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Abstract
The paper presents a new internal model control (IMC) based control technique for lateral trajectory tracking of autonomous 
vehicles. The controller’s proposed structure employs a robust, fault-tolerant nonlinear internal servo control with optimal 
reference generation concerning vehicle yaw stability and physical limitations. The presented inscription of the reference 
generation creates a convex optimization task that can be used in real-time applications. Improvements in yaw-rate stability 
of vehicle motion control are first shown through simulation results performed in a Simulink environment. The controller 
structure was also implemented in a real-time model and was examined in a Mercedes C-Class vehicle. In this article, the 
simulation results and the real-time measurements are presented. The results show that the proposed controller has high 
efficiency in disturbance rejection and lower sensitivity towards parameter changes compared to a model predictive control 
(MPC) structure.

Keywords Path-tracking control · Robust control · Convex optimization · Autonomous vehicles · Nonlinear control

1 Introduction

One of the main reasons for developing autonomous vehi-
cles is that these vehicles can increase safety in transporta-
tion. The safety of autonomous vehicles should be measured 
in handling a wide range of vehicle operating conditions 
(load, speed, tire friction) and disturbances. As the first step 
towards autonomy, driving assistant systems were developed 
to support inexperienced drivers and increase safety and sta-
bility. For longitudinal and lateral control, PID and LQR 
control is used to increase the stability of human-driven 
vehicles (Tavan et al., 2015). The linear matrix inequality 
(LMI) method is used for a robust driver assistant control 
improving chassis stability (Dahmani et al., 2015).

The recent emerging technologies have several challenges 
concerning autonomous technology (Paden et al., 2016). The 
algorithms should provide a real-time solution that can be 
evaluated on the test platform to gain reliability. The convex-
ity of the problem space has to be provided to ensure unicity, 
and the parameters making these algorithms intuitive and 
scenario-specific should be eliminated.

An improved structure of the pure pursuit method adjusts 
the look-ahead point and solves the cutting-edge problem 
(Ahn et al., 2021). This method is good in handling the ques-
tion of the distance of the look-ahead point, but the vehicle 
dynamics and limitations are not considered. A comprehen-
sive list of trajectory tracking controllers that are not using 
optimization and have short runtime can be found in the 
literature (Calzolari et al., 2017). Still, these methods can-
not handle nonlinearities such as tire saturation or actuator 
limitations. A sliding-mode controller is presented for the 
lateral control (Tagne et al., 2013). This method is robust 
in handling nonlinearities. However, it has many intuitive 
parameters in the control rule and in solving the chattering 
problem.

Model predictive control (MPC) is an effective struc-
ture for longitudinal-lateral control, but in the most cases, 
it uses a linear model (Lin et al., 2019). A lane change 
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controller with a linear model for a straight and curved 
road is developed using the LMI method (Mammar & 
Arioui, 2018). A linear-quadratic integral and regulator 
control uses particle swarm optimization for parameter 
setting, but this structure assumes known road friction 
parameters (Omar et al., 2018).

Internal Model Control (IMC) is a well-known tech-
nique for robust control in various control engineering 
fields. Several usages of this method for vehicle control: 
There is an example of successfully using direct yaw 
control and active front steering with a modified inter-
nal model control structure for a robust driver assistant 
system (Wu et al., 2015). However, it has quite quickly 
changing control signals that cause a bad passenger expe-
rience. An IMC system with an H∞-based feedback loop 
sacrifices the performance to enhance stability (Canale 
et  al., 2008). Two degrees of freedom IMC structure 
is developed, but its linear model is unable to control 
the vehicle at the limits of handling (Wu et al., 2016). 
A special controller uses an external active stabilizer to 
improve yaw stability (Wang & Chen, 2018), which is an 
effective way, but its cost is high concerning the vehicle’s 
transport capacity.

However, there are several solutions for lane following; 
these are mostly focusing strictly on trajectory tracking 
without thinking globally, such as performing maneu-
vers. Trajectory planning and tracking can be combined 
to improve safety (Guo et al., 2014). The maneuver-based 
approach allows the construction of the control signal to 
minimize the control effort and increase robustness to 
provide acceptable performance even if there are changes 
in the vehicle’s parameters or the environment.

