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Abstract
Coastal wetlands are important for carbon (C) storage and sequestration. Still, there are large knowledge gaps concerning the 
amount of “blue carbon” in coastal wetlands dominated by common reed (Phragmites australis). We quantified carbon stocks 
at the southern Baltic Sea coast at six representative Phragmites wetland sites at the Darss-Zingst-Bodden Chain (DZBC) and 
the Strelasund, which include different categories of adjacent land use (arable land, woodland, pasture, urban), topography 
(totally flat to undulating), and geographical restrictions (dyking). Sediment samples were taken to a depth of 1 m, in line 
with the IPCC guidelines, and total carbon concentrations and bulk densities were measured in 10 cm intervals. The sites 
stored, on average, 17.4 kg C m−2 with large variability between sites, ranging from 1.76 to 88.6 kg C m−2. The estimated 
average is generally in good agreement with carbon stocks reported for tidal salt marshes, mangroves, and seagrass meadows. 
According to our estimation, based on widths of the reed belts and carbon stocks at the sampled sites, approximately 264,600 
t of blue carbon could be stored in the coastal reed belts along the DZBC, a typical lagoon system of the southern Baltic 
Sea. Our study underlines the importance of these unique ecotones between land and sea for storage and sequestration of 
blue carbon. Since Phragmites is also a common (sometimes invasive) species along other large brackish water basins, such 
as the Black Sea or Chesapeake Bay, these estimates can be used for improved precision of modeling blue carbon budgets.

Keywords  Brackish wetland · Saltmarsh · Phragmites australis · Darss-Zingst-Bodden Chain · Regional C stock inventory · 
Sediment carbon stocks

Introduction

The interface between aquatic and terrestrial ecosystems is 
often formed by coastal wetlands (Jurasinski et al. 2018). 
These highly productive ecotones perform several ecosystem 
functions and services, e.g., nutrient regulation, dissipat-
ing wave energy, providing habitat for flora and fauna, or 
sequestering atmospheric carbon dioxide (CO2) (Reddy and 
DeLaune 2008; Laffoley and Grimsditch 2009; Kirwan and 
Megonigal 2013; Garbutt et al. 2017; Karstens et al. 2019; 
Heckwolf et al. 2021; Gilby et al. 2021). Carbon (C) stored 
in coastal wetlands, such as mangroves, seagrass meadows, 
salt marshes, and brackish reed wetlands, is referred to as 
“blue carbon” (Nellemann et al. 2009; McLeod et al. 2011; 
Pendleton et al. 2012; Serrano et al. 2019). The total world-
wide area of coastal wetlands is small compared with other 
ecosystem types, and consequently, the total amount of C 
stored in coastal wetlands is relatively small (10–25 Pg com-
pared to 1500 Pg in soils worldwide; Pendleton et al. 2012; 
Duarte et al. 2013; Serrano et al. 2019). However, carbon 
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stored in coastal (and other) wetlands has a disproportion-
ate importance, because it is stored over a longer time scale 
compared with most terrestrial soils (Serrano et al. 2019; 
Hopkinson et al. 2019). In coastal wetlands, C sequestra-
tion rates (on average 200 g C m−2 year−1) are very high 
compared with other ecosystem types (e.g., 20 g m−2 year−1 
in inland wetlands and 5 g m−2 year−1 in forest ecosystems) 
(Ouyang and Lee 2014). These high C sequestration rates 
are due to high biological productivity and the low rates of 
decomposition in waterlogged wetland substrates (McLeod 
et al. 2011; Ouyang and Lee 2014).

