Annals of Telecommunications (2018) 73:415-427
https://doi.org/10.1007/512243-018-0641-8

@ CrossMark

Cloud-based federated identity for the Internet of Things

Paul Fremantle! © . Benjamin Aziz'

Received: 27 March 2017 / Accepted: 29 April 2018 / Published online: 29 May 2018
© The Author(s) 2018

Abstract

The Internet of Things (IoT) has significant security and privacy risks. Recent attacks have shown that not only are many IoT
devices at risk of exploit, but those devices can be successfully used to attack wider systems and cause economic damage.
Currently, most devices connect to a cloud service that is provided by the manufacturer of the device, offering no choice
to move to more secure systems. We outline a proposed model for IoT that allows the identity of users and devices to be
federated. Users and devices are issued with secure, random, anonymised identities that are not shared with third parties.
We demonstrate how devices can be connected to third-party applications without inherently de-anonymising them. Sensor
data and actuator commands are federated through APIs to cloud services. All access to device data and commands is based
on explicit consent from users. Each user’s data is handled by a personal cloud instance providing improved security and
isolation, as well as providing a trusted intermediary for both devices and cloud services. We demonstrate this model is
workable with a prototype system that implements the major features of the model. We present experiment results including
performance, energy usage, capacity and cost metrics from the prototype. We compare this work with other related work

and outline areas for discussion and future work.

Keywords Cloud computing - Distributed authentication and authorisation - Federated identity management - IoT

1 Introduction

Internet of Things (IoT) devices are proliferating throughout
the world, bringing with them a significant threat to privacy
and security. There are multiple concerns with IoT devices.
One of the key issues in the IoT space is the concern that
when a device is purchased, it is tied to a specific web
system or cloud service, which is owned and managed by a
cloud service provider (CSP).

In traditional Internet systems, users can migrate away
from insecure services, because of interoperability and
choice. For example, the instant messaging market has seen
the emergence of a number of more secure systems, includ-
ing WhatsApp, Signal and Threema. In the IoT, the devices
are often hard-coded to work with only specific Inter-
net systems, using private protocols and specific servers.

< Paul Fremantle
paul.fremantle @port.ac.uk

Benjamin Aziz
benjamin.aziz@port.ac.uk

School of Computing, University of Portsmouth,
Portsmouth, UK

The result is that users are reliant on particular CSPs.
These may be hacked, or may go out of business rendering
devices inoperable. A common attack on CSPs has been to
steal credentials and publish users’ passwords.

Hacked devices not only can be used to steal personal
data but also can be used to launch attacks on other
systems. In late 2016, large parts of the US East Coast
Internet were disabled by a distributed denial of service
attack (DDoS), launched from a botnet running across
approximately 100,000 IoT devices including IP-enabled
CCTYV cameras [1].

In addition, there are other security and privacy con-
cerns. Small, inexpensive and/or low-power devices do not
properly support encryption allowing communications to
be stolen. Few devices use well-defined identity models,
meaning that spoofing attacks are possible. Data may be
validly shared by multiple cloud services but then aggre-
gated to de-anonymise user information and infringe on
privacy. We have previously identified a number of secu-
rity and privacy concerns with IoT which are documented
in [2].

We outline a new model, together with a prototype and
experimental results that aims to address these issues. We
call this model OAuthing.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-018-0641-8&domain=pdf
http://orcid.org/0000-0001-6208-1975
mailto: paul.fremantle@port.ac.uk
mailto: benjamin.aziz@port.ac.uk

416

Ann. Telecommun. (2018) 73:415-427

1.1 Aims and objectives

Based on the privacy and security concerns identified above,
the following research questions were identified:

— RQI1: Is there a model and architecture for IoT that
effectively federates identity and consent management?

— RQ2: Can we provide pseudonymous access to IoT
systems such that identity is not implicitly shared even
in secure flows?

— RQ3: Does this approach provide improved privacy and
security for IoT networks?

— RQ4: Can this approach be implemented without
adding an infeasible burden to the performance, cost
and energy usage of an IoT network?

The aim of this work is to answer these four research
questions.

1.2 Contributions

The contributions of this work in addressing these issues
include the following:

— An architecture and system model that allows the
federation of multiple parties: the manufacturer, the
identity provider, the device identity management, and
cloud services and applications that require access to
IoT data. This federation and decoupling encourages
choice of provider as well as reducing the data available
in any given attack.

— Clearly defined device and user registration processes,
based on the OAuth2 protocol, that have been extended
to support IoT devices and be effective in device
scenarios.

— A model for providing anonymous identities for users,
reducing the chance that leaked data can be tied to
users.

— An architecture that provides each user with a separate
cloud instance to handle sharing device data, and an
approach for dynamically provisioning these cloud
instances.

— A demonstration of the workability of the model
through the creation of a working prototype, together
with a test harness.

— Experimental results on the including energy usage,
performance, cost and capacity metrics of the prototype.

1.3 Assumptions and scope
The Internet of Things encompasses a vast array of
environments, from small devices that connect over low-

power protocols like Bluetooth LE, to industrial monitoring
devices. While we believe that this work could be extended

@ Springer

to cover a significant portion of this space, we have chosen
to restrict the effort to cover:

— Devices with a direct TCP/IP connection to the Internet

— Devices that can be owned or managed by a single
person

— Systems where the privacy of the data is relevant to the
owner of a device.