In safety-critical systems such as automotive solu-
tions, it is a need to have diverse redundant solutions 
for the same problem. This paper’s novel contribution 
is based on the new approach concerning a previewed 
maneuver-based optimization to gain robustness for a 
nonlinear system. Yaw-rate trajectory optimization aims 
to gain stability satisfying physical constraints. Robust-
ness is granted by the application of the internal model 
control structure. The problem formulation ensures that 
the proposed method uses just a few parameters, having 
physical meaning, minimizing intuitively tuned weights 
and scaling factors.

The paper is organized as follows: In “Model Descrip-
tion” section, the vehicle and tire modeling aspects are 
discussed for dynamic analysis. The two main parts of the 
controller structure are presented in detail in “Control-
ler Structure”. In “Simulation Results” section, the envi-
ronment for simulation is explained, and the results are 
presented. A reference controller is presented in “MPC 
Controller for Comparison” section with the comparison 
of measurements performed in simulation, illustrating the 

proposed controller’s efficiency and robustness. Finally, in 
“Experimental Results” section, the experimental results 
of the real-time test are presented.

2  Model Description

Due to system complexity and computational limitations, it 
is common to decouple the longitudinal and lateral control 
and use just the second one for trajectory tracking (Rajam-
ani, 2012). The dynamic bicycle model describes the vehi-
cle’s lateral dynamics and different tire models explained 
in this section. Nonlinear vehicle and tire models have to 
be used to reach the purpose of this article. Constant lon-
gitudinal speed ( u ) can be assumed for lateral dynamics in 
the previewed maneuver (Lin et al., 2019), so longitudinal 
dynamics are omitted in the modeling part.

2.1  Tire Models

Linear and nonlinear tire models are used to describe the 
tires of the vehicle (Rajamani, 2012). The linear tire model 
contains only one parameter, the cornering stiffness ( C ), the 
steepness of the line describing the tire forces. This model 
cannot handle tire saturation. The nonlinear tire model is 
based on the well-known Pacejka magic formula (Pacejka, 
2005). It describes the forces with an experimental func-
tion based on measurements, approximated by trigonometric 
functions. The lateral force in the tire is a function of vertical 
force, road friction, and tire sideslip:

where � is the tire sideslip, Fz is the vertical force, � is the 
vehicle-road friction coefficient. Parameters clat (the shape 
factor) and blat (the stiffness factor) are derived from the 
Delft tire model implemented in the simulation environment.

2.2  Vehicle Model

As soon as the linear vehicle model is inaccurate in high 
dynamics situations, the vehicle is modeled with a nonlinear 
single-track bicycle model (Bobier-Tiu et al., 2019). This 
model describes the vehicle’s planar behavior with the fol-
lowing assumptions: wheels on the front axle and the rear 
axle are lumped, and only the front tire is steered. The vehi-
cle is on a flat road, and longitudinal acceleration is low and 
ignored compared to lateral acceleration.

The diagram of the bicycle model can be seen in Fig. 1. 
This model uses a two-dimensional body-fixed coordinate 
system; the x-axis points to the longitudinal and the y-axis 
to the lateral direction.

(1)Fy = Fzμ ⋅ sin
(
clatatan

(
blat(−�)

))
,
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The differential equations of the model are written for 
the state variables in terms of force and moment balance 
in the y and z directions, respectively (Bobier-Tiu et al., 
2019). System of Eq. (2) describes the relations between 
the state variables: the lateral speed and the yaw-rate of 
the vehicle, uy and r , respectively. The m is the mass of the 
vehicle, and Iz is the yaw moment of inertia for the vehicle, 
a and b are the distances of the front and the rear tires from 
the center of gravity (COG), as can be seen in Fig. 1. � can 
also be used as a state variable and calculated from uy as 
follows: � = arctan

(
uy

ux

)
 . The front and the rear tires have 

different parameters in the model, noted by subindex F 
(front tire) and R (rear tire).

