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Abstract
The goal of this perspective is to review how seagrass research has evolved over the past half century to our current state of 
knowledge. We review how our knowledge of seagrass ecosystems changed from the pre-1970s when so little was known 
about seagrasses and how it progressed during the next 5 decades when seagrass knowledge rapidly expanded. Here, we 
concentrate on accomplishments in the areas of reproductive biology and ecology, population biology, seagrass-animal 
relationships, conservation and restoration, and mapping and monitoring. We also look ahead and discuss some areas that 
are ripe for future research, especially those employing new mapping and monitoring technologies, improved restoration 
methods that include multiple genetic variants, rhizosphere studies that result in a deeper understanding of microbial effects 
on nitrogen availability, sulfide levels and carbon sequestration, and how changing climatic regimes and tropicalization will 
likely affect temperate and tropical seagrass-dominated ecosystems.
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Introduction

Seagrasses are highly productive habitat-forming founda-
tion species that thrive in shallow estuarine and coastal 
regions throughout the world, with the exception of the 
most polar seas. The habitats provided by seagrasses are 
critically important, providing numerous ecosystem services 
that include serving as nurseries for the juveniles of many 
economically important fishery species and enhancing local 
biodiversity (Lefcheck et al. 2019; Unsworth et al. 2022). 
They also contribute to ecosystem function by sequester-
ing carbon, reducing the abundance of human pathogens, 
and providing forage for threatened mega-herbivores like 
dugongs, manatees, and green turtles (Fig. 1 from Orth et al. 
2006a; Beck et al. 2001; Barbier et al. 2011; Fourqurean 
et al. 2012; Lamb et al. 2017; Unsworth et al. 2018, 2022).

Like many other ecosystems, seagrass meadows have 
been in global decline throughout the twentieth century due 
to a multitude of factors (Waycott et al. 2009; Dunic et al. 
2021) (Fig. 1). Their depth limits are controlled by light 
(Duarte 1991), and their high light requirements make them 
particularly sensitive to water quality changes (Dennison 
et al. 1993), so much so that they often serve as sentinels 
and harbingers of declining environmental conditions (Orth 
et al. 2006a, 2017a; Unsworth et al. 2022). However, they 
now face new challenges associated with accelerating global 
environmental change, including warming temperatures and 
associated tropicalization, ocean acidification, increasing 
coastal eutrophication, and reductions in light and dissolved 
oxygen concentrations (Short and Neckles 1999; Duarte 
2002; Hyndes et al. 2016; Zimmerman 2021; Guerrero-
Meseguer et al. 2020; Turschwell et al. 2021).

After five decades of progress in understanding their 
biology, ecology, and the value of the many services they 
provide, we have a greater understanding than ever of the 
continuing threats facing seagrasses worldwide. During 
these five decades, there have been paradigm shifts in our 
understanding of seagrass biology and the fundamental pro-
cesses that underpin the functioning of seagrass meadows. 
Despite these advances, seagrass science is still a young 
sub-discipline, with many recent and ongoing discoveries 
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arising from the growing number of researchers now fully 
engaged in seagrass study, demonstrating that we still have 
much to learn to properly conserve, manage, and restore 
these iconic ecosystems.

We review how knowledge of seagrass ecosystems pro-
gressed and expanded from the pre-1970s to the present. 
Next, we describe major accomplishments in seagrass sci-
ence, concentrating on reproductive biology and ecology, 
seagrass-animal relationships, conservation and restoration, 
and mapping and monitoring. Finally, we offer our perspec-
tives on areas that are ripe for future research.

A Short History of Seagrass Science 
and Conservation

Seagrass Research Prior to 1970

While seagrasses exist in most inhabited coastal areas of 
the world, peer-reviewed publications on seagrasses were 
rare prior to 1970 (Fig. 2). Historically, some species of 
seagrasses had been valued for their uses in weaving hats 
and baskets, home insulation, fertilizer, and roofing material 
(Orth et al. 2020). Eelgrass (Zostera marina) in northern 

Fig. 1  Conceptual diagrams for (a) tropical and (b) temperate seagrass ecosystems highlighting key ecosystem services and major mechanisms 
of seagrass loss (from Orth et al. 2006a, b, reprinted with permission from BioScience)
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European waters was long valued as habitat for a diverse 
faunal assemblage, which was thought to contribute to high 
fish production (Petersen 1918) (Fig. 3a). Although research 
on the basic biology and ecology of seagrasses in the early 

part of the twentieth century was rare, the importance of 
eelgrass was recognized in the 1930s when it disappeared 
from most areas in the North Atlantic, presumably from the 
“wasting disease” caused by the parasitic marine slime mold 

Fig. 2  History of seagrass peer-
reviewed publications (Digital 
Science. (2018-) Dimensions 
available from https:// app. 
dimen sions. ai. Accessed on 
October 10, 2022, under license 
agreement)

Fig. 3  Timeline of notable events and achievements in the history of seagrasses: a prior to 1970, b the 1970s, c 1980s to the present, and d 
future directions

https://app.dimensions.ai
https://app.dimensions.ai
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Labyrinthula sp. (Rasmussen 1977; Muehlstein et al. 1991) 
(Fig. 3a). Although the effects of eelgrass loss had been 
considered by Cottam (1934, 1935) and Cottam and Munro 
(1954), the ecological consequences of this dramatic loss of 
eelgrass were more thoroughly described and summarized 
much later by Rasmussen (1973, 1977), including shoreline 
erosion and faunal disappearance, especially the loss of the 
commercially important bay scallop that was once common 
along the east coast of the USA (Rasmussen 1977; Thayer 
and Stuart 1974; Oreska et al. 2017).

There was early research on seagrass-associated fishes 
and invertebrates in Japan and southern Europe, mainly in 
the form of surveys of the many and diverse inhabitants of 
seagrass meadows (see summaries by Kikuchi and Perez 
1977; Kikuchi 1980) (Fig.  3a). Some of this work was 
published in the 1960s in a series of papers that compared 
the fauna of French Atlantic eelgrass meadows with that 
of Mediterranean Posidonia oceanica meadows (Ledoyer 
1962, 1964, 1966, 1968; Harmelin 1964). In Japan, studies 
by Kikuchi (1966, 1974) and others (Kita and Harada 1962) 
documented the diversity of seagrass-associated animals, as 
well as the role of seagrass as a nursery habitat for juveniles 
of economically valuable fishes (Kikuchi 1980).

