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Abstract
Habitat complexity and connectivity can influence the number of species and their diversity across a landscape. For the surf 
zones of ocean-exposed beaches, globally one of the longest habitat interfaces, the assumed low structural complexity, and 
apparent homogeneity, of the sandy seafloor habitats predicts low taxonomic and functional diversity. Here, we assessed 
how the configuration of the seascape and the context of different beach structure functional diversity and functional niche 
space of fish assemblages in surf zones. We expected that beaches that were well connected with highly productive and 
complex estuarine and reef habitats would support a greater level of functional diversity, and a greater degree of functional 
complementarity within different niches. We sampled surf zones at twenty-five beaches along 50 km of coastline in southeast 
Queensland, Australia. We calculated functional diversity and functional niche space using variation in the functional traits 
of fish assemblages. We found that increased proximity with nearby subtidal rocky reefs was the key feature of the coastline 
shaping functional diversity and functional niche space in surf zone fishes. These effects resulted in increased functional 
complementarity within a number of fish functional group niches when rocky reefs were nearby. We provide empirical 
evidence that habitat proximity can structure functional diversity and complementarity in the surf zones of ocean beaches, 
a system traditionally viewed as having low habitat heterogeneity. Our results highlight the focus management must take in 
conserving these highly connected ecosystems to avoid negative functional consequences.
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Introduction

Animals perform a diversity of ecological functions that 
are critical in setting the structure and functioning of eco-
systems (Cardinale et al. 2006; Loreau and de Mazancourt 
2013), and it is the traits (i.e., physiological, morphological 
or behavioural) of those different animals that alters their 
ability to provide different ecological functions within an 
ecosystem (Bellwood et al. 2019). The distribution of eco-
logical functions, in terms of type and intensity, is typically 
heterogeneous due to spatial differences in species composi-
tion, abiotic factors, connectivity, habitat quality and com-
plexity, and human disturbance (Graham and Nash 2012; 
Mayer-Pinto et al. 2018; Mouillot et al. 2013; Rolo et al. 
2018). Given the large number of factors that potentially 
drive variation in ecological functions and the species that 
provide them, identifying key determinants and their inter-
actions is of fundamental importance (Cadotte et al. 2011; 
Mouillot et al. 2013).
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The composition of animal assemblages is often instru-
mental in shaping ecological functions. As is the case 
for functional or trait diversity across land or seascapes 
more widely, assemblage composition is influenced by a 
host of factors including, but not limited to, food quality 
and availability, interspecific interactions, habitat types 
and distributions, and the physiological tolerances of 
species (Henderson et al. 2019; Nash et al. 2016). It is 
generally accepted that increased proximity to a greater 
number of habitats provides better feeding opportunities 
for more species and individuals, hypothetically creating 
more niches, that more species can occupy (Lohbeck et al. 
2016; Micheli and Halpern 2005; Rosenfeld 2002). Thus, 
niche space may vary spatially depending on the prox-
imity between habitats and ecosystems within a seascape 
(Clavel et al. 2011; Fetzer et al. 2015; Henderson et al. 
2020; Mouillot et al. 2013). The niche space that is occu-
pied by different species groups can identify the levels 
of complementarity within that specific group, with those 
groups with a larger niche space representing greater lev-
els of complementarity and potentially greater resilience 
to change (Blüthgen and Klein 2011; Paquette and Messier 
2011).

