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ABSTRACT-A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric
vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a
small sized electric power source. However, it is not possible to develop high efficiency HEVs without an effective energy
management system (EMS), a well-designed EMS is vital in HEVs because they need to manage two power sources. Motivated
by this, there are continuing efforts being made to research and establish suitable energy management strategies in order to
develop high efficiency HEVs. In the past, many energy management strategies for HEVs were developed based on optimal
control theory. Recently, various kinds of machine learning technologies have been applied to HEV EMS development based
on breakthroughs in the fields of machine learning and artificial intelligence (Al). Machine learning is a field of research that
allows computers to perform arbitrary tasks guided by data rather than explicit programming. Machine learning can be classified
into supervised learning, reinforcement learning (semi-supervised learning), and unsupervised learning depending on how the
training data is structured. In this study, we look at cases and studies in which machine learning techniques from each category
were used to develop HEV energy management strategies.

KEY WORDS : Hybrid electric vehicle, Energy management strategy, Machine learning, Artificial intelligence, Optimal

Copyright © 2021 KSAE/ 123-25
PISSN 1229-9138/ cISSN 1976-3832

control theory

1. INTRODUCTION

Due to the dangers of global warming and climate change,
emission regulations for vehicles are being stricter and
stricter (Land Transport Guru, 2018). In accordance with
these tightening regulations on vehicle emissions, there has
been rapid progress made in vehicle electrification and
hybridization (Wikipedia - Hybrid electric vehicle, 2020).
Replacing internal combustion engine vehicles with HEVs is
one of the most effective approaches to meeting the stringent
emissions regulations (Plotz et al., 2017).

HEVs are defined as vehicles with more than one power
source. In general, the power source of a hybrid vehicle
consists of an internal combustion engine and a battery,
HEVs can be further classified into parallel, series, and
power-split architectures according to the powertrain
structure, as shown in Figure 1 (Matsubara et al., 2009; de
Souza and Dedini, 2009; Ehsani ef al., 2018). Figure 1 (a)
shows a parallel HEV. Since parallel HEVs are designed to

* Corresponding author. e-mail: swcha@snu.ac kr

transmit the power of the electric motor and the internal
combustion engine to the wheels, they have the advantage of
being able to use smaller batteries (Montazeri-Gh et al.,
2006). Figure 1 (b) shows a series HEV. In series HEVs, the
power required for propulsion of the vehicle is supplied only
by the electric motor. Since series HEVs are powered only
by the electric motor, they have the advantage of having
mechanically simple systems (Dehghan et al., 2011). The
structure of a power-split HEV is shown in Figure 1 (c).
Power-split HEVs have the advantage that they can utilize
both parallel and series configurations depending on the
situation by using a planetary gear (PG) (Liu and Peng, 2008).

In recent years, along with the commercialization of fuel
cell hybrid electric vehicles, studies on fuel cell hybrid
electric vehicles are still being actively conducted (Xu ez al.,
2020). The power sources of fuel cell hybrid electric vehicles
(FCHEV) are generally composed of a fuel cell stack and
battery. Like general HEVs, FCHEVs have Parallel, Series,
and Power-Split configurations as shown in Figure 1. In
FCEHYV, PEMFC (Polymer Electrolyte Membrane Fuel Cell)
plays the role of an internal combustion engine that is used
as the main power source in general HEVs.

1437



1438

(a) Parallel configuration

(b) Series configuration

(c) Power-Split configuration

Figure 1. Hybrid electric vehicle configurations: (a) parallel
configuration, (b) series configuration (c) power-split
configuration.

Since the fuel cell stack of a FCHEV is vulnerable to stack
degradation, it is necessary to consider deterioration of the
fuel cell when developing the energy management strategy.
Therefore, a multi-objective formulation of the problem that
considers stack deterioration and fuel consumption of the
fuel cell stack has been given in many studies on FCHEV
energy management strategies (Mayur ef al., 2018; Li et al.,
2019a; Zheng et al., 2014).

Since HEVs have more than a single power source, the
efficiency of the overall system is greatly affected by the way
the power required is distributed to each power source. For
this reason, many studies have been conducted on energy
management strategies for the HEVs.

A general energy management optimization problem for
HEVsis defined in Equation (1). In Equation (1), 7z, isthe
instantaneous fuel consumption and L is a term that
represents incurring economic costs such as the deterioration
of parts. y is the equivalent factor that equalizes L to the
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fuel consumption rate, and from the point of view of an
optimization problem that considers only fuel consumption,
v becomes 0. Finally, x and # in Equation (1) represent the
state and the control. The boundary conditions for
Equation (1) are expressed in Equation (2), where
S0C(ty) and SOC(tr) denote the initial state of charge
(SOC) and final state of charge, respectively. A secondary
condition of Equation (1) is expressed in Equation (3). In
Equation (3), P, w,T represent the power, rotational
speed, and torque, respectively, while()eng, (-)pat, (Dmot
denote respective quantities relating to the engine, battery,
and electric motor.

minszc(x(t),u(t)) +vy- L(x(t),u(t)) (1)
subject to
50C(t;) = SOC(to) )

Peng = Peng,max

Pbat,min < Pbat < Pbat,max

Wmot,min =< Wmot =< Wmot,max (3)

T,

eng < Teng,max

In other words, the goal of the HEV energy management
optimization problem is to derive a strategy that minimizes
the designed cost function while securing SOC-sustainability
and satisfying all the physical constraints.