1970s—A Decade of Change

In the 1970s, several notable achievements launched the 
study of seagrass ecosystems to greater prominence. “Sea-
grasses of the World” by den Hartog (1970) was published 
in 1970 with descriptions of the biology, ecology, and sys-
tematics of all known species of seagrasses (Fig. 3b). The 
depth and breadth of this comprehensive, global treatment 
of seagrasses remain unrivaled today. In 1973, the first 
International Seagrass Workshop was held in Leiden, The 
Netherlands, with 37 scientists from 11 countries participat-
ing (Fig. 3b). The resulting workshop report served as the 
nucleus for the first book devoted to seagrasses and their fau-
nal associates (McRoy and Helfferich 1977) (Fig. 3b). A sec-
ond book (Phillips and McRoy 1980) was also conceived at 
the Leiden workshop (Fig. 3b). In 1975, the journal Aquatic 
Botany published its first issue, containing 13 papers on sea-
grass systematics, biology, and ecology contributed by 18 
authors from five countries (Fig. 3b). Together, these early 
volumes marked a turning point for seagrass research.

The International Decade of Ocean Exploration was also 
launched in the 1970s and included studies of seagrasses 
around the world by researchers from a diversity of dis-
ciplines (Fig. 3b). Two issues of the journal Aquaculture 
contributed substantially to the seagrass literature (vol. 4, 
1974; vol. 12(3), 1977) (Fig. 3b). During this period, Zieman 
(1974) described a novel leaf-marking method of measur-
ing seagrass productivity, in which a mark at the base of 

seagrass leaves serves to identify new material produced 
during a growth interval (Fig. 3b). This new approach rec-
ognized the inaccuracies caused by storage of oxygen in 
seagrass leaf lacunae when measuring seagrass production 
via the “oxygen evolution method” and laid the foundation 
for decades of seagrass production studies. In addition, dur-
ing this period, Cambridge (1975) described one of the first 
widespread losses of seagrass due to human activities in Aus-
tralia’s Cockburn Sound (Fig. 3b). Finally, in 1973, two sea-
grass papers were presented at the Estuarine Research Fed-
eration Conference. This biennial conference (later known 
as the Coastal and Estuarine Research Federation (CERF) 
conference) subsequently became a focal point for scientific 
presentations on seagrasses from North America and around 
the world. However, despite increasing attention devoted to 
seagrasses as a result of these seminal studies, there still were 
very few seagrass research papers being published (Fig. 2).

1980s to the Present—Increased Understanding 
and Heightened Awareness

Expanding Knowledge

Our understanding of seagrass biology and ecology 
expanded greatly during the past four decades and moved 
seagrass studies into the mainstream of marine and estuarine 
research. There were a number of notable events during this 
period. The 1983 conference of the Estuarine Research Fed-
eration (ERF) contained its first session dedicated solely to 
seagrasses and resulted in a special issue of the journal Estu-
aries that mainly focused on seagrass faunal relationships 
(Orth et al. 1984a, b) (Fig. 3c). The International Seagrass 
Biology Workshop was launched in 1993 and has occurred 
nearly every 2 years since then at different locations in Asia, 
Australia, Europe, and North and South America (Fig. 3c). 
As a result of these successful workshops, the World Sea-
grass Association was formed in 2000 to facilitate interna-
tional meetings and provide a forum for the world’s seagrass 
research community to share information (Fig. 3c).

During these decades, several additional books on sea-
grasses were published (Larkum et al. 1989; Bortone 1999; 
Hemminga and Duarte 2000; Short and Coles 2001; Green 
and Short 2003; Larkum et al. 2006, 2018), and the number 
of papers published on seagrasses increased dramatically 
(Fig. 2).

Conservation Action

Conservation efforts for seagrasses have lagged behind many 
other aquatic and terrestrial habitats, but with the landmark 
publication on the value of ecosystem services by Costanza 
et al. in (1997), efforts to protect and conserve seagrasses 
began to emerge regionally and eventually worldwide. And, 
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as the literature on seagrasses expanded and awareness of their 
importance increased, governmental and nongovernmental 
organizations (NGOs) around the world began to focus attention 
on this important ecosystem and how to protect seagrass (Coles 
and Fortes 2001). In the USA, the National Estuarine Research 
Reserve System, a network of sites established to protect 
and study estuarine systems, includes 17 sites with seagrass 
present. In these localities, a variety of seagrass parameters 
are monitored annually using identical methods. Other USA 
federal programs also include seagrass protection or research 
(e.g., United States Army Corps of Engineers, United States 
Fish and Wildlife Service, United States National Park Service, 
National Oceanographic and Atmospheric Administration, 
and the United States Environmental Protection Agency), and 
many states have management agencies and policies designed 
to protect seagrasses. Furthermore, seagrasses are considered 
an important “aquatic life use” under the United States Clean 
Water Act (1972), and thus, federal and state water quality 
standards and remediation plans (e.g., Total Maximum Daily 
Load requirements and Watershed Implementation Plans) are 
specifically designed to maintain or regain this designated use. 
Similarly, the European Union’s Habitats Directive specifically 
cites seagrass meadows as special areas to preserve; in certain 
regions in Canada (specifically the Atlantic Coast), eelgrass is 
designated as an Ecologically Significant Species (DFO 2009); 
and seagrasses are identified in policy documents currently 
in place or planned in India, New Zealand, Australia, and 
Indonesia. In addition, non-governmental agencies around the 
world focus on seagrass conservation, education, and research, 
such as Chesapeake Bay Foundation in the USA, and “Seeds 
for Snapper” in Australia (Sinclair et al. 2021). Finally, many 
nations are seeking to incorporate seagrasses and their vast 
stores of sedimentary carbon into their Nationally Determined 
Contributions to help meet the climate mitigation goals outlined 
in the 2015 Paris Agreement.

The United States National Science Foundation funded 
National Center for Ecological Analysis and Synthesis supported 
two seagrass working groups that produced significant advances 
in understanding the fundamental importance of seagrass 
systems (e.g., as nursery habitats, Beck et al. 2001) (Fig. 3c) and 
their global decline (Waycott et al. 2009) (Fig. 3c). In 2007, the 
first global assessment of extinction probability of all seagrass 
species was conducted at three regional workshops, based on the 
International Union for the Conservation of Nature (IUCN) Red 
List of Threatened Species criteria. Ten of 72 species of seagrass 
were found to be at elevated risk of extinction, and three species 
were considered endangered at that time (Short et al. 2011).

The United Nations Environment Program (2020) published 
a comprehensive report on seagrasses to raise the profile of this 
“forgotten ecosystem” in the global conservation community. 
The report recommended developing a seagrass expert group, 
constructing a world map of seagrasses, and advocating for 
financial incentives for seagrass conservation and restoration. 

On March 23, 2022, the United Nations General Assembly 
adopted a resolution designating that day as World Seagrass Day 
(Fig. 3c). In addition, the United Nations included seagrasses in 
recent proclamations on ecosystem restoration (United Nations 
2017) and science-based actions toward resilient and healthy 
oceans (United Nations 2017). This increasing global awareness 
of seagrass importance heralds a new era for seagrass research 
and conservation.

