Skip to main content
Log in

Local Disturbance Cooperative Control of Heterogeneous Vehicle Platoon Based on Situation Assessment

  • Connected Automated Vehicles and ITS, Vehicle Dynamics and Control
  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

In the longitudinal driving of a heterogeneous platoon, external disturbances of local vehicles can cause safety problems of the intended functionality. Therefore, a cooperative control method based on situation assessment is proposed. First, the minimum safe distance is determined according to the state of adjacent vehicles. A novel situation assessment model is established to characterize the stability of the platoon. Vehicle spacing, speed, and acceleration are selected as evaluation indicators. Then, an improved active disturbance rejection controller (IADRC) is designed to improve platoon stability through feedback compensation control. In addition, considering the unnecessary continuous involvement of the IADRC, its intervention time is determined by the situation assessment results. Finally, simulation and hardware-in-the-loop (HIL) experiments are carried out under two communication topologies. The results show that the proposed method can effectively improve the stability and safety of the platoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

p :

: Vehicle position

v :

: Vehicle velocity

a :

: Vehicle acceleration

τ :

: Time constant

ω :

: External disturbances

i :

: Distance tracking error between vehicle i and leader

i :

: Velocity tracking error between vehicle i and leader

ã i :

: Acceleration tracking error between vehicle i and leader

D min :

: Minimum safety distance

TTC:

: Collision time

μ :

: Road adhesion coefficient

g :

: Acceleration due to gravity

L :

: Length of the vehicle

p m :

: Desired distance between two adjacent vehicles

v m :

: Desired velocity

a m :

: Desired acceleration

∂:

: Comprehensive situation value

δ:

: Length of the linear interval

References

  • Benedetto, F., Calvi, A., D’Amico, F., & Giunta, G. (2015). Applying telecommunications methodology to road safety for rear-end collision avoidance. Transportation Research Part c: Emerging Technologies, 50, 150–159.

    Article  Google Scholar 

  • Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., & Winner, H. (2014). Three decades of driver assistance systems: Review and future perspectives. IEEE Intelligent Transportation Systems Magazine, 6(4), 16–22.

    Article  Google Scholar 

  • Chehardoli, H., & Homaeinezhad, M. R. (2017). Stable control of a heterogeneous platoon of vehicles with switched interaction topology, time-varying communication delay and lag of actuator. Proceedings of the Institution of Mechanical Engineers, Part c: Journal of Mechanical Engineering Science, 231(22), 4197–4208.

    Google Scholar 

  • Chen, Z. W., Zhang, Z. Z., & Cao, Y. J. (2018). Fal function improvement of ADRC and its application in quadrotor aircraft attitude control. Control and Decision, 33(10), 1901–1907.

    Google Scholar 

  • Deng, Y., Liang, H., Wang, Z. L., & Huang, J. J. (2014). An integrated forward collision warning system based on monocular vision. In Proc. IEEE Int. Conf. Robotics and Biomimetics (ROBIO), Bali, Indonesia.

  • Feng, J. B., He, L. Y., Wang, Y. X., Yang, J. W., & Ren, H. B. (2023). Backstepping method based controller design for third-order truck platoon robust to dynamic uncertainty and external disturbance. Journal of Mechanical Science and Technology, 37(3), 1433–1442.

    Article  Google Scholar 

  • Feng, S., Sun, H. W., Zhang, Y., Zheng, J. F., Liu, H. X., & Li, L. (2020). Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints. IEEE Transactions on Control Systems Technology, 28(3), 1066–1073.

    Article  Google Scholar 

  • Guevara, L., Jorquera, F., Walas, K., & Auat-Cheein, F. (2023). Robust control strategy for generalized N-trailer vehicles based on a dual-stage disturbance observer. Control Engineering Practice, 131, 105382.

    Article  Google Scholar 

  • Guo, G., & Yue, W. (2014). Sampled-data cooperative adaptive cruise control of vehicles with sensor failures. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2404–2418.