Many studies on energy management have produced
strategies for HEVs that have been based on rule-based
methods, optimal control theory, and reinforcement learning.
In rule-based power distribution strategies, the driving
modes are designed according to the driving conditions and
are based on human experience or the results from optimal
control theory (Son and Kim, 2016; Zhang and Tao, 2017;
Geng et al., 2019). Rule-based strategies have the advantage
of being easily applicable to consumer vehicles because they
require only a small amount of computation and utilize future
information in a limited way when deriving the control
values. However, the efficiency of the rule-base strategies is
somewhat inferior to the results you might get through
optimization. One of the most widely used theories in the
study of HEV energy management is optimal control theory.
The strategies based on optimal control theory can be divided
into strategies based on dynamic programming that
guarantee the global optimum solution and strategies based
on real-time optimization theory. Strategies based on
dynamic programming (DP) have the advantage that they
can guarantee the global optimum solution, but have the
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disadvantage that they require heavy computations and rely
on future driving information to derive the optimum control
values (Pérez et al., 2006; Wang and Lukic, 2012). As such,
DP-based strategies are mainly used to provide reference
data for research or to derive the optimal size of the HEV
elements as opposed to being directly applied in consumer
vehicles (Vinot et al., 2007; Pourabdollah ez al., 2014).
Among power distribution strategies that are based on
real-time optimization theory, the most widely used theories
are Pontryagin’s minimum principle (PMP) and the
equivalent consumption minimization strategy (ECMS)
(Onori and Tribioli, 2015; Tang et al., 2015; Ou et al., 2018).
The common goal of these two theories is to derive control
values that minimize the cost function by considering the
electrical energy and the fuel consumption at each time-step.
Therefore, it is very important to design a co-state that
equalizes electrical energy to fuel consumption properly for
these two theories. Kim and Lee (2015) proved that when the
co-state is designed properly, a PMP-based strategy can
derive a result equivalent to that from a DP-based strategy
that guarantees a global optimum solution. As such, a
strategy based on real-time optimization theory requires only
light computation and has the advantage that very high fuel

efficiency can be expected if the co-state is designed properly.

However, since the co-state has a large dependence on the
driving cycle, it is very difficult to derive an appropriate co-
state without future driving information.

Reinforcement learning is formulated based on a Markov
decision process (MDP), as shown in Figure 2 (Sutton and
Barto, 1992). MDP consists of an environment and an agent.
The agent receives a state from the environment as input and
delivers an action to the environment as output. The
environment receives the action from the agent and then
delivers an updated state and a reward to the agent. That is,
the agent receives the state and delivers an action based on
this, which is a kind of control value, to the environment
according to the defined policy. In reinforcement learning,
the agent constructs a policy in a way that maximizes the
expected value of the reward based on previous experiences.
When applying reinforcement learning framework to the
HEV energy management problem, the environment
corresponds to the HEV and the agent corresponds to the
strategy. It is very important to define the state, the action,
and the reward in reinforcement learning. In general, the
state includes features such as the demand power, the
velocity, SOC deviation, and torque. The action adjusts the
battery power or the engine torque. The reward is designed
by equalizing fuel consumption and electrical energy (Lin
etal.,2014; Liu et al., 2017; Xiong et al., 2018). Strategies
based on reinforcement learning have the advantage that
generalization performance is very good because they
derive actions only from observable states without the need
for future information (Xiong et al., 2018).
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Figure 2. [llustration for reinforcement learning framework
on the Markov decision process.
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Figure 3. Classification of machine learning.

In recent years, due to rapid developments in the field of
machine learning and Al, machine learning techniques are
being actively utilized in the development of control
strategies for HEVs. Machine learning is a research field that
allows computers to learn to perform arbitrary tasks through
the use of training data rather than explicit programming.
Machine learning can be further classified into supervised
learning, reinforcement learning (semi-supervised learning),
and unsupervised learning according to the method used to
organize the training data as shown in Figure 3.

In supervised learning, input data, expressed as a feature,
and target data are paired to form the training data. A problem
in which the dependent variable is expressed as categorical
data is defined as a classification problem, and a problem in
which the dependent variable is expressed as continuous data
is defined as a regression problem. Supervised learning is the
most widely used machine learning framework when
developing power distribution strategies for HEVs. To carry
out supervised learning, it is necessary to derive target data
corresponding to the features. Optimal control theory is
generally used in order to derive these labeled data for
supervised learning-based HEV strategies. (Chia et al., 2015;
Lin et al., 2015; Chen et al., 2018; Zheng et al., 2020).
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Unsupervised learning consists of only input values
without the target data. Representative algorithms for
unsupervised learning include clustering and dimensionality
reduction algorithms. Clustering refers to a machine learning
technique that classifies data based on a similarity measure
between features. Dimensional reduction algorithms are
algorithms that reduce the number of feature dimensions and
lower the co-linearity between features. Choi (2019)
classified driving profiles using the k-means clustering
algorithm and developed a power distribution strategy in
which different co-state maps were applied according to how
each driving profile was classified.