For example, this work does not yet address devices
where the device connects via bridging through an app on a
mobile phone or via a device gateway. However, the app on
the phone or the local gateway could be secured using this
model.

1.4 Outline of the paper

The remainder of this paper continues with the following
organisation. In Section 2, we propose a model of the
different parties involved and an architecture that supports
decoupling of different actors in the environment. In
Section 3, we outline a prototype middleware system that we
have created to implement this model, alongside prototype
devices and cloud services that demonstrate end-to-end
flows. In Section 4, we outline the experimental results,
together with the test harness that was built to gather
data. We discuss the related work and compare it to our
results in Section 5. In Section 6, we analyse the outcomes
of the experimental results and the overall model. We
also outline a set of further work identified during this
research.

2 Model

In the following section, we outline a model—called
OAuthing—that aims to federate identity and consent
management for IoT systems. We utilise the UML2 [3]
graphical modelling notation to model the participants and
flows of this approach.

2.1 Participants

Figure 1 shows the current situation for many IoT systems,
where there is no federation and the device talks to a single
service that manages identity, stores data, provides a user
web interface etc.

By comparison, the federated model we present in
Fig. 2 allows different federated parties to provide different
services that work together.

The participants of the OAuthing model are as follows:

— The user identity provider (UIdP): this is an existing
login system where users present their credentials

Ann. Telecommun. (2018) 73:415-427

417

g1
Cloud Service

many

]

Device

Fig.1 Existing approach for IoT device cloud

(e.g. Google, Facebook, Github, Twitter or any other
federated login).

— The user: A user may own one or more devices. A user
must have at least one identity with a UIdP.

— The device identity provider (DIdP): this is an Iden-
tity Broker that first authenticates a user with a UIdP
using existing federated identity protocols including
OAuth2, OpenID Connect (OIDC) or SAML2. Once
the identity is validated, it then creates a secure ran-
dom anonymous identity which is used in all further
processing.

— Personal cloud middleware (PCM): this is an isolated
broker that shares data between devices and third-party
applications (TPAs) on behalf of the user. The PCM
talks to the devices and the TPAs. Within the remit of
a single OAuthing instance, there is one PCM per user.

]
User IdP
(UldP)

[.
-5 Device IdP
Manufacturer (DIdP)

(= B r =
Intelligent Gateway Third Party App
(IG) (TPA)

1

Device

Personal Cloud Middleware
(PCM)

Fig.2 Proposed model

We utilise a cloud environment to dynamically launch
PCM instances on behalf of users as needed.

— Intelligent gateway (IG): the IG interfaces with the
DIdP to validate identities and access authorisation
policies and to the cloud infrastructure to instantiate
new PCMs. Devices and CSs connect to the IG, and it
routes requests to each user’s PCM.

— Third-party application (TPA): a device is an IoT
device if and only if it shares or receives data and
commands with an Internet service. Users control
which TPAs can access their sensor data or control
their actuators by explicitly consenting to authorise a
TPA. Any third party can provide a TPA. If no TPA is
authorised by the user, then a device’s data is neither
shared nor stored.

— The device: the device consists of one or more sensors
and actuators together with a controller. Devices with
sensors will publish sensor data. CSs may subscribe to
this data if and only if users consent to it. Devices with
actuators will subscribe to commands. CSs may publish
commands to devices if and only if users consent to it.

— The manufacturer: the manufacturer is the logical
organisation that creates and markets the device,
irrespective of whether they actually outsource any part
of the physical manufacturing to a third party. In this
model, the manufacturer configures each device with a
single DIdP.

The OAuth2 protocol [4] is a widely used federated
authentication and authorisation protocol. This model
utilises the OAuth2 model as a basis for the identity and
ownership of devices. While the system can support other
protocols such as SAML and OpenID Connect for user
login, the device is constrained to use only the OAuth2
protocol, as both those protocols impose too great an impact
for a constrained device [5]. One concern with IoT is that
hardware devices can be compromised and secrets read
from them. It is therefore important that each device has
its own credentials. We map each device to be a unique
OAuth2 Client, and we use the OAuth2 Client ID as a secure
device ID that is only ever shared with the DIdP. We define
ownership of a device by the user authorising the issuance
a security token to the device giving it permission to act on
the user’s behalf.

Figure 3 shows the UML sequence diagram of a runtime
interaction between an owned device and a cloud service.

2.2 Lifecycle
We modelled the lifecycle of a device. The UML lifecycle
diagram is shown in Fig. 4.

Once the device is initially flashed, it is connected to a
manufacturing server. The manufacturer then uses the DCR

@ Springer

418

Ann. Telecommun. (2018) 73:415-427

Fig.3 Device publishing data to
Cg P & | Device | | Device IdP |

CONNECT with Access Token

prmsmeme s prmmemen e

| Device | | Device IdP |

.

Manufacture
(the device is created)

4 ¢

Client Registration
(the device is registered with OAuThing
as a OAuth2 client)

/
Purchase
(the device is physically
in the hands of a user)

48 ~
User Registration
(the user takes ownership of the
device and allocates it permissions)
4 '
Use A

(the device is now publishing data and

| acting on user commands)
.