Coastal wetlands are strongly endangered by human 
activities, such as urbanization, aquaculture, or excessive 
nutrient input resulting in eutrophication (Deegan et al. 
2012; Hopkinson et al. 2012; Kirwan and Megonigal 2013; 
Schuerch et al. 2018; Newton et al. 2020; O’Connor et al. 
2020; Gilby et al. 2021). If coastal wetlands are lost, a 
large part of the stored carbon may be released back into 
the atmosphere, exacerbating the rise of atmospheric CO2 
concentrations (Pendleton et al. 2012; Bu et al. 2015). In 
order to evaluate the potential carbon release of wetland 
sites, knowledge about the carbon stocks of different types 
of wetlands is required. However, the overall global amount 
of carbon stocks is only known with a large margin of uncer-
tainty (Duarte et al. 2013; Serrano et al. 2019). On the one 
hand, this is due to the high spatial variability of C stocks 
(Craft 2007; McLeod et al. 2011), since local carbon den-
sity is governed by a large variety of factors (e.g., salinity, 
nutrient status, sediment supply, climate, species composi-
tion, tidal range). On the other hand, the total area covered 
by coastal wetlands is uncertain, especially for salt marshes 
(McLeod et al. 2011). Although more recent estimates give 
a more precise value of 54,950 km2 covered by salt marsh 
(Mcowen et al. 2017; Hopkinson et al. 2019), many coastal 
wetland areas in the southern Baltic Sea region seem to be 
not included in this value, likely because they do not fit well 
into the salt marsh category.

Large parts of the Baltic Sea coast are lined with coastal 
wetlands dominated by common reed (Phragmites austra-
lis (Cav.) Trin. ex Steud.); this holds true especially for the 
inner, protected coast within lagoons and estuaries (Dijkema 
1990; Karsten et al. 2003; Selig et al. 2007; Meriste et al. 
2012; Altartouri et al. 2014). Phragmites australis is a cos-
mopolitan species occurring worldwide, sometimes con-
sidered being an invasive species, for instance in North 
America (Emery-Butcher et al. 2020; Blossey et al. 2020). 
Reed wetlands are common along other large brackish water 
basins, such as the Black Sea (Sangiorgio et al. 2008) or 
Chesapeake Bay (e.g., Rice et al. 2000; Chambers et al. 
2008). However, compared to other coastal wetland types, 
data about carbon storage in Phragmites wetlands worldwide 
is scarce. Here, we quantify C stocks in different Phragmites 
wetland sites in two lagoon systems of the southern Baltic 

Sea, as an example of a brackish marginal sea, and estimate 
the total amount of blue carbon stored along a representative 
Baltic Sea lagoon, based on wetland widths.

Material and Methods

Study Area

Our study sites are located along the Darss-Zingst-Bodden 
Chain (DZBC) and in the Strelasund (Fig. 1), two sheltered, 
brackish lagoon systems in the federal state of Mecklenburg-
Vorpommern (MV), Germany, which are representative for 
inner coastal waters. These inner coasts are almost entirely 
lined with wetlands of varying widths (commonly in the 
range 10–100 m), which are dominated by common reed 
(Phragmites australis (Cav.) Trin. ex Steud.). The DZBC 
covers a total area of about 200 km2 and a coast length of 
194 km (Karsten et al. 2003; Lampe et al. 2007), while the 
Strelasund covers an area of 64 km2 and its coastal length 
is 92 km (Reinecke 2005). The Strelasund has salinities of 
8–9 PSU, whereas salinities in the DZBC increase from west 
to east, with 0–3 PSU in the innermost lagoon (Saaler Bod-
den) to 7–10 PSU in the outermost part (Grabow) (Selig 
et al. 2007).