Reinforcement learning is also known as semi-supervised
learning because the agent is trained to maximize the reward
it receives through various experiences under conditions
where the target data is not given explicitly. In recent years,
the field of reinforcement learning has been rapidly
developed by the fusion with deep learning, which is then
called deep reinforcement learning (DRL). Taking advantage
of the fact that deep learning can derive efficient feature
representations for complex states or actions, DRL can
effectively solve complex problems that cannot be solved
using the existing reinforcement learning framework. (Mnih
etal.,2015; Lillicrap et al., 2016). Since DRL derives power
distribution strategies for HEVs using only observable states,
many studies have used taken advantage of DRL to develop
energy management strategies that are able to ensure
generalization performance (Wang et al., 2019; Wu et al.,
2018).

We summarized the general characteristics of the above
three machine learning techniques, supervised learning,
unsupervised learning, and reinforcement learning through
Table 1. First, in terms of the necessity of pair-data composed
of a pair of feature and target, supervised learning requires
pair-data, and unsupervised learning only requires
information on features. And since reinforcement learning
proceeds based on state and reward derived from the
environment, pair-data is not essential. Hyper-parameters are
parameters that must be set by humans in a machine learning
algorithm. In general, there are many hyperparameters in the
order of reinforcement learning, supervised learning, and
unsupervised learning. Reinforcement learning requires
more hyper-parameters than the other two algorithms
because reinforcement learning needs to define hyper-
parameters such as exploit-exploration ratio, discount factor,
and replay memory size as well as hyper-parameters for

Table 1. Characteristics of three machine learning algorithms.
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learning. Also, in reinforcement learning, because the agent
is trained through various experiences and trial & error,
reinforcement learning tends to require a large amount of
computation compared to the other two algorithms. From a
general point of view, reinforcement learning is more
difficult to apply than supervised learning and unsupervised
learning because both environment and agent must be
configured, and appropriate action, state, and reward must be
defined for effective learning. And, due to the cost and time
consumed in configuring pair-data, supervised learning tends
to be more difficult than unsupervised learning.

This rest of this paper is organized as follows. Section 2
introduces representative HEV structures and describes the
characteristics of each HEV structure as well as related
studies. In Section 3, we examine rule-based strategies and
optimal control theory-based research in detail. Many
machine learning-focused papers have used optimal control
theory or rule-based strategies to generate training data or
perform comparative studies, so looking at these studies is
important to understand machine learning-based research. In
Section 4, we look at various HEV strategies based on
machine learning. Section 4 is divided into three parts
according to the type of machine learning used. In the first
part, we describe HEV power distribution strategies that use
supervised learning. In the second and third parts, we discuss
energy management strategies based on deep reinforcement
learning and on unsupervised learning. Finally, we will
summarize and conclude this study in section 5.

2. CONFIGURATION OF HYBRID ELECTRIC
VEHICLES

There are several kinds of HEVs. There are series HEVs,
parallel HEVs and power-split HEVs. Each structure has its
own characteristics, advantages and disadvantages.

The serial type HEV structure was created to improve the
range of EVs due to the low energy density of batteries.

HEVs with a parallel structure can be driven using both an
engine and an electric motor, here the electric motor can
compensate for disadvantages of the traditional internal
combustion engine.

The power split HEV is a structure that adds one more
electric motor and drives the vehicle using one engine and
two motors. By properly controlling the planetary gear, often
by using both a mechanical and an electrical couple, a series-
type structure and a parallel-type structure can be

Supervised learning

Unsupervised learning Reinforcement learning

The necessity for pair-data Need Not needed Not needed
Number of hyper-parameters Medium Small Large
Computation time Medium Medium Large
Difficulty level Medium Easy Difficulty
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implemented (Miller, 2006). Each structure has advantages
and disadvantages, and their usages differ, but in overall
point of view, it is a structure that supplies steady power to
the internal combustion engine and supplements dynamic
power through an electric motor (Ehsani ez al., 2007).

2.1. Series Hybrid Electric Vehicle

In series HEVs, two power sources drive one electric motor.
The first power source is an internal combustion engine. A
generator is connected to an electrical coupler to supply
energy in one direction to charge a battery. The other power
source connected to the electrical coupler is the battery pack,
energy is allowed to travel in both directions between the
electric motor and battery. The electric motor is also
connected to an electrical coupler, the motor not only
receives energy to drive the vehicle, but it can also generate
energy through regenerative braking. The biggest advantage
of a series HEV is that there is no mechanical connection
between the engine and the wheels, so the engine can operate
independently of any power required to drive the wheels.
Since the operating conditions that are efficient for an
electric motor are not as sensitive as those for a combustion
engine, there is no great need for a transmission.

However, series type HEVs have the disadvantage of
suffering high losses due to frequent energy conversion.
There is another disadvantage in that the weight and cost of
the vehicle are increased by the generator and a high output
electric motor is required.

Since serial HEVs require high electric motor output, they
are not widely used as general passenger vehicles but are
mainly used as commercial vehicles (Chambon et al., 2017).

2.2. Parallel Hybrid Electric Vehicle

Similar to traditional internal combustion engine vehicles, in
parallel HEVs, the engine drives the wheels through a
mechanical coupler. The driving forces from the two power
sources are combined by also having an electric motor
mechanically coupled to the drive shaft to assist with extra
driving force. Parallel type HEVs have the advantage not
needing to convert power from the engine to electricity, in
contrast to serial type HEVs, as such there are fewer losses
in parallel HEVs. In addition, parallel HEVs do not require a
generator and can use a smaller size electric motor than series
HEVs because in series HEVs, the electric motor alone
handles the driving power. However, since parallel type
HEVs have complex mechanical structures and their engines
are mechanically coupled to the drive shaft, they cannot
choose to operate the engine only under the highest
efficiency conditions, unlike in serial type HEVs (Gao ef al.,
1997).

