯; n 。

while not converge
Solve Eq. (18) to obtain the solution of Yk + 1;

ωkþ1
i ¼ ∂g σi Y kþ1

� �� �
, calculate the sub-gradient of g(t), where

t = σi(Y
k + 1), σ1(Y

k + 1) ≥⋯≥ σn(Yk + 1),
Convergence condition: Y−XDβk k 2

F ≤ε; ε ¼ 10‐5

end while
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whereW and b represent the weight and the basis matrix to
be trained for the estimated channel state information.M is the
dimension of the training matrix, and U is the input feature
vector. The objective function JMSE(W, b) aims to minimize
the mean square error between the estimated channel estimate
and the channel measurement. The three hidden layers use
20% dropout to suppress over-fitting images in the training
process. The wireless channel measurement matrix is taken as
the input signal of the deep learning network. The output of
the lth hidden layer is

Gl
j ¼ f ∑

J

i¼1
ωl−1
ij Hl−1

i

� �
; j ¼ 1; 2;⋯; J ; l ¼ 1; 2;⋯L ð23Þ

in which ωl−1
ij is the weights of the ith node in the (l − 1)th

layer and the jth node and Hl−1
i is the output of the ith node in

(l − 1)th layer. J is the number of nodes per layer. f(·) is the
activation function of the hidden layer. We obtain the follow-
ing parameters using gradient descent method to obtain

Δ Wk
mþ1; b

k
mþ1

� � ¼ −λ
∂J

∂ Wk
mþ1; b

k
mþ1

� �
þ ωΔ Wk

m; b
k
m

� �
; 1≤k ≤K þ 1 ð24Þ

in which λ is the learning rate, momentum ω is used to
accelerate the convergence rate of the algorithm, and K is
the number of hidden layers. The process of DNN-based in-
complete dictionary learning is summarized as follows:

Step 1. Construct the measurement data set to be classified.
Equation (19) represents a massive MIMO channel
model.

Step 2. DNN training algorithm is mainly divided into two
stages: forward feedback and reverse propagation.

Step 3. At the end of training, the trained DNN performs
feature extraction on a massive MIMO channel to
identify channel features. The dictionary learning

algorithm proposed in this paper is shown in
Table 2.

After obtaining the dictionary, the channel matrix is sparse-
ly recovered in the angular domain. The sparse recovery pro-
cess is implemented employing the block-sparse compressed
sensing method.

:ĥ

method: ■Y kþ1 ¼ argmin
β

λ‖β‖1 þ μ
2
‖Y− Y k þ 1

μ
Y−XDβð Þ

� �
‖2F

Hν ¼ D̂β̂

.

6 Simulation results

We now carry out simulation results to illustrate the perfor-
mance of our proposed non-convex dictionary learning meth-
od. We compare our method with the following algorithms:
Dictionary Learning based Channel Model (DLCM) [2], Joint
Sparse and Low-rank Bayesian Learning(SLAB) [15], and
compressed sensing–based sparse channel estimation
(CSSCE).

We consider a scenario where the BS and the MS employ a
uniform linear array with N = 128, M = 1 antenna. The dis-
tance between neighboring antenna elements is assumed to be

input layer hidden layer
output layer

Channel 

measurement

Sampling of 
measurements

in different 

locations in a 
cell

incomplete 
dictionary 

targeted at 

specific 
transmission 

link

Fig. 2 Incomplete dictionary
based on DNN

Table 2 Incomplete dictionary learning algorithm

Algorithm 2:Incomplete dictionary learning

Input:sparsity of the mmWave channel
Output: incomplete dictionary D

Step 1: Measure the links from BS to MS to extract measurements of
downlink vectors hi, i = 1, 2,⋯, L;

Step 2: Take the measurements into the DNN to perform Eqs. (22), 23,
and (24);

Step 3: Construct the incomplete dictionary base on the output of DNN.
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half the wavelength of the signal. The mmWave channel is
assumed to follow the geometric channel model with L = 6
clusters. The mean AoAs and AoDs for these six clusters are
set to θ1 ¼ ϕ1 ¼ π

6 ; θ 2 ¼ ϕ2 ¼ π
3 ; θ3 ¼ ϕ3 ¼ π

2

; θ4 ¼ ϕ4 ¼ − π
2 ; θ5 ¼ ϕ5 ¼ − π

3 ; θ6 ¼ ϕ6 ¼
− π

6. The relative AoA and AoD shifts are uniformly gener-
ated within the angular spreads (θl − δθ/2, θl + δθ/2), (ϕl
− δϕ/2, ϕl + δϕ/2), Suppose the base station is equipped
with a uniform rectangular array of antennas and the terminal
is equipped with a single antenna. The wireless channel model
uses NLOS (non–line of sight) UMI-Street Canyon (Urban
Microcellular Channel) scenario with a carrier frequency of
28 GHz.