Fig.4 Lifecycle of a device

@ Springer

’ Intelligent Gateway |

| Personal Zone Hub | | Third Party App

,,,,,,,,,,,,, >
introspect toke
:(

Ve CONNECT with Access Token over WebSocket 1

i -=-EeiSmcmGasiesaddocsanctrncnaay 1

[P

I
A
1 validate scope for SUBSCRIBE |
re- = !
I
I

1 validate scope for PUBLISH

ute PUBLISH to correct PZH

‘ Intelligent Gateway |

| Personal Zone Hub | | Third Party App

API into the DIdP to request a client ID and secret. These
are configured into the device by the manufacturing server.
At the same time, the DIdP returns a unique user registration
URL (URU) that is printed onto the device (usually as a QR
code) by the manufacturer.

When the user buys the device, they scan the QR code or
otherwise access the URU. This directs the user to the DIdP,
which presents a choice of UlpDs to the user. Once the user
is authorised with their existing UlpD, they are asked in
turn to authorise the device. The resulting OAuth2 refresh
token is then stored on the device and represents the logical
ownership of the device.

This flow is documented in the UML sequence diagram
in Fig. 5.

2.3 Personal cloud middleware

A key part of the model is the concept of a personal hub:
where each user’s data is routed to its’ own hub, protecting
the data from multi-tenant attacks. Each hub is run in its
own virtualised cloud environment. When a request comes
in from a device or CS, we use the anonymous identity
associated with the bearer token to route the request to an
instance that is specific to that user. If there is no cloud
server available, the routing system makes a call to the cloud
management system to instantiate a new PCM “on-demand”

Ann. Telecommun. (2018) 73:415-427

419

User Device Device IdP UldP
1 I 1 1
I 1 I I
I 1 Connect (Presence) I I
| L E e e LR LR LEELEEEEECEED > I
| 1 | |
i User scans QR code and connects to URU » I
| A L 1 |
| Redireclt to chosen UIdP | |
\(""""""" 5, 1 I

. | ! 1
OO] |
| Redirect to DIdP | |
[L 1
1 request: authorization 1 1
S [T Y, i I
I . 1 I I

Authorize
PRI > |
: cauthcode 1 :
I I I I
| | Client ID/SecretAuthcode | 1
I I I I
1 . refresh and access token 1 1
I | I I
| ,.notify refresh token stored . > |
I 1 I I
' Success notification ! !
L o] 1
1 1 1 1
User Device Device IdP UldP

Fig.5 User registration sequence diagram

and then waits until the instance is running before routing
the request to the PCM. In the model, the PCM supports
routing and distribution of data and commands, as well as
summarisation and filtering of data. These capabilities have
an important role in protecting users privacy: firstly, the
runtime does not inherently share data such as IP addresses
or MAC addresses that can be used to identify devices or
users. Secondly, by filtering or summarising data, the PCM
can avoid many fingerprinting attacks on devices [6]. The
PCM can also provide protocol mapping and device shadow

capabilities, meaning that it is simpler for TPAs to connect
to devices.

2.4 Scopes and APIs

The DIdP implements consent-based authorisation policies
called scopes, as defined in the OAuth2 specification. Each
scope controls access to a set of APIs. These APIs may
be implemented in multiple protocols. Users may consent
to a third party to have access to a specific scope, which
is captured in a token. The model-defined APIs are shown
in Fig. 6, together with the provider of the API and the
associated scope.

One of the outcomes of defining scopes as part of this
model is that there is a clean mapping between the different
roles in the system and the associated scopes, which is
shown in Fig. 7.

2.5 Information visibility

The model allows us to analyse which identifiers and data
each participant has access to. A key aim of this model is
to ensure that each party has a restricted view of a user’s
actions and therefore can only breach privacy in a limited
way or with the help of a third party.

In Fig. 8, we identify each participant and show what
access they have to credentials, identities and data.

The manufacturer only knows the original device identity
(e.g. MAC address) and the client ID that was issued
at manufacturing time. Unless the user chooses to share
information with the manufacturer, then the manufacturer
does not know the owner of the device and do not see any
device data.

Fig.6 APIs - : e
API Client Provider Scope Description
Dyn Client Manu- DIdP dcr This allows the creation of
Registration facturer OAuth2 clients.
OAuth2 Device DIdP NA This APl is defined by the
Token API CS OAuth2 specification.
Introspection |G DIdP intro 1G to DIdP to introspect bearer

tokens

Publish Data Device IG pd Publish Data from a device sensor
Subscribe to CS IG sd CS subscribing to Data from a
Data sensor
Publish CS IG pc CS sending commands to an
Commands actuator
Subscribe to Device IG sc Actuator subscribing to

Commands

commands from a CS

@ Springer

420

Ann. Telecommun. (2018) 73:415-427

Fig.7 Mapping of scopes to

participants Role Scopes Description of roles and scopes
UldP N/A This IdP is the primary source of identity to the Device IdP
and does not have any OAuth2 scope permissions

DIdP openid The Device IdP is the “source” of scopes to the other roles. It
(or UIdP requires access to the third-party IdPs, which may define their
Specific) own scopes.

Manu- der Dynamic Client Registration (DCR): allows caller to create

facturer new ClientIDs using the DCR API

Intelligent intro

Gateway

TPA Rd, Pc

Device

Pd, Rc

Introspection: allows the IG to ask the DIdP for the
pseudonym and scopes for a given Bearer Token

Read/Subscribe to Data (Rd) and Publish Commands (Rc)
The TPA may be allowed one or other or both

Publish Data (Pd). Read/Subscribe to Commands (Rc).