There are two types of mechanical coupling: torque
couplings and speed couplings. In torque couplings, the
mechanical coupling combines the torque of the engine and
electric motor and transmits it to the wheels. Therefore, the
torque of the engine and electric motor can be applied
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independently. However, since the engine and the electric
motor are coupled in a fixed ratio to the vehicle, the speed
the wheels turn at is constrained. In the case of speed
couplings, similarly, the engine and electric motor can rotate
at different speeds but the speed coupler allows the two
speeds to be combined and transmitted to the wheel, however,
the torque supplied to the wheels is then constrained.

2.3. Power-Split Hybrid Electric Vehicle

It is also possible to have both a torque coupler and speed
coupler in a parallel HEV and use them according to the
situation. This gives more freedom in choosing how the
engine and motor operate, which can lead to higher
performance and efficiency. For example, while in the low
speed range, the torque coupler can be used to achieve high
acceleration (or climbing ability). Conversely, while in the
high-speed range, the speed coupler can be used so the
engine can drive in its optimum conditions. However, this
method has the limitation that only one of the two methods
can be selected. One way that Toyota has proposed to
overcome this problem is to add another drive source. In their
method one engine and two electric motors are connected
and combined by a planetary gear and an inverter, this
structure is called a power-split HEV or called a
series/parallel type (Liu and Peng, 2008, Pei ef al., 2018). If
the planetary gear is properly arranged, it can operate like a
parallel HEV by mechanically connecting the engine and
electric motor with the drive shaft, or it can be operated like
a series HEV that generates power for the batteries using the
engine and motor. The driving power is transmitted by the
former through a mechanical path and by the latter through
an electrical path. The transmission used in this type is called
an e-CVT because it decouples the speed of the wheels and
engine through electronic control and enables continuous
transmission even when using a planetary gear (Hoeijimakes
et al., 20006).

Through use of a continuous transmission, higher
efficiency and performance than that seen in normal series or
parallel HEVs can be achieved, and the advantages of both
systems can be obtained. The representative vehicle to which
this system was applied is the Toyota Prius, it was later also
applied to the Camry and Lexus (Hashimoto, 2009).

3. CONVENTIONAL ENERGY MANAGEMENT
STRATEGY

Hybrid electric vehicles have two or more power sources and
their efficiency varies depending on the operating conditions
of each unit, as such, it is very important how much power is
distributed between the power sources under the same
driving conditions and vehicle power demands. Due to their
importance, there is a great variety and depth of research into
power distribution strategies for HEVs.

This chapter will cover the general concepts and the give
details of research conducted into rule-based strategies and
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optimal control theory. In Section 3.1, rule-based strategies
are introduced, in Section 3.2, optimal control theory-based
strategies are introduced.

3.1. Rule-Based Energy Management Strategies

The rule-based energy management strategies determine
control based on experience (Hofman et al., 2007). This
does not produce optimal energy strategies because this
approach can only reflect human intuition, accumulated
data. Various automobile manufacturers have used rule-
based energy management because it requires only light
computation and is easy to apply in algorithms on consumer
vehicles (Zhang et al., 2015; Wang et al., 2020a). Rule
based control strategies can be largely divided into
Deterministic Rule-based strategies and Fuzzy Rule-based
strategies. Deterministic methods include Thermostatic
control and the Power follower method, while Fuzzy
methods can be subdivided into Conventional, Adaptive,
and Predictive methods.

3.1.1. Thermostat strategy

The thermostat strategy, mainly used in serial hybrid
vehicles, keeps the SOC within a specified range by turning
the engine on or off in a predefined way (Shabbir and
Evangelou, 2019). Since the engine is only operated when
the operating conditions give the highest efficiency, the
efficiency of the engine and generator is high, but we cannot
expect high overall system efficiency due to energy
conversion losses.

3.1.2. Power follower

The power follower strategy maintains the SOC and applies
several control methods according to the state of the vehicle
so that the engine can operate optimally (Shabbir and
Evangelou, 2019). The vehicle operation mode is determined
according to factors such as the SOC of the battery and the
power required by the engine and clutch, the engine is
controlled to operate in optimum conditions. This method is
mainly used in parallel HEVs and power-split HEVs (Yang
and Zhu, 2016).

3.1.3. Conventional fuzzy rule-based strategy

These methods control HEV by applying basic fuzzy logic.
The input is fuzzified through a membership function and the
output values are inferred based on rules. Control is
performed by defuzzing the inferred value. In the inference
process, human expertise and intuition are used but the
optimization results cannot be guaranteed to give optimal
efficiency. However, many studies have been conducted
using these methods because they have the advantage that
HEV energy management is possible with only light
computation (Denis et al., 2015). In research related to the
development of HEV power distribution strategies, fuzzy
rule-based strategies have been designed in consideration of
the wvehicle’s required power, vehicle speed, and SOC
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(Abdelsalam and Cui, 2012).