Coastal seascapes are composed of a mix of ecosystems 
and habitat types of varying physico-chemical conditions, 
topography, complexity, and productivity, which determine 
the types, abundance, and distribution of species of func-
tional importance (Hyndes et al. 2014; Olds et al. 2018a). 
Sandy beaches dominate coastlines across the globe, with 
surf zones (the areas of breaking waves seaward of the shore) 
being an integral part of ocean beaches. Key attributes of 
surf zones along exposed ocean beaches are strong wave 
energy and currents, and highly variable primary produc-
tivity (e.g., estuarine matter delivered in plumes, dislodged 
algae and seagrass washed ashore, patches of intense phyto-
plankton growth) (Schlacher et al. 2015). Surf zones are also 
characterised to varying degrees by structurally complex 
shifting sand banks and troughs, hydrodynamic complexity, 
seafloor relief, effects from nearby urbanisation (e.g. altered 
beach conditions and the construction of barriers, Vargas-
Fonseca et al. 2016), and a gradient of seascape contexts 
(e.g., area of nearby habitat or anthropogenic disturbance) 
(Mosman et al. 2020). These factors can alter the abundance 
and diversity of fish assemblages (Olds et al. 2018b). How-
ever, linkages between surf zones and nearby structurally 
complex (e.g., rocky reefs and headlands) and/or highly pro-
ductive ecosystems (e.g., estuaries) suggest that the diversity 
and abundance of fish in surf zones can be higher than antic-
ipated under certain seascape configurations (Ayvazian and 
Hyndes 1995; Ortodossi et al. 2019; Vargas-Fonseca et al. 
2016). The ways in which different seascape configurations 
alter functional diversity within surf zones assemblages has, 
however, never been quantified (Olds et al. 2018b).

Surf zones represent a suitable system to test for the 
effects of seascape configuration, connectivity, and com-
plexity on fish functional diversity because they represent 
a critical link in the coastal mosaic and because surf zone 
fish assemblages are sensitive to numerous effects, includ-
ing connectivity, exposure, and urbanisation (Borland et al. 
2017; Ortodossi et al. 2019; Vargas-Fonseca et al. 2016). 
These fish communities also perform numerous ecological 
functions in this ecosystem, including predation at a variety 
of trophic levels, the consumption of carrion, and in some 
settings, herbivory, and the spatial distribution of the species 
that perform these functions are linked to changes in beach 
and surf zone context (Hyndes et al. 2014; Ortodossi et al. 
2019; Vargas-Fonseca et al. 2016). Our aims here were to 
(1) determine how changes in spatial proximity to alternative 
habitats (e.g., distance to the nearest estuaries, headlands, 
or subtidal reefs) influence the functional diversity of fish 
assemblages in surf zones of ocean beaches and (2) measure 
changes to the dimensions of functional niche space in rela-
tion to the presence of, and proximity to other habitat types 
in the broader seascape of which surf zones are embedded.

Methods

Study Beaches

We sampled fish assemblages at 25 ocean beaches spanning 
ca. 50 km of exposed coastline in SE Queensland, Australia 
(Fig. 1a). The beaches encompass a range of environmental 
conditions with respect to (1) their proximity to the near-
est rocky reefs, (2) their proximity to prominent rocky 
headlands, (3) their proximity to estuarine inlets, (4) the 
extent of urbanisation landwards, and (5) their aspect (ori-
entation) in relation to predominant winds and waves. All 
beaches sampled are of the intermediate morphodynamic 
type (Maslo et al. 2016). We used Quantum GIS (Quantum 
2013) to measure the proximity of all beach sites to the near-
est headland, rocky reef and estuary, beach width, and surf 
zone width, and to calculate the area of urbanisation within 
a 4-km2 buffer of each beach (Vargas-Fonseca et al. 2016). 
We, unfortunately, did not have information on the varying 
levels of rocky reef complexity across our sampling range 
and therefore are not able to infer about the effects of com-
plexity outside of any effects of habitat proximity.

Field Sampling

We sampled fish assemblages during the austral winter, 
using baited remote underwater video systems (BRUVS). 
We deployed sets of cameras in two parts of the surf zone: 
in nearshore troughs (typically 20–50 m seawards from the 
swashline) and over offshore bars (150–250 m offshore) 
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where waves first break (Borland et al. 2017). The long-
shore distance between cameras was set at 200 m to lower 
the probability that multiple cameras detecting the same 
individuals multiple times (Wraith et al. 2013). BRUVS 
were dropped at consistent depths within the two parts of 
each beach; however, we were unable to ensure consistency 
between beaches as site selection at each beach was depend-
ent on wave position. The BRUVS consisted of a GoPro 
camera recording in HD, mounted to a 15-kg weight and 
a float. The bait was 500 g of pilchards (Sardinops sagax) 
placed in a coarse (5 mm aperture) mesh bag mounted on 
a PVC pole 1 m in front of the cameras. We used a baited 
approach over a non-baited approach as it is found to sample 
a broader portion of the fish community (Harvey et al. 2007; 
Watson et al. 2005). Each camera recorded for 1 h during 
the daytime, yielding a total sampling effort of 250 h of 
video footage (25 sites × 10 cameras per site × 1 h recording). 
All sampling occurred 2 h either side of high tide to ensure 
that nearshore troughs were filled with water. As temporal 
variation was not a focus of this study, we only sampled fish 
communities during daytime hours in winter to maximise 