Topics in Seagrass Science, Restoration, 
and Monitoring

In the following sections, we describe some significant 
accomplishments in seagrass research, because of, or in 
fulfillment of, the efforts noted above. We describe how 
our understanding of certain areas of seagrass science and 
conservation has changed during the past five decades, 
including reproductive biology and ecology, plant/animal 
relationships, trophic ecology and food webs, restoration, 
and mapping and monitoring. Given the explosive growth 
of seagrass literature since the 1980s (Fig. 2), we have nec-
essarily drawn from a relatively small group of published 
papers, and any errors of omission are our own.

Reproductive Biology and Ecology

While seagrasses can grow and spread both asexually via 
clonal growth and sexually via producing and dispersing 
seeds, much early work focused solely on clonal growth. 
Research showed average shoot elongation rates ranging 
from 2 cm  year−1 for Posidonia oceanica to 356 cm  year−1 
for Halophila ovalis (Duarte et al. 2006). The advent of genetic 
analysis using microsatellites importantly revealed that clones 
can be large and very old, with one clone of Posidonia australis, 
a slow growing species in Western Australia, estimated to span 
an extraordinary 200 sq. km and be an astoundingly 4500 years 
old, making it among the oldest single eukaryotic organisms on 
the planet (Edgeloe et al. 2022). In the Mediterranean, clones of 
P. oceanica, which covered one to 15 km at different locations, 
were estimated to be between 80,000 and 200,000 years old 
(Arnaud-Haond et al. 2012). Additionally, in the Baltic, an 
eelgrass clone was found to cover 6400  m2 and was estimated to 
be more than 1000 years old (Reusch et al. 1999). While clonal 
growth is advantageous for stable environments and perpetuates 
genetic uniformity, one limitation is the inability to disperse to 
new environments should conditions deteriorate. Detached 
vegetative shoots (with their roots and rhizomes) can disperse 
long distances, but the extent to which, and for which species, 
these fragments can actually establish naturally and grow into 
new colonies (Hall et al. 2006; Thomson et al. 2015) remains 
unclear (Ewanchuk and Williams 1996). However, it is possible 
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that the genetic uniformity of large and very old clones described 
above could be the result of vegetative fragments colonizing 
nearby locations, thereby facilitating the spread of the single 
clone.

The dominance of work on clonal growth hindered our 
understanding of the mechanisms for, extent of, and relative 
importance of sexual reproduction. However, during the last 
two decades, we have learned that sexual reproduction and 
seed production are important in the biology and ecology of 
seagrass meadows by contributing to seagrass bed establish-
ment and maintenance, with significant achievements in under-
standing processes influencing successful seed germination in 
many species (Orth et al. 2000, 2006b; Brodersen and Ku¨hl 
2023). Mechanistically, sexual reproduction was thought to 
occur primarily through hydrochory, the physical transport of 
pollen by water movement (see review by Ackerman 2006). 
However, exciting recent work, first demonstrated in Thalassia 
testudinum, showed that small invertebrates can act as pol-
linators (van Tussenbroek et al. 2016). Another recent dem-
onstration of the pollination of a red algal species (Gracilaria 
gracilis) by the isopod Idotea balthica (Lavaut et al. 2022) sug-
gests that pollination of both seagrasses and algae by animals, 
something thought to be absent in the world’s oceans (Vermeij 
and Grosberg 2010), may be more common than previously 
thought, and much remains to be learned.

The importance of sexual reproduction was first shown by 
early genetic studies that found many areas with higher than 

expected genetic diversity, suggesting that seeds contrib-
uted to meadow development (Waycott 1995; Reusch 2002). 
Additional evidence came from a number of studies with 
different seagrass species that found disturbed meadows to 
recover more rapidly than would be expected from solely 
clonal growth (Zostera marina, Plus et al. 2003; Greve et al. 
2005; Thalassia testudinum, Whitfield et al. 2004; Posido-
nia australis, Cambridge et al. 2002; and Halophila ovalis, 
Preen 1995), and one study concluded that development of 
new Z. marina patches could have only been established 
from recruitment of seedlings, rather than entrapment of 
detached vegetative shoots (Olesen and Sand Jensen 1994). 
There can also be substantial genetic variability within 
even small portions of meadows, although the mechanisms 
responsible for the existence of this variation are incom-
pletely understood (Becheler et al. 2014; Kollars et al. 2022).

Research over the last two decades, notably with Zostera 
marina and Posidonia australis, has shown that these two 
species have a number of dispersal mechanisms that can 
move seeds 10 to 100 s of kilometer from the parent plant 
(Fig. 3c), (e.g., floating fruits or intact flowering shoots with 
viable seeds, Fig. 4 from Kendrick et al. 2012; Orth et al. 
2006b). Both biotic (by ingestion and excretion of viable 
seeds by vertebrates) and abiotic (by wind and currents) 
processes have been shown to be important for seed dispersal 
(Fig. 4 from Kendrick et al. 2012; Harwell and Orth 2002: 
Sumoski and Orth 2012; Ruiz-Montoya et al. 2012, 2015; 

Fig. 4  Conceptual diagrams 
for a flower location within 
seagrass canopies, b likelihood 
of pollen dispersal distance, c 
dispersal distance for positively 
and negatively buoyant seeds or 
propagules, and d mechanisms 
of secondary seed dispersal for 
tropical and temperate seagrass 
habitats. Abbreviation: m, 
meters (from Kendrick et al. 
2012, reprinted with permission 
from BioScience)
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Tol et al. 2017), and in one case with Halodule wrightii, 
a significant distance attributed to active dispersal agents 
(Tavares et al. 2023). A surprising observation was that some 
seeds do not move far after settling on the sediment surface, 
remaining near the parent plant (Orth et al. 1994; Manley 
et al. 2015; Hosokawa et al. 2015; Li et al. 2018; Kendrick 
et al. 2019a). Bioturbation and physical processes appear to 
contribute to seed retention, rapid burial, or loss of settled 
seeds (Luckenbach and Orth 1999; Delefosse and Kristensen 
2012; Blackburn and Orth 2013; Statton et al. 2017). Similar 
to the fate of seeds in the terrestrial environment (Janzen 
1970), predation can result in significant loss of seagrass 
seeds (Fishman and Orth 1996; Orth et al. 2006c).

Seagrass‑Animal Relationships

Animal Communities

Many early studies of seagrass inhabitants in Japan and 
Europe (see references above) were primarily descrip-
tive, highlighting the richness and abundance of the 

seagrass-associated faunal community, and demonstrating 
that seagrasses supported a much more diverse and abundant 
faunal assemblage than nearby unvegetated habitats (Orth 
et al. 1984a, b). During the 1970s, many experiments were 
conducted to attempt to elucidate mechanisms that could 
explain these differences, such as evaluations of the pro-
tection seagrass could provide prey from their predators 
(Orth et al. 1984a, b). For example, Heck and Orth (1980), 
building on the experimental results of Nelson (1979) and 
Stoner (1979), hypothesized that seagrass epifauna density 
increased with seagrass leaf area by reducing foraging suc-
cess of larger fish, but only up to the point where shoot 
densities were so high that meadows became anoxic at night 
due to increased respiration. At the same time, observational 
surveys attempted to discern general trends in the macro-
ecology of seagrass and associated fauna over latitudinal 
scales (Virnstein et al. 1984).