The DIdP knows the original user profile as provided by
the UIdP. This is only used to ensure that two tokens issued
to the same user will result in messages being routed to
the same PCM. The DIdP is aware of the device presence
(because the device must regularly refresh its tokens, and
because the IG must introspect those tokens). However, the
DIdP does not see any of the device data or commands.
The DIdP is aware of which TPAs a user is subscribed to,
but does not know which devices are interacting with which
TPAs. In the event the DIdP is compromised, the attackers
cannot steal passwords or any user data—only the link
between the UIdP user identity and the anonymous identity.

Fig.8 Information visibility

matrix

User Profile

HW ID

Secure Device ID

Device Secret
Pseudonym
Token

Device Data

@ Springer

The IG is given an anonymous random ID for the user,
through an Introspection API on the DIdP, which is only
available to IGs. The IG does not store any data. If it is
compromised, only data flowing through the system can
be stolen, and this cannot inherently be tied to a user or
any device identifier. Both the IG and the DIdP would
need to be compromised to tie that data to a specific
user.

The device and any TPAs are not aware of the user’s
identity—they only see a refresh or bearer token and do
not have the authorisation to call the introspection API.
Therefore, a TPA cannot deduce the user’s identity from

uldP DidP Mfr Dev IG TPA
v v

v v
v v v
v v
v v
v v v

v v v

Ann. Telecommun. (2018) 73:415-427

421

the OAuthing system. However, a TPA may be aware of
the user’s identity through out-of-band means. For example,
if the user decides to share their IoT data publicly on
a webpage, this webpage identifies them. Even in this
case, the TPA does not know the device ID, only the data
that is shared. Alternatively, the data itself may contain
personally identifiable traits: this may be mitigated by
sharing a summary or filtered data. Finally, the device data
itself is only visible to the device, the PCM and authorised
TPAs.

3 Implementation

In order to validate the model, we built a prototype of the
system.

The following sections outline the components that were
implemented to demonstrate the system.

3.1 Protocol mapping

The model has been designed to work independently
of specific protocols. However, in order to implement a
prototype, we needed to make specific choices on protocols.
We also provide a mapping of part of the OAuth2 protocol
into MQTT [7] (an IoT-optimised protocol), allowing the
device to utilise a single protocol for identity, authorisation
and data. This simplifies the device coding and reduces the
memory footprint of OAuthing support.

3.2 The OAuthing DIdP

The prototype DIdP is called the OAuthing DIdP.

We implemented the OAuthing DIdP as a set of
containers running in the Docker! container system,
allowing it to be efficiently deployed and tested in a cloud
environment.

One of the key aims of our model is to preserve privacy.
In our implementation, we do not store any identifiable
aspects of the user. Each UIdP provides the OAuthing IdP
with an identifier. Rather than directly storing these identi-
fiers, we create a new secure random anonymous identity
and store this against the hash of the UIdPs unique ID.

A key difference between this and previous prototypes is
that we implemented the MQTT APIs using an embedded
broker pattern. In this model, the MQTT broker is part of the
OAuthing IdP. The major benefit of this approach is that the
broker can implement a more secure model, especially when
emulating request/response flows over the asynchronous
MQTT protocol.

Uhttp://www.docker.com

3.3 IGNITE

The prototype of the IG is called IGNITE (Intelligent
Gateway for Network IoT Environments).> IGNITE runs in
a Docker cloud container environment and has access to
control this Docker environment. When a device or TPA ini-
tiates an MQTT connection with the CONNECT packet,
IGNITE first validates the bearer token by calling the DIdP’s
introspection API. This either returns a random anonymous
ID together with a set of scopes or informs IGNITE that the
token is invalid. IGNITE is then responsible for launching a
new cloud instance to act as the PCM on behalf of the user,
or routing the request to the existing PCM.

3.4 Personal cloud middleware

The PCM was implemented using the open source RSMB
MQTT broker.> This broker has a very low memory
overhead and enabled us to run a significant number of
PCM containers on standard hardware. We have not yet
implemented summarisation and filtering on the PCM,
which will potentially enlarge the memory footprint, but
we did not yet optimise the Docker runtime of the PCMs
or the underlying operating system, and therefore, we are
confident that this can be offset.

3.5 Device hardware

We aimed to build the simplest possible device to
provide a baseline evaluation of whether the model was
implementable on very small footprint devices. We chose
the commonly available ESP8266 platform for our reference
device. This chip provides an embedded 32-bit processor,
Wi-Fi connectivity and a number of digital inputs and
outputs for less than US$2.50 each (at the time of
writing). Currently, the ESP8266 supports TLS without full
certificate authority chains. Instead, it uses fingerprints of
SSL certificates to validate them.

3.6 Sample third-party application

In order to demonstrate this system, we also created a
simple web-based cloud service. This first connects to the
OAuthing DIdP using a standard OAuth2 HTTP flow to
request access to IGNITE. The user logs in using the
same UIdP that they registered their device with. After the
user authorises the Sample TPA to access IGNITE, the
sample app is loaded. This uses MQTT over WebSockets to

ZPlease note that there is another IoT framework with a similar name.
These systems are unrelated and the system described here predates
the other system: https://www.iot-ignite.com/

3https://github.com/eclipse/mosquitto.rsmb

@ Springer

http://www.docker.com
https://www.iot-ignite.com/
https://github.com/eclipse/mosquitto.rsmb

422

Ann. Telecommun. (2018) 73:415-427

communicate and presents a simple U, which allows users
to interact with the device.