    Article  Google Scholar 

  • Guo, H. Y., Liu, J., Dai, Q. K., Chen, H., Wang, Y. L., & Zhao, W. Z. (2020). A distributed adaptive triple-step nonlinear control for a connected automated vehicle platoon with dynamic uncertainty. IEEE Internet of Things Jounal, 7(5), 3861–3871.

    Article  Google Scholar 

  • Jiao, S. Y., Zhang, S. R., Li, Z. Z., Zhou, B., & Zhao, D. (2020). An improved car-following speed model considering speed of the lead vehicle, vehicle spacing, and driver’s sensitivity to them. Journal of Advanced Transportation, 2020, 1–13.

    Article  Google Scholar 

  • Li, S. B., Zheng, Y., Li, K. Q., Wu, Y. J., Hedrick, J. K., Gao, F., & Zhang, H. W. (2017). Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities. IEEE Intelligent Transportation Systems Magazine, 9(3), 46–58.

    Article  Google Scholar 

  • Li, Y. F., Chen, W. B., Peeta, S., & Wang, Y. B. (2020). Platoon control of connected multi-vehicle systems under v2x communications: Design and experiments. IEEE Transactions on Intelligent Transportation Systems, 21(5), 1891–1902.

    Article  Google Scholar 

  • Li, Y. F., Lv, Q. X., Zhu, H., Li, H. Q., Li, H. Q., Hu, S., Yu, S. Y., & Wang, Y. B. (2022). Variable time headway policy based platoon control for heterogeneous connected vehicles with external disturbances. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21190–21200.

    Article  Google Scholar 

  • Li, Y. F., Tang, C. C., Li, K. Z., Peeta, S., He, X. Z., & Wang, Y. B. (2018). Nonlinear finite-time consensus- based connected vehicle platoon control under fixed and switching communication topologies. Transportation Research Part c: Emerging Technologies, 93, 525–543.

    Article  Google Scholar 

  • Ligthart, J. A. J., Ploeg, J., Semsar-kazerooni, E., Fusco, M., & Nijmeijer, H. (2018). Safety analysis of a vehicle equipped with cooperative adaptive cruise control. In 15th IFAC Symp. Control in Transportation Systems (CTS), Savona, Italy.

  • Luo, Q. Y., Nguyen, A. T., Fleming, J., & Zhang, H. (2021). Unknown input observer based approach for distributed tube-based model predictive control of heterogeneous vehicle platoons. IEEE Trans. Vehicular Technology, 70(4), 2930–2944.

    Article  Google Scholar 

  • Mao, X., Li, P., Weng, Z., & Zhao, J. (2023). Distributed tube model predictive control for string stability of heterogeneous vehicle platoons. Proceedings of the Institution of Mechanical Engineers, Part i: Journal of Systems and Control Engineering, 0959651823, 1173763.

    Google Scholar 

  • Minderhoud, M. M., & Bovy, P. H. L. (2001). Extended time- to-collision measures for road traffic safety assessment. Accident Analysis and Prevention, 33(1), 89–97.

    Article  Google Scholar 

  • Mirabilio, M., Iovine, A., De Santis, E., Di Benedetto, M. D., & Pola, G. (2022). Mesoscopic controller for string stability of platoons with disturbances. IEEE Transactions on Control of Network Systems, 9(4), 1754–1766.

    Article  MathSciNet  Google Scholar 

  • Mu, J. B., Feng, Y. H., & He, D. F. (2023). Distributed robust economic predictive control of heterogeneous vehicle platoons under bounded disturbances. Control and Decision, 38(5), 1386–1394.

    Google Scholar 

  • Swaroop, D., & Hedrick, J. K. (1996). String stability of interconnected systems. IEEE Trans. Automatic Control, 41(3), 349–357.

    Article  MathSciNet  Google Scholar 

  • Tu, Y., Wang, W., Li, Y., Xu, C. C., Xu, T., & Li, X. Q. (2019). Longitudinal safety impacts of cooperative adaptive cruise control vehicle’s degradation. Journal of Safety Research, 69, 177–192.