Experiments over the next several decades showed that 
the relationship between plant cover and animal abundance 
had been oversimplified by early studies. The large number 
of manipulative experiments over this time period, both from 

Fig. 5  Factors or processes that can influence the distribution and abundance of animals in seagrass meadows
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the field and the laboratory, revealed latitudinally depend-
ent complex interactions that determine animal abundance 
(Heck and Wilson 1987; Reynolds et al. 2018) (Fig. 5). 
These interactions involve not just plant characteristics (e.g., 
surface area, shoot density, biomass, morphology, chemical 
exudates, or arrangement of shoots; (Heck and Orth 2006)), 
but also characteristics of the meadow, such as patchiness, 
size and shapes of patches, edges vs. interiors, and depth 
(Bologna and Heck 1999; Hovel and Lipcius 2001; Boström 
et al. 2006; Yeager et al. 2016; Hyndes et al. 2018; Whippo 
et al. 2018; Stark et al. 2020). In addition, animal charac-
teristics (e.g., behavior, reproductive strategy, size of prey 
and their coloration, predator foraging behavior, and even 
larval supply) were found to be important in defining dis-
tributional patterns (Orth 1975, 1992; Main 1985, 1987; 
James and Heck 1994; Yeager et al. 2019). Finally, physical 
characteristics of the environment can be equally important 
(e.g., salinity, sediment type, currents, season; Orth 1973; 
Irlandi and Peterson 1991; Stark et al. 2020).

Heck (2019) summarized how scientific understanding 
evolved concerning the role of seagrass biomass in pro-
tecting small invertebrates from predation. Early experi-
ments documenting positive relationships between seagrass 
biomass and survivorship of small invertebrate prey were 
largely carried out in laboratory mesocosms with a single 
predator present (e.g., Nelson 1979; Heck and Thoman 
1984). These lab results were confounded by the decreas-
ing rate that the predator encountered prey as vegetation 
biomass increased. In nature, as seagrass density increases, 
so does the abundance of both predators and prey (Heck and 
Orth 1980; Wyda et al. 2002). Subsequent experiments that 
allowed numbers of both predators and prey to increase with 
vegetation density found that although the presence of veg-
etation improved survival of prey, there was no major effect 
of the density of the vegetation (Fig. 6; Mattila et al. 2008; 
Canion and Heck 2009; Scheinin et al. 2011). Therefore, 
sparse seagrass densities provided the same relative degree 
of shelter from predation as did high densities, with the con-
sequence that sparse patches of seagrass also deserve protec-
tion and preservation. A related conclusion about the value 
of small, sparse patches of seagrass in supporting diverse 
animal assemblages has been shown experimentally by both 
Lefcheck et al. (2016) and Gagnon et al. (2021).

Seagrass Epiphytic Grazers

Another major advance during the past 40 years has been 
the recognition of the functional importance of epifauna to 
seagrass meadow health. Historically, while it was recog-
nized that grazing by mobile epifauna regulated abundance 
of epiphytic organisms, little attention was paid to the pos-
sible indirect effects of small mesograzers. However, this 
changed dramatically following research in the 1980s that 

suggested that removal of epiphytic cover could have an indi-
rect, positive influences on seagrass growth (van Montfrans 
et al. 1984; Neckles et al. 1993). This finding led to increas-
ing interest in the role that small grazers played in seagrass 
meadows around the world (e.g., Duffy et al. 2003; Moksnes 
et al. 2008; Baden et al. 2010). An important meta-analysis 
reported that mesograzer abundance explained at least as 
much, if not more, variance in the abundance of light-block-
ing epiphytes on seagrass leaves as nutrient concentrations 
(Fig. 3c; Hughes et al. 2004). This was further rigorously 
tested in the Zostera Experimental Network (ZEN), a global 
network of researchers studying eelgrass-epifauna (Fig. 3c), 
(Reynolds et al. 2018; Duffy et al. 2015). These and earlier 
experiments have consistently shown that food web altera-
tions (e.g., trophic cascades caused by overfishing) can indi-
rectly produce changes in mesograzer abundance that alter 
the abundance of epiphytes and, ultimately, seagrass health 
(Douglass et al. 2007; cf Fig. 7, Heck and Valentine 2007; 
Valentine and Duffy 2006; Valentine and Heck 2020; Gagnon 
et al. 2021). More diverse seagrass assemblages than those 
usually occurring in temperate eelgrass meadows also show 
important top-down effects of food web alterations (Fig. 7), 
although the food webs of these assemblages can include 
omnivorous organisms that consume both mesograzers and 

Seagrass density (leaves m–2)
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Fig. 6  Predation rate (mean ± SE) of pinfish (Lagodon rhomboides) 
feeding on grass shrimp (Palaemonetes pugio) prey in field meso-
cosm experiments. The predation rate is the percentage of the initial 
prey number eaten during the experimental period. Treatments with 
different letters indicate differences at the p < 0.005 level. Predator 
to prey ratios in all seagrass treatments were constant at 1:10 (from 
Canion and Heck 2009, reprinted with permission from Marine 
Ecology Progress Series)
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epiphytic algae, such as pinfish (Lagodon rhomboides), and 
produce more complicated outcomes (Heck et al. 2000; see 
review by Duffy et al. 2014).

Seagrasses as Nursery Habitats

The impressive faunal abundance and diversity in 
seagrass meadows uncovered by initial studies led to the 
statement in many subsequent papers that seagrass beds 
were nurseries for a variety of fish and invertebrates with 
complex life cycles. However, it later became apparent 
that there was no clear definition of nursery habitat. This 
issue was resolved by Beck et al. (2001) who defined a 
nursery as a habitat for juveniles of a particular species 
if its contribution, per unit area, to the production of 
individuals that recruit to adult populations is greater, on 
average, than the production from other habitats in which 
juveniles occur (Fig. 3c). This definition has not been 
without its critics (Dahlgren et al. 2006; Sheaves et al. 
2006; Fodrie et al. 2009; Sheaves 2009), who proposed 
the concept of a “seascape nursery,” that includes not only 
one, but several habitats, that are used during different 
portions of a species’ life cycle (Boström et  al. 2011; 
Litvin et al. 2018; Nagelkerken et al. 2015). Most studies 
of the nursery role in the last two decades have focused 
on measuring and comparing proxies of production, 
including density, growth rates, and survivorship, between 
purported nursery and non-nursery habitats, with literature 
reviews concluding that structured habitats are crucial to 
many species of invertebrates and fish, with mangroves 
and seagrasses emerging as especially important nursery 
habitats (Heck et al. 2003; Igulu et al. 2014; McDevitt-
Irwin et al. 2016; Lefcheck et al. 2019). Documenting 
the contribution of potential nursery habitats to adult 
populations remains challenging and usually requires 

sustained, complicated efforts, such as those that identify 
the relative importance of putative nursery habitats by 
matching the otolith chemistries of adult and juvenile 
fishes over several years (cf. Fodrie et al. 2020).