The front and rear tire slip angles noted as �F and �R in 
Fig. 1 can be calculated as follows:

where � is the steering angle.
The behavior of the vehicle in the two-dimensional 

coordinate system is described by position and orienta-
tion ( x(t), y(t), and �(t) , respectively). These states can be 
derived from r(t) and �(t) as follows:

(2)
u̇y =

FyFcos(𝛿) + FyR

m
− rux

ṙ =
aFyFcos(𝛿) − bFyR

Iz
.

(3)
�F = tan−1

(
uy + ar

ux

)
− �

�R = tan−1

(
uy − br

ux

)
,

(4)

�(t) = �0 + ∫
t

0

r(�)d�

y(t) = y(0) + ∫
t

0

usin(�(�) + �(�))d�

x(t) = x(0) + ∫
t

0

ucos(�(�) + �(�))d�.

3  Controller Structure

The classical trajectory tracking approach needs to be 
reviewed to gain stability and robustness: the importance of 
lateral and orientational deviation is decreased in the benefit 
of having more reserve for the control. The main idea is 
based on the adaptive look-ahead design (Lee et al., 2019): 
the controller is analogous to the driver’s intention, who 
plans forward on the road and wants to drive the vehicle to 
a required state within a prescribed time or distance traveled. 
As the driver constructs the maneuver, the presented control-
ler calculates the control signal minimizing a cost function 
considering yaw stability and control effort.

Based on this idea, the presented controller has two main 
parts, as it is shown in Fig. 2. The first part consists of the 
optimizer that calculates a yaw-rate reference signal pre-
scribing the dynamic behavior of the vehicle. The second 
part realizes a robust yaw-rate controller with an IMC struc-
ture. Both parts are running on the same control frequency.

3.1  Steady‑State Analysis

Internal model control requires the inverse of the model to 
provide a transfer function of unity in the forward branch 
in the steady-state. The steady-state inverse based on linear 
analysis is sufficient for this purpose concerning time con-
stants (Canale et al., 2007). The steady-state analysis inves-
tigates how the model behaves for constant input and how it 
converts between states. A static map ( L ) can be constructed 
in steady-state to describe the connection between the out-
put yaw-rate and the constant input, the steering angle, for 
a specified longitudinal speed, u : r, � = L(�, u) . The map 
was created using � = 1 as a nominal value. The map val-
ues are stored in a look-up table, and the function values 
are calculated by linear interpolation. For changing speed, 
a two-dimensional map has to be constructed. Within the 
range of speed, the controller is used, the relation between 
yaw-rate and � of the steady-state vehicle can be approxi-
mated with a speed-dependent constant: � = c(u) ⋅ r . The 
map ( L ) also contains information about tire saturation: at 
a specified speed, it is monotonous under a certain steering 
angle, where the tire saturates. The steering angle is limited 
to ensure the uniqueness of the mapping and prevent tire 
saturation.

3.2  Yaw‑Rate Reference Generation

Yaw-rate analysis using second-order yaw-sideslip charac-
teristics is a standard method to examine vehicle stability 
properties. The yaw-moment-based controller is efficient 
in providing vehicle stability. An envelope control is con-
structed using the phase plane approach to improve yaw-rate 

Fig. 1  Single-track bicycle model of the vehicle for nonlinear and 
dynamic analysis
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stability, keeping away the vehicle from unstable and uncon-
trollable regions (Bobier-Tiu et al., 2019).

As can be seen in Eq. (2), the yaw-rate is related to the 
steering angle. In steady-state cornering, the model assigns 
a yaw-rate value to the steering angle, which means that the 
derivative of the yaw-rate is related to the control signal’s 
change. This paper aims to handle the planar motion’s yaw-
rate behavior: minimize the control effort, and gain robust-
ness in the presence of tire saturation and against model 
uncertainties.