water clarity and minimise wave conditions. To lower the 
influences of short-term variations in wave regimes, we only 
deployed cameras at high tide, on days (a 4-h period) when 
wave periods were < 10 s and wave height was < 1.5 m. The 
principal data extracted from the videos were the standard 
MaxN statistic for each species identified (Ellis 1995; Willis 
and Babcock 2000). The MaxN statistic refers to the maxi-
mum number of individuals of the same species in a single 
frame throughout an entire video. This is used to ensure the 
same individual fish is not counted multiple times.

Functional Diversity Metrics

Functional diversity (Bellwood et al. 2019; Laliberté and 
Legendre 2010; Mason et al. 2005; Mouchet et al. 2010) 
is indexed as variation in traits of fish species, with these 
traits being extracted from FishBase, using the rfishbase 
package in R (see Table S1, Froese and Pauly 2018). To 
broadly sketch functional niche space of surf-zone fish, we 
used traits that code for trophic biology (i.e., feeding mode, 
trophic level, trophic guild) and traits that describe general 
morphology (i.e., maximum total length, body shape, body 
depth, head length, pre-orbital length, eye diameter) (Brandl 
and Bellwood 2014; Elliott et al. 2007; Wainwright and 
Richard 1995). In order to account for categorical traits, our 
dendrogram was based on a Gower dissimilarity matrix with 
clustering based on average trait values (Petchey and Gaston 
2006). We then partitioned the assemblage into seven dif-
ferent groups based on their functional feeding group (e.g., 
zoobenthivore, zooplanktivore, piscivore, omnivore, coral-
livore, herbivore, and detritivore).

Functional diversity was numerically expressed using 
three functional metrics and one taxonomic metric, with (i) 
functional richness, (ii) functional dispersion, (iii) functional 
evenness, and (iv) species richness, calculated with the 
fundiv and FD packages in R (Gagic et al. 2015; Laliberté 
and Legendre 2010; Mason et al. 2005). Functional rich-
ness (sensu Petchey and Gaston 2006) quantifies the area of 
functional trait space in an ecosystem (Mason et al. 2005). 
Functional dispersion describes the mean distance in func-
tional trait space for each species from the centroid of all 
species in an assemblage; it is weighted by abundance (i.e., 
MaxN) (Laliberté and Legendre 2010). Functional evenness 
is quantified as the distribution of the abundance of indi-
viduals within different niches within a community (Mason 
et al. 2005).

Data Analyses

To assess how variation in environmental variables 
(Table 1) influences spatial variation in the functional diver-
sity of assemblages between beaches, we used generalised 
additive models (GAMs) in R using the mgcv and MuMIn 

Fig. 1   a Location of 25 surf zones of ocean-exposed sandy beaches 
in south-east Queensland, Australia. Sandy beaches vary primarily 
with respect to their seascape context, with some beaches located b 
near headlands, c on long stretches of coastline, d close to the mouth 
of estuaries, and the extent of urban development landwards. Here, 
nearshore reefs are rocky reefs with some algae and low coral cover
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packages (Bartoń 2013; Wood and Wood 2015). GAMs 
were chosen instead of other regression models because 
we could not assume linear relationships. We fit models 
with all possible combinations of three or fewer environ-
mental variables and restricted individual models to four 
polynomial functions or fewer to minimise model overfit-
ting. Models were compared using Akaike information cri-
terion (AICc) corrected for small sample sizes and assessed 
models for auto-correlation using the acf function in R. Best 
fit models are calculated using the ‘dredge’ function, and 
were considered to be those with the lowest AICc value 
and within 2 AICc values of the best fit model. The relative 
importance of variables in each model was calculated by 
summing weighted AICc values across all models contain-
ing the variable of interest (Bartoń 2013; Henderson et al. 