4 Evaluation

In this section, we present the results of testing both the
device and the cloud systems involved in the OAuthing
prototype. Note that there was no optimisation of the
systems towards better performance: the system is a
prototype and we did not perform profiling or optimisations.
We therefore consider the results of these tests to be an
upper bound on the extra costs of using OAuthing.

4.1 Test methodology

The test methodology was influenced by academic papers
both on middleware performance testing [8, 9] and
commercial testing [10, 11].

We identified four key measures for evaluating the
prototype.

— Transactions per second
The total number of transactions per second (TPS)
that a system can handle is the most common
measurement of distributed systems.
— Latency
The latency of a system measures how quickly the
system reacts. We measured the time taken from the
start of a publication process on the publisher to the
time that the message is received at the subscriber.
— Device memory
Devices often have constrained memory, and there-
fore, a key measure we identified was to understand
the memory requirements of our firmware and therefore
the remaining memory available to device designers to
implement their own logic.
— Power consumption and energy usage
A key aspect for IoT devices is power consumption.
Many IoT devices (including the prototype system) run
off of a battery with a limited capacity and therefore
rely on using low power. We therefore created a test
harness to accurately measure power usage and energy
consumed by our sample device. Further details of the
power measurement system are described below.

In all the tests described below, we ensured that the
systems were warmed up and running and that all the
results were repeatable across multiple tests. In addition,
we created a baseline system for comparison. The baseline
system does not use the OAuthing backend, but instead uses
the commonly used Mosquitto MQTT server. All the tests
were carried out using standard cloud server instances with
fixed sizes from the Digital Ocean cloud provider.

@ Springer

In order to simulate multiple clients for the latency and
TPS tests, we created a test harness designed to run across
multiple cloud servers. The test harness consists of multiple
test load drivers (TLDs). Each TLD can simulate one or
more clients, emulating the network behaviour of the IoT
device. The TLDs then report the performance and latency
data to a test manager. The test manager is running on a
separate instance, and this service collates the results. The
TLDs implemented two different workloads:

— One second client
The one second client emulates a device that sends
one message per second. This is designed to test the
system under moderate load.
— Stress client
The stress client emulates a device that sends
messages continuously. This is designed to test the
system under heavy load.

Both tests time the latency between sending the message
from the device and receiving it in the TPA (or vice-versa).

4.2 Results

One clear result is that there is a working prototype of
the model that demonstrates all aspects of this decoupled
approach, including support on a low-cost device and a
cloud implementation of the server-side components.*

Figure 9 shows a simplified diagram of the test environ-
ment, which is running in a public cloud environment.

Figure 10 shows the latency comparison of OAuthing
compared to the baseline system (Mosquitto) using the
one second client. Figure 11 shows the mean and 95%
and 99% percentiles for the IGNITE latency responses
in the same test. The graph demonstrates that OAuthing
shows consistently low latencies across all workloads. The
additional latency added to message interactions compared
to Mosquitto was around 1 ms. The percentiles show that
99% of requests had latency of less than 11 ms even when
the system was loaded with 400 test clients, and 95% of
requests had latency less than 6 ms. Given that average
round trip ping times over the Internet are in the 20-80-
ms range, these results demonstrate that the overhead of the
proposed approach is insignificant to users.

The next data point collected was the maximum number
of PCMs that could be run on a single cloud server. The
tests were run on a server with 2 GB of memory and no
swap configured, costing US$20/month. This environment
was able support at least 400 PCM instances, with the server
running out of memory beyond 415 containers. Simply

4A short video showing the registration and data-sharing process is
available at http://freo.me/oauthing-video

http://freo.me/oauthing-video

Ann. Telecommun. (2018) 73:415-427 423
Fig.9 Test environment Digital Ocean LON1 region
s T T ——— N
s Test M
(oauthing.io ignite-iot.net 4GefatDr2;|aegter I
| | 2Gb Droplet 2Gb Droplet |
| MQTT |
.) Cloud Service collector
: Device IdP: SaniEe :
S I
| OAuthing GNITE ‘ tats analyser I
| ‘ |
| DIdP Docker 1 Personal IGesbt E%?;;jile?nver I
: Database: Controller: Zone Hub: 50 virtual :
clients
| Cassandra dproxy L |
\ Upto 10 TLDs |
N o o e — pertest g
Key [— = — 7
y | Datacenter l Dr?:slgﬁioud Docker Container
e —

adding swap will increase this number at the cost of some
latency, but we have not yet evaluated this balance.

Figure 12 shows the average connect time for three
different scenarios. The fastest is the Mosquitto broker,
with an average connect time of 24.5 ms. The slowest is
the OAuthing when the user has not previously connected.
In this scenario, the system needs to introspect the token
and then wait until the new container is launched and
ready. This takes on average 1294 ms (1.3 s). While this
is comparatively large, it happens rarely in the system and
in practice devices take between 2 and 10 s to connect to
local Wi-Fi networks. This could be ameliorated by pre-
loading unused containers and associating them with users
at connect time.

The third scenario is the connect time when there is
already a user container running. The average time here was
35.9 ms. The extra latency compared with Mosquitto (35.9
vs 24.5 ms) is well within acceptable ranges.