Sampling and Laboratory Analyses

Sediments were sampled at six sites in three zones of the 
Phragmites wetlands from the sediment surface to 100 cm 
depth, divided into 10 cm depth intervals. A closed stain-
less steel sediment corer with 7 cm inner diameter (Hydro-
Bios, Kiel, Germany) was used. Samples were taken in three 
zones: (1) at the terrestrial wetland edge (= supra-littoral, 
only rarely inundated), (2) in the transitional zone (= eu-
littoral, intermittently inundated), (3) at the littoral wet-
land edge (= sub-littoral, permanently inundated) (see also 
Karstens et al. 2016a, b). These three zones were clearly 
discernible from each other in the field, based on elevation 
and water depth. To account for the different widths of the 
Phragmites wetlands, four replicate locations in each zone 
were sampled at Dabitz, where the reed belt was widest, 
whereas at the other five sites, three locations in each zone 
were sampled. All replicate samples were taken at similar 
elevations within the zones. These sampling spots within 
each zone were 3–5 m apart from each other. Each soil core 
was subdivided equally into 10 subsamples representing 
each 10 cm of the soil core length and therefore a specific 
depth interval. The subsamples were immediately bagged 
and transported to the laboratory. These fresh soil samples 
were weighed in the laboratory, and then oven-dried for 24 h 
at 105 °C and thereafter weighed again to determine dry 
mass. Oven-drying at 105 °C is standard procedure in soil 
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science in Germany (DIN EN ISO 11461 2014; DIN ISO 
11465 1993) but also internationally (e.g., Gardner 1986) 
and studies determining soil organic carbon have advocated 
drying temperatures of 105 °C (Torn et al. 1997) to remove 
all pore water from the soil and therefore to determine soil 
water content and soil dry mass. When drying soils for deter-
mination of soil organic carbon, it was sometimes recom-
mended to dry at 60 °C, to prevent volatilization of organic 
matter (e.g., Howard et al. 2014). However, comparative 
studies suggest that the loss of organic matter at drying tem-
peratures of 105 °C compared to 60 °C is usually negligible 
(e.g., Samuelson et al. 2006; Dettmann et al. 2021).

The samples did not contain large rhizomes; however, 
small adventitious roots remained in the samples. Each sam-
ple was ground with mortar and pestle, and then, the com-
plete material was passed through a 2-mm sieve for further 
analysis. Total C concentration was measured by combustion 
in a CNS Analyzer (Vario Max, Elementar, Germany). The 
samples were treated with drops of 10% HCl (chloric acid) 

solution to test for calcite. No calcite was detected during 
these tests, which suggests that all the analyzed carbon is 
organic. However, since we tested only with single drops 
on each sample, heterogeneous patches of calcite within the 
samples may have remained undetected. The bulk density 
(BD) was determined as dry sample mass divided by sample 
volume. Total soil carbon stocks per m2 were calculated by 
multiplying, for each sampled soil layer of 10-cm thickness, 
the BD with the C concentration and 0.1 m (i.e., the thick-
ness of the sampled soil layers). Then, carbon stocks for 
the 10-cm layers were cumulated for all sampled depths to 
obtain the carbon stocks per m2 and 0–1 m soil depth.

Data Analyses

Data for bulk density, C concentration, soil C stock, and 
plant biomass were tested for normal distribution using 
the Kolmogorov–Smirnov test. The statistical significance 
of differences for specific depths among the three wetland 

Fig. 1   Location of the sampling sites and carbon stocks kg C m−2 
of the six sampling sites. Lagoons (Darss-Zingst-Bodden Chain and 
Strelasund) are displayed in blue stripes. C stocks are depicted in the 
circles: Inner circle represents the carbon stocks in the littoral zone, 

outer circle the terrestrial zone, and in between the transitional zone. 
Mean carbon stocks averaged over all three wetland zones are dis-
played as numbers. QGIS
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zones and the six sites was evaluated using analysis of 
variance (ANOVA) and Tukey’s post hoc test for pair-
wise comparisons (using the software IBM SPSS, v. 20.0). 
Aerial images from 2016 provided by the federal office 
for geoinformation were used to derive an estimate of the 
mean width of the reed belts along the DZBC in order 
to approximate the wetland area. We multiplied the aver-
age carbon stock with the approximate wetland area to 
estimate the blue carbon potential of the reed belts at the 
DZBC and beyond.