2020). We identified the most ‘important’ factor across all 
models, based on summed importance values across best-fit 
GAM models for each different metric.

The proximity of sampling sites in the surf zones of 
beaches to subtidal rocky reefs was categorised into four 
distance classes, based on visual examination of the dis-
tribution: (i) ‘at reef’ (i.e., there was subtidal rocky reef 
present within the extent of the beach that was sampled), 
(ii) ‘close’ (mean 494 m, range 161–659 m), (iii) ‘inter-
mediate’ (mean: 1061 m, range 922–1291 m), and ‘far’ 
(mean 2572 m, range 2464–2752 m) (see Fig. S2). We 
used these distance categories to visualise how functional 
niche space (sensu Layman et al. 2007) varies in relation 
to seascape context. The underlying resemblance matrix 
was based on Gower dissimilarity (to allow for inclusion 

Table 1   Environmental variables tested in this study for their influence on functional diversity of fishes in surf zones of ocean-exposed sandy 
beaches

Variable Definition Rationale / Predictive Hypothesis

Distance to reef The separation of a beach from the edge of the nearest 
subtidal reef seawards of that beach

Nearby subtidal rocky reefs add habitat heterogeneity and/
or structural complexity to the broader seascape that surf 
zones form part of; this increased complexity is predicted 
to translate into greater species richness and functional 
diversity of fishes (Ortodossi et al. 2019)

Distance to headland The longshore gap between a beach and the nearest  
headland

Habitat complexity added by nearby headlands to mainly 
sedimentary coast is expected to increase biodiversity, 
abundance and functional diversity of fishes (Ortodossi 
et al. 2019). Therefore, we predicted that surf zones near 
rocky headlands support more fish species of greater 
functional heterogeneity

Distance to estuary The longshore gap between a beach and the nearest  
estuarine inlet

Estuaries frequently export, largely in the form of plumes, 
nutrients, and organic matter to nearshore marine waters, 
including the surf zones of ocean beaches. These fluxes 
can provide trophic subsidies and are therefore predicted 
to enhance the abundance, and possibly also the diversity, 
of fishes in the surf zone (Hyndes et al. 2014; Valesini 
et al. 2004)

Urbanisation The area of urban land within a 4 km2 buffer immediately 
landwards of the beach. This dimension was chosen to 
index the immediate impact of urbanisation on surf-beach 
systems

Conversion of dunes backing beaches to urban areas 
fundamentally changes the human footprint of beach 
ecosystems, notably increasing visitation, nourishment, 
armouring, grooming, and watercraft use in the surf 
zone. These multiple forms of human activities have been 
shown to influence fish assemblages in the surf zone of 
sandy beaches, suggesting mostly detrimental impacts on 
fishes (Vargas-Fonseca et al. 2016)

Beach Width The distance from the strand line to the edge of the water 
at low tide

Beach width is a key variable defining the morphodynamic 
state of ocean beaches, with narrow reflective beaches 
typically having a narrow surf zone with smaller waves, 
whereas wide dissipative beaches are being fronted by 
expansive surf zones with larger waves. Since wave energy 
in wide surf zones is dissipated often on the outer bars, 
lower-energy conditions can prevail in nearshore throughs, 
suggesting a positive influence on fish abundance and/or 
diversity (Marin Jarrin and Miller 2016)

Beach Aspect Northness and eastness of each beach. A measure of swell 
direction (Hill et al. 2014)

Beaches that face the dominant swell direction are likely 
to experience a higher-energy wave climate, which we 
predict may lower fish abundance and diversity (Borland 
et al. 2017)
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of categorical variables) of the original functional traits 
extracted. Functional niche space was then displayed 
using a principal coordinate analysis spider plots, based 
on the Gower dissimilarity matrix of the original func-
tional traits. Functional niche space was shown for each 
functional group at each of the four distances from reef. 
Spider plots are a suitable representation of trait space as 
they highlight the outer bounds of the niche space, and the 
diversity of species in particular areas of the niche relative 
to the mean traits for that functional grouping. This makes 
for a suitable plot when highlighting complementarity in 
functional niches.