Comparison of OAuthing vs Mosquitto

2.5 7 1
2.; 20 2.1

2.2 o) 2 3
; U020

g
o
]

1.3
11 _A 1.1
IAIL 115, 11 10

Latency in milliseconds
(smaller is better)

o

n

0.0 T T T T 1
0 100 200 300 400 500

Number of concurrent clients
=¢=Mosquitto Latency Mean =#=0Authing Latency Mean

Fig. 10 One second client comparing OAuthing vs Mosquitto

Figure 13 shows the performance of the OAuthing
system under stress. This shows that the server was handling
more than 4500 TPS at all levels and the average latency
rose to 83.3 ms when the system had 400 concurrent clients.
This test demonstrates that the system as deployed in the
test environment can support each user owning 600 devices
each interacting once a minute, even when the system is
fully loaded with 400 concurrent PCM containers. The
latency line shows that as new clients are added the latency
increases in direct proportion, demonstrating fair allocation
of resources.

Figure 14 shows the performance of the OAuthing I1dP
while issuing new Client IDs during manufacturing. This
is the least well-performing part of the system because we
chose to use a secure hashing algorithm (PBKDF2 [12]) to
ensure that our password database is resistant to dictionary
attacks. The result is that adding a client incurs considerable
CPU time.

"One second" Client Latencies

12.0
o5 10.4
9.6 :
100 gg 3390
78 8.1
8.0

5.5
6.0
456 45 >0

4.0 4.2 46 44

4.0

Milliseconds Latency

2.1 2.0 2.1

21 22 2p0 2.0 23
2.0 -

0.0
50 100 150 200 250 300 350 400
Number of concurrent clients

Mean =%95% percentile 99% percentile

Fig. 11 One second client OAuthing percentiles

@ Springer

424

Ann. Telecommun. (2018) 73:415-427

1400.0

[N

1200.0 ——
1000.0 —

800.0 1 ——

600.0

400.0

200.0

24.5 35.9
0.0 T T

OAuthing Further OAuthing First
Connect Connect

Mosquitto

Fig. 12 Device connect time

We also performed performance tests measuring the
latency and throughput of the DIdP under introspection,
when the gateway asks the DIdP for the anonymous identity
and authorisation policies. This is presented in Fig. 15. The
results show that the introspection service can successfully
scale to support many IGs. Given that CSs and devices only
connect intermittently (due to the persistent TCP session
model of MQTT), even a single DIdP server could handle
significant numbers of devices and third-party clients.

4.3 Device memory usage

The Arduino development environment that was used
to create the device firmware provides statistics on the
program and variable memory usage. Figure 16 shows the
program and variable memory usage of the ESP8266 when
loaded with the OAuthing sample device loader code. The
graph captures the usage of different components of the
loader. Each column includes the previous column. The
largest component is the base C libraries needed by the
Arduino system, which take up 40% of variable memory and
24% of program memory. The next largest aspect is the TLS
support which incrementally takes 5.5% of the program
memory and 7.7% of the variable memory. Overall, the
loader leaves over 38 k of variable memory and over 700 k

90.0 833 7000
5927 A
80.0 I
2 55045360 5347 6000
§700 - = — - 4806 | T
£ 60.0 - [5000 g
= N L)
s 4676 g
< 50.0 - 4000 ¥
> 38.9 a
< 40.0 3 - 3000 O
2 28.0 &
5300 o g
< 18V - 2000 &
S 20.0 114
100 g5 [1000
»’
T T T]

o
o
° %

50 100 150 200 250 300 350 400 450
Concurrent clients

=0=Mean Latency =l~Messages / Sec

Fig. 13 Stress client OAuthing performance

@ Springer

3.5 7203 8000

3.0 R S - 7000
o %)
9 3.3.1 | 8
~ 28 6000 €
g25 “2F827 27 27 8
g - 5000 &
T 2.0 =
g 3584 - 4000 2
15 £
5 2569 - 3000 3
g 10 14557 L 2
5 10%,’/ 2000 %

0.5 1 / - 1000

S
0.0 T T T T 0
0 5 10 15 20 25

Number of Concurrent Clients

=@=Sent/Sec =#=Mean Latency

Fig. 14 Dynamic client registration latency and throughput

of program memory for the developers of any device sensor
and actuator logic, which is sufficient to build complex
device applications and support a variety of sensors and
actuators. We did not perform any code optimisation.

4.4 Energy and power measurement

In order to test the additional power burden of using
the OAuthing approach, we created a power measurement
harness to evaluate the power usage of the system.
Traditional power measurement systems are not optimised
for measuring sub-watt power usage and therefore, we could
not use an off-the-shelf system. Figure 17 shows a logical
diagram of the power management test system that we
created.

The created system measures milliwatt power usage with
better than 1% accuracy.

140.0 300.0
B
(%}
£100.0 T
2 2000 §
2 800 &
= 150.0 @
2 600 g
8 1000 §
8 400 v
&
] 50.0
2 200

0.0 +128 . . . : : 0.0

5 10 15 20 25 30 35
Number of Concurrent Clients

=¢=Mean Latency =@Requests/sec

Fig. 15 Throughput and latency of the introspection API on the DIdP

Ann. Telecommun. (2018) 73:415-427 425
Fig. 16 ESP8266 memory usage
Variable memory (bytes) Program memory (bytes)
90,000 1,200,000
81,520 1,044,464
80,000
1,000,000
70,000
60,000 800,000
20,000 49.8% >17% 600,000
40,000 40.0% 42:1%
30,000 400,000 30.5% 31.2%
24.0% 25.0%
20,000
200,000
10,000
0 0
Base MQTT MQTTS OAuThing Max Avail Base MQTT MQTTS OAuThing Max Avail

We measured two different scenarios, comparing the
OAuthing device to the same device configured to talk to
Mosquitto without using the OAuthing model

— The first scenario was measuring the total energy usage
from initial power-on until the first message is sent to
the server. This measures the bootstrap power phase,
especially capturing the overhead of the refresh flow
and the credential based MQTT CONNECT message.
This is measured in milliwatt-hours. We ran each test
20 times.