Results

Although bulk density was highly variable among the 
sites, depths, and wetland zones (with an overall range 
between 0.13 and 2.01 g cm−3), there are some general 
patterns (Fig. 2): for all sites except Kalkvitz, the highest 
values of bulk density were observed in the littoral zone, 
and the lowest in the terrestrial wetland edge. Carbon (C) 
concentrations (in mass %) spanned a broad range between 
0.004 and about 19.9% (Fig. 2). C concentrations were in 
general highest in the terrestrial zone and lowest in the lit-
toral zone. Carbon stocks per 10-cm layer (Fig. 2C) were 
also in general highest in the terrestrial zone, with values 
up to 15.4 kg C m−2 10 cm−1 in Michaelsdorf, and maxi-
mum values of 8.3 kg C m−2 10 cm−1 at the other sites. 
In contrast to C concentrations, carbon stocks showed no 
clear trend with depth, since they were determined both by 
BD and C concentration. These exhibited mostly contrast-
ing depth trends (Figs. 2 and 3) which canceled each other 
out. However, for the four sampling sites in the DZBC 
(Dabitz, Dierhagen, Glöwitz, Michaelsdorf), carbon stocks 
in the upper 20 cm were higher in the terrestrial wetland 
edge compared to the other zones.

Cumulated carbon stocks for 100 cm depth covered a 
wide range between 1.76 and 88.6 kg C m−2, depending on 
the site and reed belt zone (Fig. 3 Table 1). Averaged over 
the three reed belt zones, the differences between sites 
covered a range between 8.3 (Dierhagen) and 36.1 kg C 
m−2 (Michaelsdorf). The average C stock for all sites and 
all zones was 17.4 kg C m−2 with a large standard devia-
tion of 16.7. Cumulated carbon stocks were on average 
highest in the terrestrial zone (29.9 kg C m−2), and lowest 
in the littoral zone (10.6 kg C m−2) (Table 1). However, for 
the two sites in the Strelasund, this relation was reversed. 
Analysis of aerial images for the DZBC yielded a mean 
width of the reed belt of 70 m, and thus a total area of 
the reed belt of 13.5 km2, considering the coast length 
of 194 km. Extrapolating this to the total inner coastline 
of MV with a length of 1568 km, up to 109.8 km2 could 
potentially be covered by brackish reeds.

Discussion

Carbon Stocks in Coastal Phragmites Wetlands

The basis for global assessments of carbon stocks are stud-
ies on regional and local scales, followed by mapping and 
modeling on larger scales. However, there is a lack of stud-
ies addressing blue carbon along the Baltic Sea. Here, we 
provide much-needed data on blue carbon stored in these 
important ecotones between land and sea. Overall, aver-
age C stocks in the reed belt sediments were 17.4 kg C 
m−2. This is higher than C stocks of seagrass meadows in 
the Baltic Sea (0.23 kg C m−2 for the Puck Bay in Poland 
(Jankowska et al. 2016), 0.63 kg C m−2 for Finnish sites, 
and 4.3 kg C m−2 for sites in Denmark (Röhr et al. 2016)), 
but within the lower range of C stocks reported for tidal 
salt marshes worldwide. Global averages for C stocks in 
tidal salt marshes are 25 kg C m−2 according to Pendleton 
et al. (2012), whereas Duarte et al. (2013) give a value of 
16.2 kg C m−2 (albeit with a very high standard deviation 
of 25.9 kg C m−2). Similarly, Chmura et al. (2003), based 
on an analysis of 26 saltmarsh sites worldwide, report 
average C stocks of 19.5 kg C m−2, although their esti-
mate is only valid for depths of 0–50 cm (carbon density 
of 0.039 g cm−3).