3.1.4. Adaptive fuzzy rule-based strategy

In this methodology, parameters applied in the existing
fuzzy method are adaptively changed according to the
situation. The optimization of parameters is performed
using various methodologies, in some studies, an adaptive
fuzzy logic controller has been derived through training a
Neural Network and using PMP results to provide optimal
control (Tian et al., 2017). In addition, some studies have
improved the efficiency of HEVs by considering the driver's
driving style, current driving mode, and external driving
factors as input values for the fuzzy logic (Langari and Won,
2005).

3.2. Optimal Control Theory based Energy Management
Strategies

3.2.1. Dynamic programming (DP)

DP is one of the methods that can find the global optimal
value in a discrete problem by considering the constraints
based on the Bellman equation. The optimum of the
objective function in each step is calculated using the
optimum value from the last step to the next step. Redundant
calculations can be avoided because each step refers to
previously calculated optimal values. The formula is
expressed as shown in Equation (4), where ], x,u represent
the designed cost function, state variable, and control
variable, respectively.

Cin (e ue) = min [Jo e (e ue) + Jioan (Xeer) |
4

Jin = H;itn[ct*,N(xt' u)]

DP cannot be applied to real-time control of vehicles due
to a large amount of computation, but it has been used in
many studies developing the HEV’s power distribution strategies
because it can guarantee global optimization. The results of
DP are generally used as a reference for newly developed
energy management strategies (Lin ez al., 2003). It is also
used to analyze the DP results to create a rule that approximates
the optimal value (Lee ef al., 2017; Wang et al., 2018).

In order to supplement the low applicability of DP, a
power distribution strategy for HEVs using stochastic
dynamic programming (SDP) was developed. In SDP, a
transition matrix that maps the probability from the current
state to the next state is constructed through driving data of
the actual vehicles. And a policy that can maximize the
expected value of the objective function through the
configured transition matrix is derived based on the Bellman
equation (Leroy et al., 2014; Vagg et al., 2015; Lee et al.,
2016). Unlike DP, SDP has the advantage that its
applicability to real vehicles is very high because it derives
control values from the current state.
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3.2.2. Equivalent cost minimization strategy (ECMS)

The equivalent cost minimization strategy (ECMS) is a
methodology to derive a control value that minimizes the
designed cost function through equalization of the fossil fuel
energy consumed by the engine with the electric energy
consumed by batteries (Musardo er al., 2005). The cost
function from a typical ECMS can be expressed as shown in
Equation (5), where my, is the fuel consumption rate, soc
is the rate of change of the battery SOC, and A is the
equivalent factor that equalizes the battery SOC to the fuel
consumption rate.

] = mp.+ A-soc 5)

The key part of ECMS is to estimate the optimal co-state

that will minimize fuel consumption while maintaining SOC.

In the early days of ECMS research, many studies simply
estimated the equivalent factor of a constant value (Paganelli
et al., 2001, 2002). However, it is difficult to accurately
predict such an equivalent factor given the various driving
environment experienced by the vehicle. Therefore, there
have been research efforts to update the equivalent factor
according to the current state variables of the vehicle (A-
ECMS)(Razaei et al., 2017), or to predict the future driving
situation and calculate the equivalent factor accordingly
(Musardo et al., 2005; Zeng et al., 2018). In recent years,
studies have looked to derive the equivalent factor for the
ECMS using reinforcement learning that takes into account
the various vehicle driving environments (Lee ef al., 2020).

3.2.3. Pontryagin’s minimum principle (PMP)
Pontryagin’s Minimum Principle (PMP) is an optimization
theory based on the Euler-Lagrange equation and aims to
derive a control value that minimizes the system’s
Hamiltonian, which can be seen as a kind of cost function.
For HEV energy management, the general Hamiltonian is
constructed as shown in Equation (6) (Kim e7 al., 2010; Hou
etal.,2014).

H = 1t (Pyqe (), £) + p(£)SOC(SOC(L), Ppae(£))  (6)

PMP has the disadvantage that the control values it derives
cannot guarantee being the global optimal solution because
the instantaneous optimal control value is derived at each
step. Recently, research has been conducted into increasing
computation efficiency by applying an MPC framework
based on PMP (Xie et al., 2019). In order to develop a real-
time energy management system (EMS), a closed-form
solution was derived using only some of the essential
conditions from the PMP, this real-time control technique
does not require a co-state variable (Nguyen et al., 2018). In
addition, a technique for optimizing the fuel consumption
and regenerative braking using PMP in the power system of
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the fuel cell hybrid system has been introduced (Li et al.,
2019b).

3.2.4. Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a relatively recently
developed optimization technique developed by Kennedy
and Eberhart (1995). This is an algorithm developed under
the inspiration of the social system. Multiple particles in the
solution space are optimized through simulation results for
themselves and peers. This PSO algorithm can be said to be
similar to a genetic algorithm that optimizes a fitness
function through crossover and mutation of chromosomes in
population. PSO has the advantage that the algorithm is
simple and there are few parameters to be considered in the
development of the algorithm. Therefore, PSO has the
advantage of being easy to apply to real-time HEV energy
management (Wu et al., 2008a; Wu et al., 2008b; Hwang and
Chen, 2020).