3.3  Approximations of the Yaw‑Rate Reference 
Signal

The problem to be solved by the controller is the follow-
ing: find a trajectory for the given time window ( T  ) con-
cerning the actual state so that the prescribed final states 
( r(T),�(T) , andΔy(T) ) are fulfilled, and the control effort is 
minimized based on yaw-rate reference generation. The Δy 
corresponds to lateral position displacement prescribed to 
eliminate the lateral error of the COG. For the prediction- 
based lateral reference generation, the longitudinal velocity 
is assumed to be unchanged for the time window, which is a 
common assumption (Jalali et al., 2017). The actual longi-
tudinal speed, measured by sensors, was used as an external 
parameter (Mammar & Arioui, 2018). In order to handle 
this problem, the look-ahead time window is divided into N 
equal time slots, as can be seen in Fig. 3. The length of each 
slice is Ts =

T

N
 . The yaw-rate is linearized concerning these 

slices, so each slot has only one parameter, di , the derivative 
of yaw-rate. With this approximation, the r and � at each 
time slot can be written by the following expressions:

where rmi is the mean yaw-rate of a specified slice 
( rmi =

ri−1+ri

2
).

The lateral position error can be calculated based on 
Eq. (4), using the steady-state approximations for � estima-
tion described in the previous subsection. The yaw-rate 
expression contains second-order variables of t , so the for-
mulation of lateral displacement of the ith slice ( Δyi ) is quite 
c o m p l e x ,  c o n t a i n i n g  F r e s n e l  i n t e g r a l s 
( C(u) ≡ ∫ u

0
cos

(
1

2
�x2

)
dx , and S(u) ≡ ∫ u

0
sin

(
1

2
�x2

)
dx ) as 

follows:

where ei = �i−1 + c ⋅ ri−1 , fi = ri−1 + c ⋅ di and gi =
di

2
.

Calculation of this expression is quite expensive as soon 
as the Fresnel integrals can be calculated only iteratively; 
it requires a significant runtime since the lateral position 
is evaluated several times during one step of optimization. 
Further approximations were made using the mean yaw-rate 
for lateral displacement calculation. With this simplification, 
the following expression was derived for the lateral displace-
ment of a slice from the integral:

(5)ri = r0 + Ts

i∑

j=1

dj,

(6)�i = �0 + Ts

i∑

j=1

rj + rj−1

2
= �0 + Ts

i∑

j=1

rmj,

(7)

Δyi = u∫
Ts

0

sin
�
ei + fi� + gi�

2
�
d�

= u

��
�

2gi

�
sin

�
ei +

f 2
i

4gi

�
C

�
fi + 2gi�√

gi2�

�

+cos

�
ei −

f 2
i

4g

�
S

�
fi + 2gi�√

gi2�

���Ts

0

,

Fig. 2  Structure of the control-
ler: the yaw rate reference 
generator and the internal model 
control with the filter and the 
physical limitations

Fig. 3  Sliced trajectory for optimization
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where sinc(x) = sin(x)

x
 . With these approximations, the opti-

mization problem can be solved in real-time.

3.4  Optimization for the Yaw‑Rate Reference 
Generation

The expressions presented in the previous section can be used 
to write the problem in the following form:

where x is the vector of the di values, c(x) is the nonlinear 
expression of the lateral displacement described in Eq. (8), A 
is the coefficients of the sums of Eqs. (5) and (6), and xmax is 
derived from the static map derived from steady-state analy-
sis. Inequality is used in the problem because the prescribed 
final values are handled with tolerances to suppress noise 
from measurements of the states that are the input variables 
for the optimization. The cost function determines the mini-
mal control effort, minimizing the discrete square integral of 
the yaw-rate derivative values:

The presented optimization problem has global solutions so 
that MatLab’s fmincon function can solve it, but it can possibly 
provide local solutions that should be handled.

The cost function is convex, so it provides an opportunity 
for the optimization problem to be handled as a Second-Order 
Cone Programming (SOCP) problem. The expression of Δy(T) 
has to be linearized to make the task fit the SOCP problem. 
Supposing that Ts is small enough, sinc(x) can be approximated 
by f (x) = 1.

It can be assumed that during the look-ahead time, the ori-
entation of the vehicle described by the argument sin function 
in Eq. (8) remains within ± 1 rad , so the sin(x) = x approxima-
tion can be used.