— The second scenario was the on-going power usage
over the next 15 min after startup. To ensure both
systems were comparable, we waited until the device
was fully warmed up and then took 900 s of samples
(approximately 280,000 samples).

Figure 18 shows the time-to-first-message results. The
data shows that the OAuthing device took 0.68 s (5.7%)
longer to send its first message, using 7.5% more energy
(0.195 mWH) than when connecting to Mosquitto.

5V Power Supply

Personal Computer
(for display of data)

3.3v Regulator

USB Serial
uCurrent Gold
Arduino Leonardo Ammeter
(running
powermeasurement.pde)

12C Bus .

AO input Device
ADS1115 ADC under measurement
Al input
GND

Fig. 17 Power management test system

Figure 19 shows the on-going power requirement is
26 mW higher for the OAuthing device, using 11.5%
more power than the device connecting to Mosquitto. This
much extra power usage is slightly unexpected and requires
further investigation. The ESP8266 offers three different
low-power modes, none of which were implemented, and
therefore, we expect the magnitude of this power usage to
be significantly reduced in a production device.

5 Related work

In [5], we previously looked at using federated identities for
IoT, especially mapping OAuth2 tokens to work with the
MQTT protocol. In a follow up work [13], we demonstrated
the use of the dynamic client registration (DCR) API
to support each device having a unique OAuth2 client
identifier. In each case, identifiers needed to be manually
added to the device, which is unrealistic in manufacturing
processes. Existing public [oT middleware such as IBM
Watson IoT and AWS IoT also have this concern. Compared
to these previous works, this current model adds a clear
automated device and user registration process. It also adds
anonymous identities and personal cloud middleware.

14 1271

12.03

12

10

8
BmQrT
6 O OAuthing
4 2.80
2
0
Time (secs) Energy (mWh)

Fig. 18 Time and energy taken to bootstrap

@ Springer

426

Ann. Telecommun. (2018) 73:415-427

300.0

2500 2274

200.0

150.0

100.0

Power Usage (mW)

50.0

0.0

MQTT OAuthing

Fig. 19 Power usage

IOT-OAS [14] addresses the use of OAuth2 with the
CoAP protocol. The mapping of the OAuth2 Token API
to support IoT devices using the CoAP protocol is being
formalised in [15] and is described in [16]. In [17], there
is a demonstration of the OAuthl protocol with MQTT,
favouring OAuthl over OAuth2 for IoT devices. The
reasons for choosing the older OAuth protocol are obviated
by the mapping of the refresh flow which OAuthing offers.
In [18] and in [19], there are platforms that support
OAuth2 for IoT devices that communicate via HTTP and
WebSockets. None of these works address automated regis-
tration processes, and none provide the privacy controls of
anonymous identifiers or isolated personal cloud instances.

In [20], a capability-based access system is described that
allows anonymous identities to be used. Bernabe et al. [21]
provides an architecture reference model for an approach
that supports anonymous identities. Neither of these systems
separates the provision of anonymous identities from the
data-sharing middleware.

The concept of a personal zone hub (PZH) is described
in the Webinos [22] system: this is similar to our PCM.
However, in Webinos, users must instantiate the PZH
themselves, and there is no analysis of the cost per user. We
extend the PZH concept to support a dynamic instantiation
of PCMs as containers and provide a cost model. Webinos
does not address secure federated device identities and does
not provide a registration process.

6 Discussion and conclusions

The OAuthing model provides significant improvements
over existing systems, providing much stronger guarantees
of privacy. Data and identity are not shared without consent,
and data can be shared anonymously. Device and user
registration are automated, and the PCM model can prevent
fingerprinting and sharing of IP and MAC addresses, as well
as user and device identity.

@ Springer

A key concern around the PCM model is that the cost
per user might be too high. The prototype demonstrates
that PCMs can be automatically deployed on behalf of
the user with acceptable times. The experimental results
demonstrate that a US$20/month cloud server can support
400 users, resulting in a cost per user of just $0.05 per
month. Further optimisation could reduce this cost.

The OAuthing model and prototype demonstrate that
devices can be connected to TPAs without inherently
leaking the user’s identity to either system. User’s may
choose to provide TPAs with their identity, but that becomes
a positive consent of the user rather than the default. In
addition, users can bring pre-existing identities to the system
rather than being required to create new credentials, which
reduces the chances of password theft and gives users a
choice of identity provider.

We therefore assert that we have answered the research
questions as follows:

— RQ1: The OAuthing model and architecture provides
an approach whereby IoT networks can be decoupled.
In particular, the identity and consent management can
be decoupled from both the manufacturer and the data
sharing middleware, providing users with a choice of
identity provider and of which systems they consent to
share data with.

— RQ2: The OAuthing model and prototype demonstrate
that secure data sharing can happen between systems,
including consent, without sharing identity as a pre-
requisite.

— RQ3: We assert that the OAuthing model provides
significant improvements in privacy and security for
IoT networks over existing approaches, as discussed
above.