4. ENERGY MANAGEMENT STRATEGY USING
MACHINE LEARNING FRAMEWORK

Due to advances in the field of machine learning, machine
learning is being actively used to develop energy power
distribution strategies for HEVs. Machine learning approaches
can be divided into supervised learning, reinforcement
learning, and unsupervised learning. In this study, HEV
power distribution strategies based on machine learning are
divided up according to these classifications. Section 4.1 will
look at the research on HEV energy management strategies
that use supervised learning, Section 4.2 will explain HEV
energy management strategies that use reinforcement
learning. In particular, Section 4.2 will focus on research into
deep reinforcement learning that applies deep neural networks
to the reinforcement learning framework. Finally, in Section
4.3, we will look at research into unsupervised learning that
is used to develop HEV power distribution strategies.
4.1. Energy Management Strategies Based on the
Supervised Learning Framework
Supervised learning is the machine learning technique that is
most actively used to develop HEV energy management
strategies. A typical framework for developing HEV energy
management strategies through supervised learning is shown
in Figure 4. HEV power distribution strategies are developed
by generating target data corresponding to a feature to create
training data for the supervised learning process, models
such as neural networks, support vector machines, and
random forest mode systems are then trained with this data.
Therefore, one of the most important elements of supervised
learning is defining the target values that correspond to a
feature. In many studies, the target has been defined as future
driving information and energy management strategies have
then been developed based on predicted driving information
(Sun et al., 2014a; Xie et al., 2017; He et al., 2017; Sun et
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Figure 4. Framework for supervised learning algorithm in the energy management for HEV.

al., 2014b; Asadi and Vahidi 2010; Song ef al., 2014; Lin et
al., 2004; Langari and Won, 2005; Zhang and Deng, 2016;
Park et al., 2009; Niu, 2015; Liu et al., 2019; Gaikwad et al.,
2019).

This predictive model mainly carries out optimal control
based on prediction results derived through machine learning
algorithms. Xie ef al. (2017) derived a probability
distribution and a transfer matrix through a Markov decision
process to predict the vehicle’s velocity. In that study, the
power distribution strategy was developed by formulating a
model predictive control (MPC) algorithm that derives
control values from the predicted speed through the transfer
matrix and DP results for the prediction horizon. Sun ef al.
(2014a) constructed various model-based velocity predictors
and compared the performance of each velocity predictor
through the results of the MPC algorithm. In that study, an
exponentially varying velocity predictor, a Markov- chain-
based velocity predictor, and a neural network-based
velocity predictor were developed. The neural network-
based velocity predictor outperformed the other two velocity
predictors. In particular, the radial basis function neural
network (RBF-NN) proved to be superior to the recurrent
neural network (RNN) that is efficient for time series
problems and backpropagation neural network (BP-NN).

Another typical way to develop a supervised learning-
based power distribution strategy is to construct a supervised
learning data set through simulation results based on optimal
control theory before using this data set train a model.
Machine learning models that are trained on data generated
based on optimal control theory have a great advantage in
that they can compensate for the low generalization
performance of the model through optimal control theory
(Harold et al., 2020; Murphey et al., 2012; Venditti, 2016;
Xie et al., 2018; Feldkamp et al., 2009; Han et al., 2020; Son

et al., 2018; Zhuang et al., 2017; Chen et al., 2018).

Murphey et al. (2012) constructed an energy management
system that determines battery power and engine rotational
speed through a hierarchical neural network structure. In that
paper, the output values of the neural network, which predict
the traffic congestion level and driving trends, were used as
the input features of the neural networks that determine the
battery power and rotational speed of the engine. The
training data for the neural networks that determine the
battery power and engine speed was created from the
simulation results of dynamic programming. Xie et al. (2018)
used a neural network system to predict the equivalent factor
that equalizes the fuel consumption and battery SOC change
in the ECMS algorithm. It is very important to derive the
optimal equivalent factor from the ECMS algorithm because
the ECMS algorithm can produce high fuel efficiency that is
at the same level as DP where the optimal equivalent factor
is guaranteed. However, the optimal equivalent factor can
only be derived when all driving information including
future states are available. As the equivalent factor is
sensitive to the driving cycle, it is very difficult to predict the
optimal equivalent factor. In Xie’s study, the training data
was constructed so that the optimal equivalent factor, which
is the target value, corresponds to the input features including
the demanding power, the battery SOC, and the ratio of the
distance traveled to the total distance. The neural network
model trained using this training data predicts the optimal
equivalent factor using the current power demands, the
battery SOC, and the distance ratio. Zhuang et al. (2017)
developed an SVM model that can predict the optimal
operating mode by deriving the operating mode
corresponding to vehicle speed and torque demands using
DP simulation results.

Therefore, HEV energy management strategies based on
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Table 2. Summary of EMS based on supervised learning algorithm.

Refs Algorithm

Features

Targets Problem Categories

Battery SOC, vehicle speed,

Batter power

Murphey et al. (2012) Hierarchical NN demanding power. output value of NN Engine speed Regression
Sun et al. (2014a) RBF-NN Recent vehicle speed sequence Futl.lre vehicle Regression
Velocity sequence
Zhang et al. (2016) NN Driving characteristics Driving pattern Classification
Xie et al. (2017) MDP Neighboring state Futl.lre vehicle Regression
velocity sequence
Zhuang et al. (2017) SVM Vehicle speed, driver’s torque demand ~ Operating mode Classification
Xie et al. (2018) NN Battery SO.C ’ deman@mg power, Optimal co-state Regression
distance ratio
supervised learning can be classified by their features and o = E_[R,,, + pRysy + 1S, = 5, 4, = ] (7

targets, as well as by the algorithms that map targets from
features. Table 2 shows information on major papers
organized by feature, target, and algorithm. Supervised
learning is divided into regression problems and
classification problems, EMSs for HEVs utilize both
classification and regression approaches. In general, a
regression algorithm is used for the prediction of speed,
engine torque, and battery power, while the classification
model is used for the prediction of driving patterns, operating
mode, and gear ratio.