The performance is evaluated via one metric, namely, the
normalized mean square error (NMSE). The NMSE is calcu-
lated as

NMSE ¼ E
Ĥ−H

�� ��2
F

Hk k2F

" #
ð25Þ

where Ĥ denotes the estimate of the true channel H.
Figure 3 a and b illustrates the NMSE performance versus

channel matrix rank for all algorithms with SNR = 5 dB and
15 dB. As can be seen from the figure, the DLCM and CSSCE
comparison algorithms are not sensitive to the change of ma-
trix rank, and compared with SLAB, the performance of our
proposed algorithm has been significantly improved in the
case of low rank. This is because the algorithms DLCM and
CSSCE do not consider the low-rank performance of the
channel, and for non-convex methods, their algorithms are
superior to SLAB algorithms using kernel norm approxima-
tion. Although the channel has a low rank inMIMO scenarios,
traditional algorithms do not make full use of these features.
The algorithm in this paper makes full use of the low-rank
characteristics of the channel. In Fig. 3a, when the channel

matrix rank is less than 15, the performance of CSSCE and
SLAB algorithms is not as good as that of this algorithm. This
is because from the perspective of least squares, CSSCE has
the best performance, but the algorithm is sensitive to noise
and has poor performance under low signal-to-noise ratio,
while SLAB algorithm is based on Bayesian posterior mean,
so its anti-noise robustness is better than the least squares
algorithm. Therefore, SLAB algorithm is superior to CSSCE
when SNR is low and the rank of matrix is large. When the bit
energy signal-to-noise ratio EbNo is increased to 15 dB, the
result is similar to Fig. 3b.

Figure 4 is a graph of normalized mean square error per-
formance versus EbNo for four algorithms. The algorithm
proposed in this paper outperforms DLCM, SLBF, and
CSSCE for the following reasons:

(1) DLCM algorithm carries out random large-scale mea-
surements on the channels in the cell. Thus, DLCM can-
not accurately capture all link characteristics and has
large data storage load. The method proposed in this
paper classifies the channel scenes and extracts the key
features of the measured values according to the channel
categories to form an incomplete dictionary. Therefore,
compared with DLCM method, our proposed algorithm
can obtain higher channel estimation accuracy; that is,
the normalized mean square error of this algorithm is
lower than DLCM algorithm under the same bit energy
signal-to-noise ratio.

(2) When SLBF performs channel low-rank approximation,
nuclear norm method was adopted. However, this meth-
od is not optimal. The nonconvex approximation algo-
rithm used in this paper is an optimal solution for low-
rank approximation. Therefore, compared with SLBF,
the main features of the channel can be extracted more
accurately.

(a) performance comparison of channel 

rank and NMSE(EbNo=5dB)

(b) performance comparison of channel 

rank and NMSE(EbNo=15dB)

Fig. 3 a Performance comparison
of channel rank and NMSE
(EbNo = 5 dB). b Performance
comparison of channel rank and
NMSE (EbNo = 15 dB)
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(3) CSSCE algorithm only mines the sparse characteristics
of the channel and ignores the low-rank characteristics of
the channel angle domain. Therefore, compared with the
algorithm proposed in this paper, it cannot accurately
mine the potential internal structural characteristics of
the channel.

Figure 5 shows the NMSE performance comparison of the
four algorithms on the base station for different numbers of
pilots. In our experiment, EbNo = 10 dB is set. The normal-
ized mean square error decreases as the number of training
pilots increases. Compared with the other two methods,
SLAB and the algorithm proposed in this paper reduce the
number of downlink training pilots. This is because SLAB
and this paper make use of the low-rank characteristics of
the channel, which further restricts the sparse performance
of the channel and reduces the effective dimension and train-
ing load of the downlink channel compared with DLCM and
CSSCE. Since the optimal solution can be obtained through
nonconvex low-rank approximation, the algorithm in this

paper can perform low-rank approximation better. Therefore,
under the same NMSE performance, the number of training
sequences required in this paper is smaller than SLAB
algorithm.

As can be seen from Fig. 4, to achieve the same NMSE
performance, the algorithm proposed in this paper requires the
lowest downlink pilot sequence length. Theoretically, the longer
the pilot sequence is, the longer the channel estimation takes, and
the more accurate the channel state information is. However, at
the same time, it needs to occupymore frequency band resources
to transmit pilot signals, resulting in lower frequency band utili-
zation rate. Therefore, the frequency band utilization rate of the
algorithm in this paper is higher than that of the other three
methods, and accurate channel estimation results can be obtained
by using relatively few pilot sequences.

7 Conclusion

For massive MIMO FDD systems, this paper proposes an esti-
mation channel estimation framework that exploits the joint low
rank and sparse characteristics of channels. In the proposed
scheme, the base station sends a downlink pilot sequence to
the mobile station. The mobile station quantizes the received
downlink pilot signal, then feeds back the uplink to the base
station and performs a channel estimation algorithm at the base
station. The innovation lies in using non-convex algorithm in-
stead of traditional nuclear norm to approximate the rank of
wireless channel, and learning sparse coefficient through non-
preset dictionary. In this method, the construction of dictionary is
independent of the transmission signal. The channel acquisition
matrix is obtained by measuring multiple channel impulse re-
sponse experiments. Then the key characteristics of the channel
are extracted by DNN to form an incomplete dictionary, and the
channel state is obtained by sparse representation. Simulation
experiments verify the superiority of the proposed method from
NMSE and pilot number.
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