Food Webs and Energy Flux

Early studies (e.g., Kikuchi and Peres 1977; Kikuchi 1980) 
established the commonly held belief that, despite their 
enormous productivity, little seagrass production was con-
sumed by herbivores. Instead, most seagrass production 
was thought to enter detrital food webs that formed the 
energetic base of seagrass ecosystems (see review by Mateo 
et al. 2006). Stable isotope data later showed that seagrass 
food webs are supported in large part by the consumption 
of micro algae growing on seagrass leaves and exposed rhi-
zomes, as well as associated green, brown, and red algae, 
that are consumed by a variety of invertebrate herbivores, 
rather than by decaying seagrass biomass (e.g., Kitting 
et al. 1984). However, in contrast to the belief that living 
seagrass was not often consumed, as early as 1980, Ogden 
(1980) described how tropical seagrass was consumed by 
a variety of urchins, fish, and turtles. Since then, seagrass 
herbivory has been shown to occur commonly in a variety 
of locations, including the Mediterranean Sea (Tomas et al. 
2005; Vergés et al. 2008; Prado et al. 2007), the Gulf of 
Mexico (Valentine and Heck 1991, 2020; Rodriguez and 
Heck 2020), the tropical Pacific (Unsworth et al. 2007; 
Christianen et al. 2014), and the Indian Ocean (Mariani and 
Alcoverro 1999; Kelkar et al. 2013a, b; Vanderklift et al. 
2021). This work demonstrates that a great deal of energy 
moves through seagrass meadow food webs via direct con-
sumption of living seagrass leaf tissue, especially in lower 
latitudes (Valentine and Heck 2020).

Restoration

The science of restoring seagrasses, while a young field of 
research based on the number of published accounts (Fig. 8; 
Duarte et al. 2020), apparently had its roots in the late 1930s, 
after the disappearance of eelgrass in the USA and Europe, 
and it included some of the first attempts to plant both eel-
grass plants and seeds (Addy 1947a, b). Interest in seagrass 
transplanting occurred in the 1960s and 1970s, with an 
emphasis on techniques and possible uses for rehabilitat-
ing lost or damaged seagrass beds and also as its use as a 
tool to better understand the biology of seagrasses (Fuss 
and Kelly 1969; Kelly and Hall 1971; Phillips 1974, 1980; 
Ranwell et al. 1974; Thorhaug 1974). A significant step in 
the restoration of seagrasses occurred in 1998 with the pub-
lication of the guide for the conservation and restoration of 
seagrasses in USA (Fonseca et al. 1998) (Fig. 3c). Since that 

Fig. 7  Top-down versus bottom-up alternative explanations for sea-
grass die-off
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publication appeared, the number of restoration attempts has 
increased dramatically (Fig. 8; Duarte et al. 2020), as well 
as a variety of new and innovative methods for transplanting 
seagrass (Calumpong and Fonseca 2001). These advances 
include guidelines for seagrass restoration (Short et al. 2002; 
van Katwijk et al. 2009), incorporating seeds rather than 
adult plants (Orth et al. 2006b; van Katwijk et al. 2020), 
positive interactions in restoring seagrasses (Valdez et al. 
2020; Zhang et al. 2021), animals to enhance restoration 
(Sievers et al. 2022), multiple plantings of different species 
(Williams et al. 2017), or modifying planting designs by 
clumping plants to ameliorate physical stresses (Temmink 
et al. 2020).

Restoration efforts have been mainly in the USA (van 
Katwijk et  al.  2016; National Academies of Sciences, 
Engineering, and Medicine. 2022), Europe (van Katwijk 
et al. 2016), and Australia (Statton et al. 2018; Tan et al. 
2020). However, an analysis of many of these attempts 
found that most failed to produce significant increases in 
seagrass coverage. Exceptions occurred for large-scale 
efforts that incorporated many shoots or propagules (van 
Katwijk et al. 2016), and suggesting a minimum thresh-
old size was required for successful restoration. This was 
the case in a large-scale seed-based eelgrass restoration 
effort in Virginia’s coastal lagoons (Orth et al. 2020). 
There, over two decades, more than 70 million seeds were 
broadcast into 516 individual plots into four bays, result-
ing in establishment and subsequent spread of eelgrass to 
eventually cover nearly 3612 ha of eelgrass. Coupled with 
this expansion were documented increases in numerous 
ecosystem services, such as carbon sequestration, animal 
abundance and biomass, and increased water clarity (Orth 
et al. 2020). Notable increases in seagrass abundance have 
resulted from water quality improvements, in numerous 
locations, such as North America (Greening et al. 2014; 

Lefcheck et al. 2018), and in Europe (de Los Santos et al. 
2019; Dunic et al. 2021), suggesting that seagrasses have 
the potential to rebound without active restoration if those 
negative factors preventing survival can be reversed.

Distribution Aspects

Seagrass beds are now being monitored and mapped 
throughout the world using both field-based and remotely 
sensed methodologies. The use of remote sensing tools 
for mapping and monitoring seagrass was recognized over 
40 years ago (Kelly 1980) (Fig. 3c), yet initially remote 
sensing was rarely used to monitor seagrass populations. 
However, several long-term aerial monitoring programs in 
the USA were established during this period, and they have 
provided a valuable record of changes in seagrass cover over 
large spatial and temporal scales (in Tampa Bay, Greening 
et al. 2014; in Chesapeake Bay, Lefcheck et al. 2018; in Indian 
River Lagoon, Morris et al. 2022; and in Florida Bay, Wilson 
et al. 2020). The availability of mapped seagrass data at many 
sites over two or more successive periods was instrumental 
in documenting the worldwide decline of seagrass (Waycott 
et al. 2009). Monitoring, especially aerial monitoring, has 
provided important evidence of direct impacts to seagrass, 
such as by propellers and anchors, dredging, commercial 
fishing activities, and vessel groundings (Sargent et al. 1995; 
Walker et al. 1989; Dunton and Schonberg 2002; Whitfield 
et al. 2004; Neckles at el. 2005; Orth et al. 2002, 2017a, 
b), and indirect impacts from aquaculture operations have 
increased over time (Orth et al. 2017a). Dramatic advances in 
sensor spectral and spatial resolution technologies, mounted 
on fixed-wing aircraft and satellites, have increasingly 
been used to accurately measure seagrass distribution and 
abundance throughout the world (Hossain et al. 2015; Phinn 
et al. 2008, 2018; Lyons et al. 2011, 2012; Hill et al. 2014; 
Zimmerman 2021; Fernandes et al. 2022; Carter et al. 2021; 
McKenzie et al. 2022; Traganos et al. 2022).