Supervised learning has been the most active research
field in machine learning, this field is developing rapidly
around tackling image recognition problems and natural
language processing problems. Due to the rapid development
of supervised learning, the group of HEV energy management
strategies applying supervised learning algorithms is
expected to continue to expand.

4.2. Energy Management Strategies using Reinforcement
Learning

Reinforcement learning provides a framework to map
actions that maximize the expected value of a reward from a
given state without using explicit target data. Recently, deep
neural networks have been introduced in the field of
reinforcement learning, leading to rapid progress being made
in this field (Mnih ef al., 2015). Mnih et al. (2015)
investigated using Q-learning, a model-free algorithm for
reinforcement learning, for the EMS of HEVs. They proved
that you can effectively solve problems that cannot be solved
with existing Q-learning, due to the complexity of the states
involved, by applying deep neural networks to Q-learning.
The Q-values in Q-learning represent the quality of an action
given the current state, the Q-value is expressed as shown in
Equation (7). In Equation (7), «, s, a, and R represent the
policy, state, action, and reward, respectively, while p
represents a discount factor with a value between 0 and 1. Q-
values can be optimized by a Bellman optimality equation
such as that shown in Equation (8), the optimal policy can be
expressed as shown in Equation (9).

Q — Q + a- (rt + P méiXQ(St+1: a) - Q(St' at)) (8)

w*(s) = argmax Q*(s,a) 9)

In DRL, the Q-value is estimated using the deep neural
network, this type of the DRL algorithm is known as a deep
Q-network (DQN). In a DQN, the weights of the deep neural
networks are trained to minimize the loss according to
Equation (10) Mnih et al., 2015). The DQN algorithm
consists of two networks, the main network and the target
network, for learning stability. In Equation (10), 62

represents the weights of the main network, 02 s the
weights of the target network.

Loss(09) = [y, — Q(s,al09)]

Y =Tt P gltilx Q(Se41s ap44/09 ) (10)
1

The biggest drawback of the DQN is that since the actions
are derived through the value-evaluation algorithm, only
discretized action can be derived. To overcome these
shortcomings, Lillicrap et al. (2016) developed a deep
deterministic policy gradient (DDPG) model that can derive
continuous value-type actions using a policy gradient
algorithm. The DDPG consists of neural networks with an
actor-critic structure, where the actor network derives an
action expressed by a continuous value, and the critic
network evaluates the validity of the action derived by the
actor network. As shown in Equation (11), the gradient for
the loss of the actor network is derived by the policy gradient
method, where 84 and 8¢ represent the weights of the
actor network and the weights of the critic network,
respectively.
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= 3 2 7aQ(s, al6)Vpan(s|6*) (11

The loss for the critical network is expressed in Equation

(12), where 64 and 6¢ represent the weights of the
target actor network and the weights of the target critic
network, respectively.

Loss(8¢) = [y, — Q(s,al6°)]

Ve = Tear + PQ(Sei1, U(Se41164 )16¢ ) (12)

The DQN algorithm and DDPG algorithm discussed
above are the most widely used DRL algorithms in energy
management strategies for HEVs. Figure 5 illustrates the
framework in which the DRL algorithm is used in a domain
related to the energy management of HEVs. On the MDP, the
deep neural network corresponds to the agent and the vehicle
model corresponds to the environment. As the simulation
proceeds, the experience, consisting of the state, action,
reward, and the next state are stored in the replay memory,
which is a kind of database. The experience stored in the
replay memory is then used to train the agent which is
constructed by the deep neural networks.

Energy management strategies for HEVs that use DRL
mainly uses either the DQN or DDPG algorithms (Zhao et
al.,2018; Han et al., 2019; Zhu et al., 2020; Hu et al., 2018;
Aljohani et al.,2021; Wang et al., 2019; Liessner et al., 2018;
Wu et al., 2019; Tan et al., 2019; Wang et al., 2020b;
Liessner ef al., 2019; Lian et al., 2020; Guo et al., 2020).

Zhao et al. (2018) constructed a power distribution

strategy for parallel HEVs using the DQN algorithm. The
action was designed to control the battery current and gear
ratio, the reward was defined as the negative of fuel
consumption. The state for mapping the action was
composed of the power demand, the vehicle speed, the
battery charge, etc. and was given in a discrete value format.
Liessner et al. (2018) constructed a power distribution
strategy for parallel HEVs using the DDPG algorithm. In that
study, the state was composed of continuous values of the
wheel velocity, wheel torque, battery SOC, battery
temperature, and gear ratio. The reward was designed in
consideration of the fuel consumption and energy consumed
by the battery, actions were defined with the power of the
electric motor expressed as a continuous value.

An important criterion for classifying the DRL algorithm
is its definition of state, action, and reward, as well as the
algorithm used. According to these, we classified the
research on DRL-based energy management mentioned
above in Table 3.