After linearization, in the optimization problem in Eq. (9), 
the nonlinear expression can be omitted, and the following 
linear expression can be derived for lateral displacement:

(8)Δyi = uTssin

(
�i−1 +

(
c +

Ts

2

)
rmi

)
sinc

(
Tsrmi

2

)
,

(9)

min
x

f (x) subject to

c(x) ≤ 0

Ax ≤ b

|x| ≤ xmax,

(10)f (x) = Ts

N∑

i

d2
i
.

The lsqlin solver of MatLab can solve the SOCP optimi-
zation problem. The two optimization tasks with the differ-
ent solvers were compared in the simulation. The difference 
between the two solutions is negligible in the domain of 
the test cases presented in the result summary section. The 
SOCP problem runs four times faster than the global prob-
lem, so this algorithm was used in real-time measurements 
to reach the desired control frequency.

3.5  Robust Yaw‑Rate Controller

Internal model control is a robust control method widely 
used in several applications, even for yaw-rate control 
(Canale et al., 2007). Yaw-rate control can be used for this 
approach because it is measured quite standard on-board 
instrumentation. The feedback control method of the basic 
IMC can guarantee stability in the presence of model uncer-
tainty, disturbances and can handle saturation (Zhu et al., 
1995). The robustness and effectiveness of IMC in lateral 
control systems are proved (Aripin et al., 2014). In this 
application, an internal servo controller is used for signal 
tracking.

The feedforward branch (the controller with the process) 
provides a transfer function of unity to track the input by 
the steady-state output. This condition is fulfilled using the 
results of the steady-state analysis, the mapping L. The pro-
cess model presented above is connected parallel with the 
process, and the difference between the output of the process 
and the model creates the feedback branch. This feedback 
branch is intended to compensate for model errors and dis-
turbances. The IMC system is stable if both the controller 
and the process are stable. The presented dynamic bicy-
cle model, serially connected with the steady-state model 
inverse, is stable, so this controller provides robust yaw-rate 
control.

3.6  Physical Constraints and Filtering

The physical parameters of the actuator have to be handled 
by the controller. The first-order element with one parameter 
can model the actuator. In order to eliminate the effect of this 
first-order element, the yaw-rate reference provided for the 

(11)

Δy(T) =

N∑

i=1

Δyi

≈ u ⋅ Ts ⋅

[
ψ0N +

Tsr0(N(N − 1))

2
+ r0N

(
Ts

2
+ c

)

+Ts

N∑

i=1

di

(
Ts(N − i)2

2
+
(
−i +

1

2

)
⋅

(
Ts

2
+ c

))]
.
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IMC controller is planned ahead with τ, so at time t, from the 
planned yaw-rate, rref (t + Ts + �) provides the reference for 
the IMC. The actuator performance maximizes the change 
of the steering angle:

|||
d𝛿(t)

dt

||| < D , where D is a characteristic constant of the.
actuator. Limits for di can be introduced, transferring D 

to the derivative of yaw-rate, using the steady-state map.
An autoregressive filter was added to the feedback line of 

the controller to attenuate the noise of the measurement and 
the error coming from the model mismatch. In discrete-time, 
the filter has the following expression:

where x(k) represents the feedback value calculated from the 
difference between the model and the plant. Number a has 
to be smaller than one, in our case a = 0.2 , prescribing the 
averaging factor of the filter.

3.7  Control Algorithm

The control algorithm performs the following steps in each 
control period: After the sensor measurements and state esti-
mation, the optimization task, detailed in Eq. (9), is defined 
using the lateral reference and the actual states. Then the 
optimization is performed, creating the yaw-rate reference 
for the inner loop. After, the inner loop calculates the control 
signal, using the steady-state model inverse map and the 
previous filtered signal. Finally, the control signal is actu-
ated, and the model output is calculated for the feedback of 
the next iteration.