Most field-based and remote-sensing monitoring occurs 
at local levels, but two long-term studies have unified 
sites around the world into global monitoring networks 
involving researchers and community volunteers from 
around the world: SeagrassNet (https:// www. seagr assnet. 
org/), started in 2001, comprises 126 sites in 36 countries, 
and Seagrass Watch (https:// www. seagr asswa tch. org/), 
started in 1998, comprises 418 sites in 26 countries. Both 
programs incorporate standardized protocols to make 
worldwide data comparable. More recently, programs like 
the Indo-Pacific Seagrass Network (https:// indop acifi cseag 
rass. netwo rk/) seek to expand these efforts to incorporate 
understudied regions, such as those in Eastern Africa and 
Indian Ocean.

Fig. 8  Changes over time in attempts to restore different marine habi-
tats, including seagrass (from Duarte et al. 2020, reprinted with per-
mission from Nature)

https://www.seagrassnet.org/
https://www.seagrassnet.org/
https://www.seagrasswatch.org/
https://indopacificseagrass.network/
https://indopacificseagrass.network/
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Future Needs

There remains much to be done to better understand the 
basic biology and ecology of many seagrass species. Some 
recent papers have listed priority areas for future research 
in seagrass meadows (York et al. 2017; Larkum et al. 2018; 
Unsworth et al. 2019, 2022). Below, we highlight some areas 
that seem to be especially worthy of future in-depth study.

Conservation and Restoration

The science of seagrass restoration (Fig.  3d) has been 
rapidly incorporating new technologies and new advances 
in understanding the genetic diversity of different donor 
populations and the relevance of phenotypic plasticity 
in seagrass restoration (Hughes and Stachowicz 2004; 
Procaccini et al. 2007; Hughes et al. 2008; Sinclair et al. 
2014; Evans et al. 2017; Pazzaglia et al. 2021a, b). This 
has been especially true with efforts to restore seagrasses 
increasing over the last couple of decades (Saunders et al. 
2020; Duarte et al. 2020). Future efforts may entail land 
or water-based nurseries to minimize impacts to donor 
populations (e.g., rewilding, van Katwijk et  al. 2020). 
However, this should be approached with caution given the 
possibility of loss of genetic diversity in successively grown 
generations in nurseries (Conrady et al. 2023). Restoration 
efforts may also need to examine the importance of scale 
as larger planting may be more successful, especially if it 
involves positive species interactions (van Katwijk et al. 
2016; Valdez et al. 2020). Finally, restoration activities 
need to better understand the role of microbes and stressor 
dynamics and how they can be used to enhance success and 
decrease recovery times (Wu et al. 2017; Fuggle et al. 2023).

An emerging worldwide challenge for seagrasses is 
the rapid expansion of aquaculture of shrimp, bivalves, 
and fish that require placing cages and other structures 
in shallow waters often occupied by, or adjacent to, 
seagrasses (Orth et al. 2017a; Smith et al. 2018; Ferriss 
et al. 2019; Boudouresque et al. 2020; Herrera et al. 2022; 
Howarth et al. 2022). These aquaculture activities require 
an understanding of the levels and severity of disturbances 
they produce on seagrasses and their ecosystem services, 
as well as an understanding of the tradeoffs necessary 
to protect seagrasses while maintaining economically 
important aquaculture activities, especially in developing 
countries (Herrerea et al. 2022).

Nursery Role for Fish with Complex Life Histories

Definitive evaluations of the nursery role of seagrass mead-
ows for fish species with complex life cycles remain elu-
sive. The most promising approach involves comparing the 
otolith chemistry between adult fish in adult habitats and 

juvenile fishes in putative nursery habitats (Gillanders et al. 
2003). If the chemistry of the early otolith growth bands 
of the adults match one of the potential nursery areas, this 
indicates from which potential nursery area adult individu-
als originated. As noted above, this type of study has not 
often been done, as it is costly and extremely labor inten-
sive. Many species that use nearshore seagrass nursery 
habitats move offshore as adults and are part of very large, 
panmictic populations, necessitating enormous sample sizes 
to assess the isotopic contribution of particular potential 
nurseries. Additional complications emerge from the poten-
tial for water chemistry in nursery areas to vary from year 
to year, owing to differential inputs of elements from sur-
rounding watersheds that can alter their abundance in oto-
liths, thereby making it important for studies to last more 
than one annual cycle (Kraus and Secor 2005; Fodrie et al. 
2020). Until simpler methods for quantifying relative nurs-
ery values, there remains high value in studies that identify 
the most productive of the different potential nursery habi-
tats and prioritize their protection and conservation.

Distribution Aspects

The 2020 United Nations Report and several recent review 
papers (Unsworth et al. 2019, 2022) all stress the need to 
protect seagrasses, and note that the first step in this process 
is to understand their distribution and abundance by develop-
ing maps of seagrass cover and then, if possible, conducting 
repeated mapping surveys at different scales to better under-
stand their temporal dynamics (Neckles et al. 2012; Coffer 
et al. 2023). Current monitoring methods include in situ 
observations, aerial imagery, and satellite imagery (Hossain 
et al. 2015; Lønborg et al. 2022). Recent advances in remote 
sensing include higher resolution sensors and the deployment 
of multiple relatively inexpensive, small satellites, such as 
those deployed by Planet Earth (https:// www. planet. com/) 
(Fig. 3d), and automated methods, including machine learn-
ing and object-based classification. These advances promise 
to reduce the need for manual interpretation and improve 
accuracy, which should have the ability to advance the mon-
itoring of seagrass meadows worldwide (Roelfsema et al. 
2014, 2015; Ha et al. 2020; McKenzie et al. 2022; Tahara 
et al. 2022). While satellites provide coverage for many 
areas that are otherwise not monitored, they often do not 
capture data over large swaths of open ocean where many 
small islands occur that have significant seagrass popula-
tions. Recently, drones and autonomous underwater vehicles 
(AUVs) have been added to the toolbox researchers have as 
options for monitoring and mapping seagrass (Lønborg et al. 
2022). The selection of an appropriate monitoring method is 
often driven by factors specific to the location being surveyed 
and the questions being raised by researchers and managers. 
Machine learning developments are reducing the bottleneck 

https://www.planet.com/
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between the large amount of imagery being collected and its 
analysis (e.g., for kelps, Mahmood et al. 2020). In addition to 
these direct monitoring methods, species distribution mod-
eling may be useful as a mapping technique. This modeling 
approach uses associated data to predict the location of suit-
able habitat across large spatial scales and has been used to 
identify potential seagrass habitat (e.g. Bittner et al. 2020). 
These new tools may provide more efficient means to map 
and monitor the significant populations of seagrasses that 
likely exist in relatively unstudied areas around the world, 
as well as providing new insight in areas where seagrass 
research is showing significant advances (e.g., China).