Compared to vegetation dominated by other salt marsh 
plants, like Spartina maritima or Juncus gerardii, studies 
addressing soil C stocks in Phragmites-dominated coastal 
wetlands are rare, not only for the Baltic Sea (Callaway 
et al. 1996), but also on a global scale (Anisfeld et al. 1999; 
González-Alcaraz et al. 2012; Ouyang and Lee 2014; Byun 
et al. 2019). For Phragmites-dominated salt marsh sediments 
in South Korea, Byun et al. (2019) report C stocks in the 
sediments of 15–20 kg C m−2 (to 1 m depth), and Callaway 
et al. (1996) found C stocks of 20–30 kg C m−2 (to 50 cm 
depth) in Phragmites wetlands of the Odra and Vistula estu-
aries (Poland). Phragmites has a very high biomass produc-
tion that could lead to substantial soil C storage (Brix et al. 
2001; Engloner 2009; Song et al. 2015). Organic C in the 
sediments is not derived solely from aboveground litter, but 
also from roots and rhizomes (Rooth et al. 2003). Rooting 
depth of Phragmites is with up to 1.5 m higher compared 
to other wetland species (Mozdzer et al. 2016; Lissner and 
Schierup 1997). Sedimentation of allochthonous material 
also impacts carbon storage. While sediment deposition 
patterns in Spartina and Phragmites wetlands are compa-
rable (Leonard et al. 2002), higher sediment accretion rates 
in Phragmites compared with Typha wetlands have been 
described (Rooth et al. 2003). Gu et al. (2020) reported 
that invasive Phragmites increased blue carbon stocks in an 
estuarine marsh in Quebec, Canada, previously dominated 
by Spartina patens.
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Total Carbon Estimate for Phragmites Wetlands 
in the Darss‑Zingst‑Bodden Chain

For an assessment of regional C stocks of coastal wetlands, 
both data about the spatial variability of local C stocks 
and the area covered by coastal wetlands are required. In 

Europe, data about the total areal coverage of coastal wet-
lands are until now incomplete: for instance, Dijkema (1987) 
estimated the total salt marsh area of Europe at 2302 km2, 
whereas Sterr (2008) gives an area of coastal wetlands of 
about 1800 km2 for the German portion of the Baltic coast. 
McOwen et al. (2017), in their global map of saltmarshes, 

Fig. 2   Depth profiles of bulk density (upper panel A), C concentration (middle panel B), and C stock (lower panel C) for the six sampling sites 
and the three reed belt zones (see legend below plots). “R”, package ggplot

2278 Estuaries and Coasts  (2022) 45:2274–2282

1 3



calculate an area of 4512 km2 for Europe (without Russia). 
However, for the German part of the Baltic Sea, only small 
parts of the coastal wetlands are included. With an average 
of 19.6 kg C m−2 and wetland width of 70 m, this leads to 
an amount of 264,600 t blue carbon stored in Phragmites 
wetlands along the coast of the DZBC. Considering the total 
length of protected inner coastline in MV with 1568 km, 
an estimated reed belt area of 109.8 km2 and an average of 
17.4 kg C m−2 for MV, the blue carbon potential could be 
as high as 1.9 million tons of carbon. This number includes 
only brackish reed wetlands and not yet salt meadows or 
coastal peatlands, which are also abundant along the Baltic 
coast (Jurasinski et al. 2018).

The high variation in C stocks between the six sites of our 
study (ranging from 8.3 kg C m−2 at Dierhagen to 36.1 kg 
C m−2 at Michaelsdorf) is consistent with high variability 
of C stocks in salt marshes worldwide (Serrano et al. 2019). 
Carbon storage in our study differed not only significantly 
between sites but also between the wetland zones. In gen-
eral, C stocks are highest in the terrestrial zone, where bio-
mass production and thus accumulation of litter are highest 
(Karstens et al. 2016a, b). Studies worldwide have shown 
that the amount of blue carbon is governed by a large variety 
of factors, for instance salinity (Osland et al. 2018), nutrient 
status, sediment supply and sediment texture (Kelleway et al. 
2016), climate (Osland et al. 2018), plant species (Ouyang 

Fig. 3   Cumulated carbon stock vs depth for the six sampling sites and the three reed belt zones. Note that scaling of the x-axis differs among the 
sites. “R”, package ggplot