4  Simulation Results

The presented controller was implemented in MatLab & 
Simulink version r2018b. It was first inserted into the simu-
lation framework and, after, into the real-time environment 
for validation. Test environments were developed, supported, 
and commonly used by ThyssenKrupp. These environments 
are compatible with each other using the same interface. The 
algorithm can be cross-validated: the parameter tuning can 
be done in simulation, and one can replay measurements in 
the simulation.

4.1  Simulation Environment

The simulation environment is implemented in Simulink 
and contains a 12-DOF vehicle model. Tires are modeled 
with the TNO Delft-Tyre (2010) model using real parameter 
sets that are configured by measurements. The simulator’s 
structure depicts the structure of the real-time environment. 

(12)y(k) = a ⋅ x(k) + (1 − a) ⋅ y(k − 1),

It contains a Kalman-filter-based state estimator with odom-
etry and GPS, sensors with parametrizable accuracy, and a 
localization method that provides the reference signals for 
the yaw rate planner. Values of mapping L were calculated 
via simulation performed in this environment.

The parameters of the controller during the measurement 
were the following: � = 0.25s (time constant of the actua-
tor), Δytol = 0.1m , Δ�tol = 1deg (lateral and orientational 
tolerance for path tracking in optimization). The controller 
ran at control frequency f = 50Hz , the length of the time 
window was T = 1.5s , and the number of slots during the 
optimization was N = 6.

4.2  Skidpad Maneuver

One of the most common tests for the controller’s ability to 
handle unstable situations (sliding, drifting, and unexpected 
lateral forces) is the skid-pad test: the vehicle goes straight 
and runs over an actuator that jerks the front wheels of the 
vehicle giving angular momentum to it. The track of the 
vehicle is constantly watered to reduce rubber wear during 
the maneuver. For this test to be performed in real-time, it 
needs a special environment, so only simulation measure-
ments were performed. In the simulation, the effect of the 
skid-pad can be replaced by a lateral force impulse affecting 
the front wheels of the vehicle.

The controller’s operation during the effect of a lateral 
force of 4000N for 0.5s can be seen in Fig. 4. The vehicle’s 
speed was 10m

s
 . However, it is clear that the disturbance 

causes 3 meters of lateral error and a high jump in the yaw-
rate; the controller can compensate effectively and aperiodi-
cally the error with minimal control effort. It should be noted 
that on the waveform of the yaw-rate derivative, the lateral 
force can be seen in action.

5  MPC Controller for Comparison

MatLab’s Automated Driving toolbox has a built-in solution 
for lateral control using Model Predictive Control Toolbox, 
called Lane Keeping Assist System (LKA) (MathWorks, 
2020). The LKA instantiates an adaptive model predictive 
controller and can easily be placed into the simulation envi-
ronment described above as soon as its control law is based 
on a receding horizon. The MPC controller is a common 
and well-performing approach in lateral control, according 
to Paden et al. (2016). The optimization of the proposed 
algorithm solves a quadratic problem similar to the MPC of 
the LKA. The computational complexity of the controllers 
is identical, so the advantages of the proposed structure in 
handling nonlinearities can be seen in the comparison.
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5.1  Structure of the MPC Controller

The LKA subsystem has road curvature, lateral deviation of 
the center of gravity (COG), relative yaw angle, and speed 
as an input, and control signal as output. The adaptive MPC 
controller in the LKA subsystem contributes to two main 
parts: state estimation and optimization. Its adaptiveness 
appears in the prediction model as operating conditions 
change, in this case, the longitudinal speed. A linear time-
varying Kalman filter performs the state estimator. The 
estimator uses the dynamic bicycle model described above, 
using the same vehicle parameters. MatLab’s LKA subsys-
tem uses a linear tire model that describes lateral force by 
cornering stiffness and ignoring tire saturation.

The optimization solves a quadratic programming prob-
lem minimizing a cost function containing lateral deviation, 
orientation, and the control signal for a prescribed prediction 
and control horizon. The horizons were equally chosen to be 
15 steps long. The optimization can take into consideration 
the physical restrictions of the real system: minimum and 
maximum steering angle and steering rate limitations.