Rhizosphere Dynamics

Many studies in the past several decades have demonstrated 
the negative effects of high sediment sulfide levels on the 
performance of several temperate and tropical seagrass spe-
cies (Apostolaki et al. 2018) (Fig. 3d). Sulfide in the rhizos-
phere can become elevated in association with water column 
hypoxia, light reduction, sediment organic enrichment, and 
a variety of other factors (Borum et al. 2005; Holmer et al. 
2009, 2014; Kilminster et al. 2014). One mechanism prevent-
ing sulfide accumulation in the rhizosphere is the release 
of oxygen from young root tips, which corresponds with 
decreased abundance of potential sulphate-reducing bacte-
ria and decreased sulfide concentrations near young roots 
(Martin et al. 2019; Scholz et al. 2021).

Relevant to rhizosphere sulfide levels, lucinid bivalves, 
commonly associated with different species of seagrasses 
since at least the Eocene (Reynolds et al. 2007), contain 
sulfur oxidizing bacteria that reduce hydrogen sulfide in 
the rhizosphere and help maintain conditions favorable for 
seagrass growth and survival (Reynolds et al. 2007; van 
der Heide et al. 2012). Recent studies have shown that the 
strength of lucinid–seagrass (Thalassia testudinum) facili-
tation increases under stressful environmental conditions, 
such as reduced light availability or enhanced porewater 
sulfide levels, and these results support incorporating inter-
specific facilitation into seagrass conservation and restora-
tion strategies (e.g., de Fouw et al. 2016; Chin et al. 2021). 
In addition, a paper by Martin et al. (2020) found lucinid 
endosymbiotic bacteria associated with seagrass roots in 
the absence of lucinids, indicating that much remains to be 
understood about the relationships between sulfur oxidizing 
bacteria and seagrasses.

Few studies have documented the extent to which sea-
grasses are able to mobilize their roots to forage for nutri-
ents and use nutrient “hotspots” to develop dense root mats 
(see Furman et al. 2016 for an example). However, there 
are several examples of filter feeding bivalve associations 
with seagrass roots and rhizomes that indicate that bivalve 
excretory products provide nutrients to seagrass roots, while 

the roots and rhizomes, in turn, provide protection for the 
bivalves from crabs and other potential predators (Peterson 
and Heck 1999, 2001). More studies with additional species 
of seagrasses are needed to better understand the factors 
determining root growth and foraging to acquire nutrients.

In addition, a recent experimental study has documented 
the value of root-associated microbiota in Zostera muelleri 
meadows to alleviate negative effects of nutrient-enriched 
stress (Fuggle et al. 2023). Functions performed by micro-
bial taxa enriched by nutrients included sulfide oxidation 
and denitrification, suggesting that seagrass restoration may 
be improved by enhancing beneficial root-associated assem-
blages (Fuggle et al. 2023).

Finally, almost completely uninvestigated, with the excep-
tion of studies of the consumption of belowground tissues 
of small seagrasses by mega-herbivorous dugongs (Preen 
1995), is the extent to which roots and rhizomes might be fed 
upon by infaunal invertebrates such as polychaetes. Work on 
terrestrial grasslands and agricultural fields has shown that 
belowground consumption of roots and rhizomes is common 
and can be consequential (e.g., Johnson and Rasmann 2015). 
To date, the lack of reports of belowground consumption of 
roots or rhizomes of seagrasses may only reflect a lack of 
investigation.

Population Biology

Over the years, efforts have been made to study seagrass 
population biology and make predictions about the growth 
trajectories of seagrass populations (e.g., the “reconstructive 
technique” used by Duarte et al. 1994; Durako and Duarte 
1997; Short and Duarte 2001; Fourqurean et al. 2003; Marba 
and Walker 1999), but sufficiently accurate methods remain 
to be developed. One major unsolved problem in employing 
modeling to predict seagrass population trajectories is the 
difficulty in determining the number of individual clones in 
a given area. In the past few decades, it has become possible 
to determine both the size and number of clones, but results 
are dependent on sampling density and distance between 
replicates (e.g., Sinclair et al. 2014; Edgeloe et al. 2022), 
and the inability to rapidly identify individual clones in the 
field remains a significant obstacle.

Carbon Sequestration

Another area of intense investigation and a growing body of 
literature is the degree to which seagrass meadows sequester 
carbon, and the likelihood that this carbon will be mobilized 
or retained when seagrass die-offs occur (Fig. 3d) (Fourqurean 
et al. 2012; Macreadie et al. 2014). It is clear that healthy 
seagrass meadows can sequester large amounts of carbon, 
but the ongoing loss of seagrass meadows globally (Waycott 
et al. 2009; Rohr et al. 2018; Dunic et al. 2021) raises the 
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unanswered question of whether, and how quickly, seagrass 
carbon buried in the rhizosphere might be liberated to the 
atmosphere and add to the accumulation of greenhouse gasses. 
Adding complexity to understanding how seagrass meadows 
factor into the global carbon budget is the recent discovery 
that seagrass meadows are significant emitters of methane 
(Schorn et al. 2022), a powerful greenhouse gas that could 
mitigate some of the benefits that the large amount of organic 
matter buried in the sediments of seagrass meadows could 
provide. In addition, ecosystem calcification can result in  CO2 
emissions that far exceed organic carbon burial in areas, such 
as many tropical locations, where calcification rates exceed 
primary production and burial (Howard et al. 2018; Van Dam 
et al. 2021). Clearly, work is needed to more fully understand 
the net effect of seagrass meadows on greenhouse gasses and 
its relation to our changing climate.

Effects of Climate Change

Climate change has the potential to alter the dynamics of 
seagrass assemblages worldwide in both negative and posi-
tive ways (Short and Neckles 1999; Duarte 2002; Hyndes 
et al. 2016; Zimmerman et al. 2017; Zimmerman 2021), and 
there are likely to be winners and losers. The most immedi-
ate effects of increasing water temperatures will likely occur at 
the boundaries of species’ distributions and eventually lead to 
general mortality of temperate species and their replacement 
by tropical species (Fig. 3d) (Moore and Jarvis 2008; Jorda 
et al. 2012; Valle et al. 2014; Hyndes et al. 2016; Chefaoui et al. 
2018; Duarte et al. 2020; Turschwell et al. 2021). Hyndes et al. 
(2016) suggest that the new temperate species assemblages will 
not initially resemble either the original temperate or tropical 
assemblages, and the biodiversity of seagrass meadows may 
increase substantially until a new equilibrium in the number 
of species of plants and animals is reached. We also note that 
seagrasses have evolved under climatic conditions considerably 
harsher than those of today, with much higher  CO2 concentra-
tions (Orth et al. 2006a), and thus might benefit from future 
higher  CO2 levels under certain circumstances (Zimmerman 
2021).