Results

Landscape Connectivity Shapes Functional Diversity 
of Fish in Surf Zones

Seventy species, in seven functional groups, were 
recorded in the surf-zone of the study region’s beaches. 

The functional group with the most species (37 spp.) 
was zoobenthivores, followed by piscivores (17 spp.) 
and omnivores (8 spp.) (see Fig. S1; Table S1). Other 
groups in our analysis included zooplanktivores (5 spp.), 
detritivores (3 spp.), herbivores (2 spp.), and corallivores 
(1 sp.). Species richness per site varies between 6 and 
28, and this spatial pattern is measurably influenced by 
the configuration of beaches within the broader coastal 
seascape. More species occur in surf zones that contain 
or were near to reefs (i.e., within 600 m) and that are 
no further than 5000 m from estuarine inlets; surf zones 
more distant from rocky headlands also contained more 
species (Fig. 2; Table 2).

Overall, distance to rocky reefs was the most impor-
tant factor being included in the best fit models for all 
metrics measured (Fig. 3; Table 2). Functional diversity 
of fishes is highest in surf zones that had reefs or are 
close (< 600 m) to reefs (Fig. 2; Table 2). Spatial pat-
terns of functional richness resemble those for the num-
ber of species, being highest near reefs and more distant 

Fig. 2   Generalised additive model (GAM) partial plots illustrating 
significant relationships between the seascape configuration of surf 
zones in the broader habitat mosaic (indexed by distance to the near-

est offshore reef, estuarine, or headland; see Fig. 1). and measures of 
fish functional diversity and species richness
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from headlands (Fig. 2; Table 2); similarly, functional 
dispersion was highest when reefs are in or close to surf 
zones (Fig. 2; Table 2). Sampling position within the surf 
zone was also a significant factor in structuring func-
tional diversity and species richness, with all measures of 
functional and species diversity being higher on offshore 
bars compared to nearshore gutters (Fig. 2; Table 2). We 
did not find an effect of beach width, surf zone width, 
urbanisation, or beach aspect on any functional diversity 
metrics.

Proximity to Reefs Determines Functional Niche 
Space

Functional niche space of fish functional groups was 
greatest for most groups in surf zones with nearby rocky 
reefs (Fig. 4). By contrast, fish functional groups in all 
surf zones without nearby reefs had similar niche spaces, 
with this being lowest at beaches furthest away from reefs 
(Fig. 4). All fish functional groups reduced in species 
diversity, which generally let to a decrease in functional 

Table 2   Best fit generalised additive models (GAMs) between spe-
cies richness and functional diversity metrics and the suite of environ-
mental predictors (cf. Table 1 for full list of environmental variables 
and functional responses predicted; variables in bold denote signifi-

cant (p < 0.05) predictors in the best fit model. Importance values are 
in superscript, denoting the relative contribution of each variable to 
the overall model fit). Number of other models with 2 AICc values is 
highlighted for each best-fit model

Community metrics Best fit model R2 df AICc # other 
models

Functional richness Distance to reef (1.0, p < 0.001) + Distance to headland (0.99, p = 0.004) + Placement (0.72, p=0.018) 0.24 8 296.5 0
Functional dispersion Distance to reef (0.96, p = 0.001) + Distance to headland (0.57, p = 0.048) + Placement (0.65, p = 0.043) 0.09 5 –582.9 2
Functional evenness Distance to reef (0.50, p = 0.08) + Distance to estuary (0.79,, p = 0.08) + Placement (0.70, p = 0.031) 0.09 7 193.8 4
Species richness Distance to reef (0.99, p < 0.001) + Distance to headland (0.99, p < 0.001) + Placement (1.0, p < 0.001) 0.27 8 900.4 0

Fig. 3   Standardised importance 
values for factors included in 
the best-fit generalised additive 
models relating functional 
diversity and richness of fishes 
in surf zones to environmental 
predictors (Table 2)
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niche space. For the two most diverse groups, zooben-
thivores and piscivores, they experienced a significant 
reduction in diversity; however, due to the variability of 
traits in these groups, niche space only reduced slightly 
(Fig. 4).