    Article  Google Scholar 

  • Vegamoor, V. K., Kalathil, D., Rathinam, S., & Darbha, S. (2019). Reducing time headway in homogeneous CACC vehicle platoons in the presence of packet drops. In Proc. 18th European Control Conf. (ECC), Naples, Italy.

  • Wang, B., Luo, Y. G., Zhong, Z. H., & Li, K. Q. (2022a). Risk reduction for safety of the intended functionality of CACC with complex uncertainties: A cooperative robust non-fragile fault tolerant strategy. Transportation Research Part c: Emerging Technologies, 144, 103885.

    Article  Google Scholar 

  • Wang, C. S., Wang, D., & Peng, Z. H. (2022b). Distributed output-feedback control of unmanned container transporter platooning with uncertainties and disturbances using event-triggered mechanism. IEEE Trans. Vehicular Technology, 71(1), 162–170.

    Article  Google Scholar 

  • Wang, J. G., Wong, W. C., Luo, X. Y., Li, X. L., & Guan, X. P. (2021a). Connectivity-maintained and specified-time vehicle platoon control systems with disturbance observer. International Journal of Robust and Nonlinear Control, 31(16), 7844–7861.

    Article  MathSciNet  Google Scholar 

  • Wang, J. M., Luo, X. Y., Wang, L., Zuo, Z. Q., & Guan, X. P. (2020). Integral sliding mode control using a disturbance observer for vehicle platoons. IEEE Transactions on Industrial Electronics, 67(8), 6639–6648.

    Article  Google Scholar 

  • Wang, J. M., Luo, X. Y., Yan, J., & Guan, X. P. (2022c). Distributed integrated sliding mode control for vehicle platoons based on disturbance observer and multi power reaching law. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3366–3376.

    Article  Google Scholar 

  • Wang, J. W., Ma, F. W., Yu, Y., Zhu, S., Gelbal, S. Y., Aksun-Guvenc, B., & Guvenc, L. (2021b). Optimization design of the decentralized multi-vehicle cooperative controller for freeway ramp entrance. International Journal of Automotive Technology, 22(3), 799–810.

    Article  Google Scholar 

  • Xie, G. Q., Li, Y. W., Han, Y. B., Xie, Y., Zeng, G., & Li, R. F. (2020). Recent advances and future trends for automotive functional safety design methodologies. IEEE Transactions on Industrial Informatics, 16(9), 5629–5642.

    Article  Google Scholar 

  • Yan, M. D., Ma, W. R., Zuo, L., & Yang, P. P. (2020). Distributed model predictive control for platooning of heterogeneous vehicles with multiple constraints and communication delays. Journal of Advanced Transportation, 2020, 1–16.

    Google Scholar 

  • Yang, Z. F., Wang, Z. C., & Yan, M. (2021). An optimization design of adaptive cruise control system based on MPC and ADRC. Actuators, 10(6), 110.

    Article  Google Scholar 

  • Yue, W., & Wang, L. Y. (2017). Event-triggered autonomous platoon control against probabilistic sensor and actuator failures. Automatika, 58(1), 35–47.

    Article  Google Scholar 

  • Zhao, L. F., Cao, Q. X., Hu, Y. P., Xia, G., Hu, J. F., Wang, H. R., & Tian, B. (2022). Stability control of steer by wire system based on improved ADRC. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 236(0–11), 2283–2293.

    Google Scholar 

  • Zhao, L. F., Zhang, D. Z., Wang, H. R., Chen, W. W., Wang, Q. D., & Zhu, M. F. (2021). Study on longitudinal collision avoidance with human–machine cooperation based on improved safety distance model. Automotive Engineering, 43(4), 588–600.

    Google Scholar 

  • Zheng, Y., Li, S. E., Li, K. Q., Borrelli, F., & Hedrick, J. K. (2017). Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Transactions on Control Systems Technology, 25(3), 899–910.

    Article  Google Scholar 

  • Zheng, Y., Li, S. E., Wang, J. Q., Cao, D. P., & Li, K. Q. (2016). Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Transactions on Intelligent Transportation Systems, 17(1), 14–26.