According to Jalali et al. (2017), latencies in the control 
system can be handled in MPC structures. The lane-keeping 
assist block contains a parameter for actuator lag to handle 
these as first-order elements. The measured outputs of the 
model predictive controller are lateral deviation and relative 

yaw angle. The previewed curvature of the path is given as 
a measured disturbance vector to make the vehicle follow 
the track.

The complexity of the MPC controller is given by its 
several parameters and weights that have a complex tuning 
process, as explained in Wang et al. (2019). Parameters 
of the reference controller were chosen by reserving the 
default parameters used in one of MatLab’s demos. Further 
tuning was executed with the updated model parameters to 
achieve an aperiodic setting upon disturbances in lateral 
position and orientation. At the end of the tuning, under 
nominal circumstances (no disturbances, µ = 1), the system 
response has similar tracking properties as the proposed 

Fig. 4  Simulated skid-pad maneuver for testing the robustness of the controller. Subplot a represents the path of the vehicle in x–y coordinates. 
The other subplots represent the state variables along the path taken by the vehicle

Table 1  Modified parameters of the MPC controller

Name Description Value

Nc Control horizon 15
Np Prediction horizon 15
SFo Scaling factor for orientation 0.35
SFp Scaling factor for position 0.5
SFδ Scaling factor for steering 1.3963
W(1) Weight for orientation 0.0141
W(2) Weight for position 0.1414
Wδr Weight for manipulated variables rate 7
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controller. The tuned parameters of the MPC controller 
can be seen in Table 1.

According to Wang et al. (2019), MPC’s optimization 
has an extensive calculation burden when it is executed 
online, so beyond performance and parameter tuning, the 
runtime of the MPC controller is also a critical point. The 
presented adaptive MPC controller can provide 50 Hz 
control frequency only in simulation because its compu-
tational requirements are higher than the proposed control-
ler’s needs.

5.2  Simulation Results of the Comparison

In this subsection, two different test cases highlight the 
main advantages of the proposed optimization and IMC-
based structure. The first case focuses on robustness against 
ambient parameter changes showing the advantages of using 
the nonlinear tire model in the IMC structure. The second 
case shows the benefit of yaw-rate-based control. It should 
be noted that none of the parts of the controllers have been 
modified during these tests. All tests were performed using 
the same controller parameters.

In Fig. 5, the comparison of the two controllers can be 
seen, performing lane change maneuver on low-mu. In this 
situation, the vehicle speed was 10m

s
 , and the friction coeffi-

cient of the simulated model was µ = 0.12. It can be seen that 
the IMC controller performs better with much less control 

action, lateral deviation, and orientation error due to the used 
nonlinear tire model. The maximal diversion from the cen-
terline for both directions using the proposed method was 
0.282 m and −0.375 m, and using the MPC was 0.325 and 
−0.782 m, which is a significant difference. 

The yaw-rate-based controller has additional insight into 
the vehicle’s movement besides position and orientation. 
This way, the vehicle can react immediately to disturbances 
affecting the yaw-rate directly. In Fig. 6, the comparison of 
the two controllers can be seen for the skid-pad maneuver 
F = 6000 N, t = 0.2 s. Both controllers are solving the situa-
tion with two main steering movements. However, the IMC 
controller can react faster because it immediately perceives 
the disturbance that appears in yaw-rate. Its maximal lateral 
deviation is smaller at the end than the MPC controller’s 
error (−0.37 m vs. −0.63 m), which can only react to the 
error that appears in orientation and position.

6  Experimental Results

In this section, the real-time test results are presented for the 
proposed controller structure. The test vehicle can be seen in 
Fig. 7, a Mercedes C200 limousine provided by ThyssenK-
rupp’s Vehicle Motion Control team. The parameters of the 
vehicle can be seen in Table 2.