Wu et al. (2019) established an energy management
strategy for hybrid electric buses using the DDPG algorithm.
In that study, a more efficient methodology was presented by
utilizing not only vehicle information, but also considering
the number of passengers and traffic information. In their
research, Zhu ef al. (2020) used the DQN algorithm. The
reward was configured to minimize fuel consumption, and
when excessive SOC deviation occurred, a SOC penalty was
imposed on the agent guding the agent to secure SOC-
sustainability. Lee and Cha (2020) constructed an energy
management system that considers the engine on/off state
using the Q-learning algorithm. Hu e7 al. (2018) constructed
rewards according to a SOC range and compared DRL
applied using an online-learning algorithm with a general
offline DRL algorithm. Wang et al. (2020b) developed a
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Table 3. Summary of EMS based on reinforcement learning framework.

Refs Algorithm States Action Reward
. Fuel consumption,
Hu et al. (2018) DQOQN Power demand, battery SOC Engine torque battery SOC
Liessner ef al. (2018) DDPG Wheel speed, wheel torque, battery SOC, Motor power Fuel copsumptlon,
battery temperature, gear ratio electric energy
Zhao et al. (2018) DQN Required power, velocity, battery charge, Battery dlschargling Fuel consumption
predicted power demand current, gear ratio
. Fuel consumption,
Lee and Cha (2020)  Q-learning Batjcery SOG, dema.ndlr'lg power, Engine torque engine on/off state,
engine on/off state, vehicle speed
battery SOC
Vehicle speed, acceleration, baFte.ry SOC,  Engine torque, .motor Cost for fuel, cost for
Wuet al. (2019) DDPG number of passengers, driving torque, engine electric ener
distance, speed at links rational speed &
Battery SOC, vehicle speed, vehicle . Fuel consumption,
Wang et al. (2020b) DDPG acceleration, camera image Engine power battery SOC
Battery SOC, vehicle speed, Fuel consumption,
Zhu et al. (2020) DQN acceleration, gear selection Motor torque SOC penalty

DDPG-based algorithm by extracting the number of vehicles
and traffic light-related information from camera images.

DRL has shown that DRL agents can solve a variety of
very complex problems beyond a human’s ability, this part
of the reason that DRL is currently one of the most popular
research areas in the field of Al (Silver ef al., 2017; Vinyals
et al.,2019). Since DRL algorithms are developing at such a
fast pace, power distribution strategies using DRL
algorithms is an area that is expected to be very active and
see lots of interesting developments.

4.3. Energy Management Strategies Using Unsupervised
Learning

Unsupervised learning is not used as much as the supervised
learning or reinforcement learning that were discussed above,
instead unsupervised learning is mainly used to classify
driving profiles through the use of clustering algorithms or
used to reduce the dimensions of a set of features through
dimensionality reduction algorithms.

Choi (2019) classified driving patterns through the k-
means clustering algorithm and constructed an equivalent
factor map for the ECMS for each driving pattern.
Montazeri-Gh et al. (2011) created 21 features for driving
cycles, they classified driving cycles through a clustering
algorithm that looked at features. The classified driving
patterns were then used to improve the efficiency of the
energy management strategy. Finesso er al. (2016) used a
clustering algorithm to group vehicle conditions based on the
velocity, battery SOC, and velocity variation. Liu et al. (2019)
used principal component analysis (PCA) to reduce feature
space and classify features of driving conditions.

As of yet, unsupervised learning has not been actively
used in establishing energy management strategies for HEVs.
However, in the field of unsupervised learning, various

generative models such as generative adversarial networks
(GANs) have recently been developed (Goodfellow, 2016;
Zhang et al., 2018). Since these generative models provide a
methodology that can compensate for insufficient data, it is
thought that generative models could provide a method to
reduce the cost and time involved in collecting actual driving
data. Due to the development of unsupervised learning, it is
expected that unsupervised learning will be actively applied
to EMSs for HEVs soon.

5. CONCLUSION

Hybrid electric vehicles are vehicles that have two or more
power sources, they have the advantage that each power
source can be controlled so it is used under efficient
operating conditions. Therefore, HEVs are expected to have
higher efficiency than internal combustion engine vehicles.
However, in order to achieve such high efficiency, energy
management strategies that can guarantee high efficiency
must be developed. Motivated by this, many EMSs have
been developed through many studies with the goal of
increasing the efficiency of HEVs.

In recent years, the use of machine learning when
developing these energy management strategies for HEVs
has increased greatly due to the rapid developments in
machine learning and Al techniques. Many researchers are
making continuous efforts to overcome the low
generalization performance of optimal control theory-based
strategies and the low efficiency of rule-based strategies
through the application of machine learning algorithms. In
this study, we classified machine learning technology into
three areas. We then examined how each machine learning
technology is used in the field of EMS development for
hybrid electric vehicles. Currently, HEV energy management
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strategies are being developed based on supervised learning
and reinforcement learning, while unsupervised learning
approaches have great potential for use in the energy
management systems of HEVs.

Since continuous innovation is taking place in the field
of machine learning and the Al it is expected that new
innovations in machine learning will be introduced to the
development of energy management strategies for HEVs
in the future. We hope that this study will be of great help
in understanding how machine learning techniques have
been used to establish energy management strategies for
HEVs.
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