    Article  Google Scholar 

  • Zhou, A., Liu, Y. Y., Tenenboim, E., Agrawal, S., & Peeta, S. (2023). Car-Following behavior of human-driven vehicles in mixed-flow traffic: A driving simulator study. IEEE Transactions on Intelligent Vehicles, 8(4), 2661–2673.

    Article  Google Scholar 

  • Zhou, J., & Peng, H. (2005). Range policy of adaptive cruise control vehicles for improved flow stability and string stability. IEEE Transactions on Intelligent Transportation Systems, 6(2), 229–237.

    Article  Google Scholar 

  • Zhou, J. S., Tian, D. X., Sheng, Z. G., Duan, X. T., Qu, G. X., Zhao, D. Z., Cao, D. P., & Shen, X. M. (2022). Robust min–max model predictive vehicle platooning with causal disturbance feedback. IEEE Transactions on Intelligent Transportation Systems, 23(9), 15878–15897.

    Article  Google Scholar 

  • Zou, S. C., Zhao, W. Z., Wang, C. Y., Liang, W. H., & Chen, F. (2022). Tracking and synchronization control strategy of vehicle dual-motor steer-by-wire system via active disturbance rejection control. IEEE-ASME Transactions on Mechatronics, 28(1), 92–103.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by the National Natural Science Foundation of China (Grant No. U22A2046, 52275100). The National Key Research and Development Plan Project (Grant No. 2021YFE0116600). Hefei Natural Science Foundation (Grant No. 202325). Anhui Province Key Research and Development Program (Grant No. 202304a05020018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linfeng Zhao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A Proof of Theorem 1

Define the spacing error as:

$${e}_{i}\left(t\right)={p}_{i-1}\left(t\right)-{p}_{i}\left(t\right)-{p}_{m}$$
(33)

Then we obtain \({\ddot{e}}_{i}\left(t\right)={a}_{i-1}\left(t\right)-{a}_{i}(t)\), given that the accelerations of \({a}_{i}\left(t\right)\) and \({a}_{i-1}(t)\) are bounded, it indicates that \({\ddot{e}}_{i}\left(t\right)\in {\mathcal{L}}_{\infty }\), so \({\dot{e}}_{i}(t)\) is uniformly continuous. Besides,

$${\int }_{0}^{\infty }\left|{\dot{e}}_{i}(t)\right|{\text{d}}t=\left|{e}_{i}(\infty )\right|-\left|{e}_{i}\left(0\right)\right|<\infty$$
(34)

Therefore, \({\dot{e}}_{i}(t)\in {\mathcal{L}}_{2}\). We have \(\underset{t\to \infty }{{\text{lim}}}{\dot{e}}_{i}(t)=0\) according to Lemma 1. Consequently, we have \({\dot{e}}_{i}(t)\in {\mathcal{L}}_{\infty }\). Similarly, we have \({e}_{i}(t)\in {\mathcal{L}}_{2}\). And we further have.

\(\underset{t\to \infty }{{\text{lim}}}{e}_{i}(t)=0\) based on Lemma 1.

If \(\widetilde{\xi }>0\), then \({\Vert {e}_{i}(0)\Vert }_{\infty }={{\text{sup}}}_{i}\left|{e}_{i}(0)\right|=0<\widetilde{\xi }\). In.

addition, consider that \(\underset{t\to \infty }{{\text{lim}}}{e}_{i}\left(t\right)=0\), \({e}_{i}\left(0\right)=0\), \({e}_{i}(t)\in {\mathcal{L}}_{2}\). Hence, \(\exists \zeta\),\(\varrho >0\),\(s.t.\) \({{\text{sup}}}_{i,t\in [0,\infty )}\left|{e}_{i}(t)\right|=\zeta <\varrho\).Therefore, the string stability is proved according to Definition 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Wang, Q., Zhao, L. et al. Local Disturbance Cooperative Control of Heterogeneous Vehicle Platoon Based on Situation Assessment. Int.J Automot. Technol. 25, 183–200 (2024). https://doi.org/10.1007/s12239-024-00008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-024-00008-8

Keywords

Navigation