Fig. 5  Comparison of the controllers performing lane change maneuver on low-mu
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As it is shown in Fig. 8, the parts of the test setup are the 
following: DGPS provides the actual position and orienta-
tion information, and the IMU provides the values of the 
dynamic state variables. A real-time model runs on AutoBox 
with a ControlDesk interface that controls the actuator for 
the steering, calculates the local position and orientation 
based on the sensors, and communicates with the indus-
trial PC (Nuvo-6108GC-IGN) that runs the lateral control 
algorithm. It took 5.127 ms to run the control algorithm 
on the PC. ControlDesk is also responsible for saving the 

Fig. 6  Comparison of the controllers performing skidpad maneuver

Fig. 7  Mercedes C200 test vehicle

Table 2  Parameters of the vehicle

Name Description Value

m Mass of vehicle 1523 kg
a Front wheelbase 1.278 m
b Rear wheelbase 1.562 m
Iz Chassis inertia 2330 kg  m2

clat Shape factor 1.4724
blat Stiffness factor 10.87

Fig. 8  Block diagram of the measurement setup: the controller runs 
on the Industrial PC, connected to an AutoBox that performs com-
munication with sensors (IMU, DGPS), localization, and controls the 
road-wheel actuator of the vehicle
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measurement signals. The real-time model allows the test 
driver to override the control signal, so robustness against 
this disturbance can be tested easily. During the measure-
ment, the test driver makes longitudinal control of the vehi-
cle, maintaining a constant speed. Test measurements took 
place at Kiskunlachaza airport.

6.1  Comparing Simulation Results 
and Measurements

Classic straight lane following maneuver is a sterile way 
to examine the vehicle’s dynamic response in the measure-
ments and the simulation. One typical test case for distur-
bance suppression is to examine the effects of lateral posi-
tion error. In Fig. 9, the simulation and the measurements 
can be compared on a straight path with a 3 meters wide 
step. During the maneuvers, the vehicle speed was 6.5m

s
 . 

The heading sign is quite noisy due to the placement and 
measurement inaccuracy of the dual GPS antennas. How-
ever, the control works in a quite robust way in the presence 
of this noise.

The differences between the responses are due to model 
mismatch of the simulation’s vehicle model and measure-
ment noise. In general, it can be stated that the simulation 
and the measurement give very similar results, so the simu-
lation can be used to test the system’s real-time operation, so 
the simulation results for the comparison and the skid-pad 
test are verified.

6.2  Control Override

The real-time environment was implemented so that the test 
driver could override the requested control to stop unsafe 
maneuvers during the testing of the autonomous system. 
This feature provides an opportunity to test the controller’s 
robustness in handling the situation when the steering angle 
is forced for a short time into a prescribed state, simulating 
unexpected disturbances.

The test was the following: during straight lane follow-
ing, the test driver jerked the steering wheel for a moment, 
overriding the control signal requested by the controller, and 
then let the controller suppress the deviation.

The results can be seen in Fig. 10. During the measure-
ment, the vehicle’s speed was 10m

s
 . In subplot (d), the exter-

nal disturbance can be detected: the override is ended when 
the road wheel angle starts changing in the same direction 
as it is requested to be changed. The delay in the requested 
road-wheel angle is due to the filter placed in the controller’s 
feedback. The controller compensated for this error with 
minimal effort by two steering movements: the first respond 
quickly and start compensating for the disturbance in the 
yaw-rate. The second (which is less steep) corresponds to 
eliminating the position and the orientation error.

Fig. 9  Comparison of the measurement and the simulation, examining the response for a lateral step disturbance
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7  Conclusion

In this paper, a new control framework is presented, improv-
ing robustness and yaw stability for autonomous vehicles. 
Vehicle lateral control is solved by a method that expands 
the internal model servo control with optimization- based 
reference generation for yaw-rate. The control rule is deter-
mined by the minimalization of the control effort to gain 
yaw stability. The performance of the controller was dem-
onstrated in simulation and real-time measurements, and the 
results were compared with a reference controller provided 
by MatLab. The proposed lateral control meets the expec-
tations set out in the objective: the controller satisfied the 
robustness tests performed on lo-mu, control override, and 
skid-pad.

Future work will expand the presented approach integrat-
ing longitudinal control to handle high longitudinal dynam-
ics situations. Another direction is to realize the IMC struc-
ture in multi-actuator control handling steering and driving/
braking torques altogether.
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