Table 1   Information on sampling sites and summary of mean C stocks (kg C m−2)

Different indices within this row denote significantly different carbon stocks. Different indices within one column denote significantly different 
carbon stocks
Indices (a, b, c) in the rows “Terrestrial zone,” “Transition zone,” and “Littoral zone” denote significant differences in carbon stocks (p < 0.05) 
between wetland zones within a specific site. Indices (A, B) in the row “Overall sediment carbon stocks” denote significant differences in carbon 
stocks (p < 0.05) between sites

Dabitz Dierhagen Glöwitz Kalkvitz Michaelsdorf Stralsund

Location DZBC
54°22ʹ08ʺN 

12°48ʹ15ʺE

DZBC
54°17ʹ19ʺN 

12°22ʹ01ʺE

DZBC
54°23ʹ08ʺN 

12°46ʹ28ʺE

Strelasund
54°11ʹ01ʺN 

13°19ʹ36ʺE

DZBC
54°22ʹ18ʺN 12°33ʹ59ʺE

Strelasund
54°16ʹ56ʺN 13°06ʹ20ʺE

Adjacent land use Arable land Pasture Arable land Woodland Pasture Urban
Dyking No No No Yes Yes No
Width of reed belt > 100 m 30–50 m 40–60 m 50–100 m 30–40 m 60–80 m
Mean salinity 7 PSU < 3 PSU 5.5 PSU 8.5 PSU 3 PSU 8.5 PSU
Overall sediment 

carbon stocks 
0–100 cm

23.2 (7.5)A 8.3 (9.5)B 9.5 (6.4)B 9.4 (3.1)B 36.1 (31.6)A 15.9 (7.4)A,B

Terrestrial zone 31.0 (5.2)a 20.2 (6.1)a 17.0 (4.8)a 8.4 (3.3)a 75.0 (11.8)a 8.4 (0.6)a

Transition zone 21.3 (3.8)b 2.8 (1.0)b 8.2 (1.0)b 11.5 (3.8)a 28.0 (8.4)b 14.1 (0.4)b

Littoral zone 17.4 (5.6)b 1.9 (0.2)b 3.4 (0.3)c 8.2 (1.3)a 5.4 (1.0)c 25.1 (0.4)c
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and Lee 2014), tidal range (Ouyang and Lee 2014; Serrano 
et al. 2019), sea level rise (Rogers et al. 2019), or manage-
ment practices (O’Connor et al. 2020). In most coastal wet-
lands, C storage, however, is not governed by one single 
of these factors, but rather by multiple biotic and abiotic 
influences as well as the history of the sea and landscape 
(Rogers et al. 2019; Serrano et al. 2019) and it is used by 
humans. These factors need further investigations to better 
understand variability of carbon storage and sequestration 
in coastal Phragmites wetlands.

Conclusions

Our current estimation of blue carbon stored in the DZBC is 
264,600 t in the Phragmites wetlands alone. Given the pres-
ence of further large carbon stocks in brackish grasslands 
and the sediments of the lagoon itself as well as the high 
spatial variation of stocks in the reed belts, more research is 
clearly needed. Coastal wetlands dominated by Phragmites 
are very common along the Baltic Sea, and a large part of 
the Baltic coast features lagoons, bays, and estuaries which 
show similarities to the DZBC, but also differences. How-
ever, as indicated in the “Discussion” section, information 
about blue carbon in Phragmites wetlands along the Baltic 
coast is virtually absent. Therefore, more research in other 
regions of the Baltic sea is needed, to gain a better under-
standing of the role of the Baltic Sea for blue carbon stor-
age, and to better understand which factors determine car-
bon stocks and sequestration in this marginal sea. Based on 
our analysis alone, we can already state that the Phragmites 
wetlands along the southern Baltic Sea coast are certainly 
important carbon stores that we should aim to better under-
stand regarding their stability and possible development in 
the future.
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