Marine heat waves have recently caused massive declines 
of seagrasses in Shark Bay, Australia, and are likely to become 
more frequent in the future (Kendrick et al. 2019b). And recent 
data from Canada suggest that sub-arctic eelgrass populations 
are not immune to climate warming (Leblanc et al. 2022). In 
coastal estuaries, additional runoff from increased precipitation 
has the potential to alter salinities, as well as water clarity, and 
to negatively influence those seagrass species such as eelgrass 
that have estuarine populations (Lefcheck et al. 2017). Range 
expansions and contractions of certain species are certain to 
occur as evidenced in Florida and Korea (Virnstein and Hall 
2009; Kim et al. 2009), although time scales of expansion 

may ultimately depend on biotic and abiotic factors that 
influence propagule dispersal (see above). One potential 
positive influence seagrass that may have in the climate change 
scenario is reducing ocean acidification effects on bivalve 
aquaculture (Garner et al. 2022).

Climate change can also influence faunal species 
distributions, and such changes may have indirect, but 
large, effects on seagrass distribution and abundance. For 
example, herbivory is particularly intense in marine envi-
ronments, with nearly 70% of benthic production being 
consumed by grazers (Poore et al. 2012). As tropical her-
bivores expand their ranges poleward in association with 
warming temperatures, they can and do impose powerful 
effects on marine communities (Fourqurean et al. 2019). 
The disappearance of kelp (Ecklonia spp.) and Sargas-
sum spp. beds in southern Japan represents one of the 
best-documented cases of how this can happen. Several 
thousand hectares of temperate macroalgal-dominated 
substrate were overgrazed by rabbitfish (Siganus spp.) 
and parrotfish (Calotomus japonicus) and converted to 
rocky barrens, which were subsequently colonized by reef-
building corals (Serisawa et al. 2004). Similarly, in south-
eastern and southwestern Australia, kelp declines, and the 
appearance of algal turfs followed increased herbivory by 
tropical fish grazers (Vergés et al. 2016; Wernberg et al. 
2016; Zarco-Perello et  al. 2019). And in the southern 
Mediterranean, rabbitfish immigrating from the Red Sea 
have become increasingly abundant and macroalgae less 
so (Vergés et al. 2014).

Temperate seagrass meadows are also undergoing 
tropicalization and experiencing the effects of poleward 
moving tropical herbivores, although predictions of the 
expected ecological changes in response to increases in 
tropically associated herbivores remain to be tested (Heck 
et al. 2015; Hyndes et al. 2016). Many temperate areas now 
experience fewer freezes than in the past, and tropical parrot 
fish and rabbit fish, as well as green turtles, are moving 
poleward and becoming established in warmer temperate 
areas (Fodrie et al. 2010; Heck et al. 2015; Rodriguez and 
Heck 2020, 2021). These herbivores have the potential to 
reduce the abundance and height of temperate seagrass 
canopies, reducing formerly lush meadows to the height of 
freshly mowed lawns, or even to permanently unvegetated 
substrates (Heck et al. 2015; Hyndes et al. 2016; Rodriguez 
and Heck 2021; Rodriguez et al. 2022).

Restoration activities will have to be re-evaluated to con-
sider climate change. Locations at the historic latitudinal 
boundaries of a seagrass species’ distribution may no longer 
support long-term survival of those species (e.g., Zostera 
marina in Chesapeake Bay and North Carolina, USA, 
Posidonia oceanica in the Mediterranean). Alternatively, 
areas where restoration success was unlikely may become 
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possible restoration sites, such as northern latitudes that are 
now free of permanent ice. In some areas, planting geneti-
cally distinct genotypes adapted to higher temperatures may 
become necessary.

Concluding Remarks

Scientific understanding of the biology and ecology of sea-
grass meadows has advanced tremendously since the pio-
neering work of researchers in the 1960s and 1970s. We now 
understand the major role that seagrasses play as foundation 
habitats in coastal waters and have developed estimates of 
the value of the services they provide, including those of 
their nursery habitat role, the provision of habitat for rare 
and endangered species, and many others. The recognized 
importance of seagrass-provided services has facilitated the 
global recognition of the value of seagrasses and the impor-
tance of seagrass conservation and restoration.

In addition, we now recognize the importance of sexual 
reproduction and the role of seed dispersal in the develop-
ment of new meadows distant from parent populations. We 
also have evidence that small invertebrate species can pol-
linate seagrass flowers, something completely unanticipated 
until recently. The elucidation of the full genomes of Zostera 
muelleri (Lee et al. 2016) and Z. marina (Olsen et al. 2016) 
(Fig. 3c) opened the door to a multitude of new research in 
seagrass evolutionary biology, and our ability to determine the 
genetic identities of donor populations (Lee et al. 2018). And 
the importance of genetic diversity has facilitated the success 
of seagrass restoration, something necessitated by the massive 
decline of seagrass meadows during recorded history.

We have also seen a paradigm shift from the under-
standing that seagrass detritus was the major source of 
energy for seagrass-inhabiting animals to the recognition 
that consumption of algae by mesograzers and living sea-
grass leaves by macrograzers are much larger pathways for 
energy flux than the detrital one. And we have learned that 
important rhizosphere interactions between seagrasses and 
macrofauna, as well as between seagrasses and microbes, 
occur, even if we have only begun to understand the details 
of these interactions.

Recognition of the value of seagrass meadows has led to 
a remarkable increase in mapping and monitoring of sea-
grass beds worldwide. Advanced technologies, such as the 
multiple, small satellites from sources such as Planet Earth, 
and automated mapping and machine learning tools are mak-
ing it possible to provide accurate maps of seagrass beds 
for research managers and other conservationists. At small 
scales, drones are proving invaluable in examining and map-
ping features of seagrass beds.

Many advancements in seagrass science noted above 
have come from research in the USA, Europe, Australia, and 

Japan, likely due to the significant funding available in these 
countries. But now, we have both increasing capacity and 
a strong need to investigate seagrasses outside these areas, 
particularly in places where people rely on seagrass habi-
tats for meeting basic needs, such as for subsistence fishing. 
The next generation of seagrass science needs to emphasize 
inclusion of researchers active in these understudied areas, 
facilitate open data sharing and knowledge transfer at scien-
tific meetings, and develop Communities of Practice (CoP) 
for mapping and monitoring.

Finally, it has become clear to us over our 50 years as 
seagrass scientists that there is no substitute for experi-
encing the natural environment first-hand. Others have 
explained the critical importance of understanding the 
natural history of the organisms inhabiting the ecosystems 
being investigated (Dayton 2003; Able 2016). New tech-
nologies and new methods of data analysis are helping to 
better understand the details of seagrass biology and ecol-
ogy. However, nothing can replace experience in the field 
and its value in the formulation of interesting and relevant 
hypotheses and ways to test them. This has been and con-
tinues to be the gold standard for ecological research. It also 
is important to emphasize that a great deal of important 
marine and terrestrial ecology has been done in the past, 
and there is much to learn from this prior work. Currently, 
obtaining older papers can be difficult, and journals that 
limit the number of references included in published papers 
are leading us to waste time relearning lessons from the 
past. It is good advice for all serious students of marine 
ecology to thoroughly search the entire body of existing 
literature before beginning a research project. There is a 
world of great research that has been done as noted by the 
number of new publications reported in Fig. 2, and much 
can be accomplished by building on this foundation.
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