— RQ4: The additional performance, latency, cost and
energy usage of this model have been demonstrated to
be feasible. The overheads in terms of latency are within
the norms of Internet latency, and the small overhead
in energy consumption is acceptable. All the data was
collected on a non-optimised prototype and therefore
provides an upper bound to the overheads.

There remain a number of unexplored aspects of this
model. We expect to add tests that evaluate the performance
of the OAuthing DIdP. In addition, we plan to extend
the system to support multiple co-existing DIdPs. We
have discussed this model with two significant device
manufacturers. One potential concern is that some device
manufacturers’ business models are based around collecting
user data and therefore, this system is unattractive precisely
because it improves users privacy. However, there are a
number of areas where this approach offers significant
benefits, for example in medical devices, where the
manufacturer does not wish to access data for regulatory

Ann. Telecommun. (2018) 73:415-427

427

reasons. In addition, it is possible to start with the OAuthing
model and progressively lessen certain privacy controls to
provide a system that still shares data but provides stronger
guarantees.

We have identified a number of future items of research
around this, including developing a full threat model
for the system; supporting devices that communicate via
gateways (e.g. Bluetooth devices talking to a phone or
hub); and demonstrating clustering and high-availability for
the OAuthing DIdP and IGNITE. We have also identified
that further de-centralisation maybe possible by utilising
distributed ledger technologies such as Blockchains with the
DIdP to reduce the requirement to have a central IdP for
devices.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Wei J (2016) DDoS on Internet of Things—a big alarm for the
future

2. Fremantle P, Scott P (2017) Peer] Comput Sci 3:el114

3. Rumbaugh J, Jacobson I, Booch G (2004) Unified modeling
language reference manual. The Pearson Higher Education

4. Hardt D (2012) The OAuth 2.0 authorization framework. Tech.
rep. IETF

5. Fremantle P, Aziz B, Scott P, Kopecky J (2014) In: 3rd
International workshop on the secure IoT

6. Kohno T, Broido A, Claffy KC (2005) Remote physical device
fingerprinting. IEEE Trans Depend Secur Comput 2(2):93

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

. Locke D (2010) MQ Telemetry Transport (MQTT) V3.1 protocol

specification. Tech. rep., IBM Corporation

. LiuY, Gorton I, Liu A, Jiang N, Chen S (2002) In: Proceedings of

the fortieth international conference on tools pacific: objects for
internet, mobile and embedded applications. Australian Computer
Society, Inc., pp 123-130

. Jayaram K, Eugster P, Jayalath C (2013) Parametric content-based

publish/subscribe. ACM Trans Comput Syst (TOCS) 31(2):4

. AdroitLogic. Esb performance. http://esbperformance.org/ (2016).

Accessed 20 March 2017

. Council TPP Tpc. http://www.tpc.org/ (2017). Accessed 27 March

2017

Kaliski B (2000) RFC 2898; PKCS# 5: Password-Based
Cryptography Specification Version 2.0

Fremantle P, Kopecky J, Aziz B (2015) Web API mana-
gement meets the Internet of Things. Springer International Pub-
lishing, Cham, pp 367-375. https://doi.org/10.1007/978-3-319-
25639-9_49

Cirani S, Picone M, Gonizzi P, Veltri L, Ferrari G (2015) Iot-
oas: An oauth-based authorization service architecture for secure
services in iot scenarios. IEEE Sensors J 15(2):1224

IETF Authentication and authorization for constrained envi-
ronments (ACE)—documents https://datatracker.ietf.org/wg/ace/
documents/ (2016). Accessed 30 Aug 2016

Tschofenig H (2016) Datenschutz und Datensicherheit-DuD 40
(4):222

Niruntasukrat A, Issariyapat C, Pongpaibool P, Meesublak K,
Aiumsupucgul P, Panya A (2016) In: 2016 IEEE International
conference on communications workshops (ICC). IEEE, pp 290-
295

. Raggett D (2015) COMPOSE: An open source cloud-based

scalable IoT services platform. ERCIM News 101:30

Emerson S, Choi YK, Hwang DY, Kim KS, Kim KH (2015) In:
2015 International Conference on information and communication
technology convergence (ICTC). IEEE, pp 1072-1074

Rotondi D, Seccia C, Piccione S (2011) Ist IoT International
forum. Berlin

Bernabe JB, Hernandez JL, Moreno MV, Gomez AFS (2014) In:
International Conference on ubiquitous computing and ambient
intelligence. Springer, pp 408415

Desruelle H, Lyle J, Isenberg S, Gielen F (2012) In: Proceedings
of the 2012 ACM conference on ubiquitous computing. ACM, pp
733-736

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://esbperformance.org/
http://www.tpc.org/
https://doi.org/10.1007/978-3-319-25639-9_49
https://doi.org/10.1007/978-3-319-25639-9_49
https://datatracker.ietf.org/wg/ace/documents/
https://datatracker.ietf.org/wg/ace/documents/

	Cloud-based federated identity for the Internet of Things
	Abstract
	Abstract
	Introduction
	Aims and objectives
	Contributions
	Assumptions and scope
	Outline of the paper

	Model
	Participants
	Lifecycle
	Personal cloud middleware
	Scopes and APIs
	Information visibility

	Implementation
	Protocol mapping
	The OAuthing DIdP
	IGNITE
	Personal cloud middleware
	Device hardware
	Sample third-party application

	Evaluation
	Test methodology
	Results
	Device memory usage
	Energy and power measurement

	Related work
	Discussion and conclusions
	Open Access
	References