Discussion

Seascape proximity, habitat complexity, and human distur-
bance frequently influence the movement of animals and 
the ecological functions they perform. It remains, however, 

Fig. 4   Changes in functional niche space for functional groups of fish 
in the surf zone of beaches that are located at different distances from 
rocky reefs. Plots are ordinations (principal coordinates analysis) of 
trait dispersion based on resemblance between species over their full 
trait spectrum analysed. Centroids for each group represent the aver-

age trait values for all species within a functional grouping. Func-
tional niche size was highest at a beaches containing reef (i.e., there 
was subtidal rocky reef present within the extent of the beach that was 
surveyed) and decreased at sites b close to reef, c at intermediate dis-
tances, and d at beaches furthest away from reefs
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largely untested whether and how these variables interact 
to modify functional diversity (Cadotte et al. 2011; Cheal 
et al. 2013; Nock et al. 2013; Rolo et al. 2018). Here, we 
show that beach systems with surf zones that contained 
reefs, or were close to reefs, supported fish assemblages 
that contained more species, and a greater diversity of 
functional groups. The same beaches also had fish assem-
blages composed of functional groups that had a broader 
niche space and increased complementarity in most of 
the fish functional groups when reefs were present in the 
surf zone. We found lower functional complementarity at 
beaches further from reefs in the functional groups con-
taining piscivore, zooplanktivores, and zoobenthivore, 
with reduced functional niche space, and thus reduced 
complementarity. Our findings for surf zone fish concur 
with studies describing generally positive effects of habitat 
proximity with nearby structurally complex ecosystems 
on faunal assemblages in a variety of different ecosys-
tems on land, and in the sea (Fischer and Lindenmayer 
2007). We did, however, not find strong effects of prox-
imity with headlands, estuaries or urbanisation on func-
tional diversity in surf zones. We expect that the dimin-
ished impacts of headlands may be due to the heightened 
importance of nearshore reefs, with not all headlands on 
this coastline having extensive reefs. Similarly, estuaries 
along this coastline do not contain extensive urbanisation, 
and therefore, there are no in-water structure at the mouth 
(e.g., there are no offshore pointing jetties in this region), 
and sampling occurred during the season when rainfall 
is lowest (Marin Jarrin and Miller 2016). Our findings 
suggest that the filtering effects of proximity with struc-
turally complex habitats such as subtidal reefs can have 
significant impacts for not only biodiversity, but also the 
functional composition of assemblages (Baguette et al. 
2013; Rudnick et al. 2012; Sheaves 2009). Similarly, we 
suggest that increased proximity in coastal seascapes is 
able to modify niche space and increase complementarity 
within a number of important functional groups (Blüthgen 
and Klein 2011; Rosenfeld 2002). While it is important to 
highlight that our study was completed on only one occa-
sion over the austral winter, we expect that these strong 
effects of nearshore reefs would likely occur throughout 
the year due to the importance of structural complexity 
for biological and functional diversity in ecosystems more 
broadly.

It is widely accepted that ecosystems with a greater num-
ber of connections between habitats can support a greater 
abundance and diversity of wildlife and the ecological func-
tions they provide (Baguette et al. 2013; Nagelkerken 2009; 
Olds et al. 2018a). The structural changes to an ecosystem 
through increased proximity with complex habitats increase 
the number of available niches under which different spe-
cies are able to feed, providing a more functionally complex 

ecosystem (Duffy et al. 2007; Graham and Nash 2012). 
We did, however, not find strong correlations between fish 
functional diversity and proximity to headlands, estuaries, 
or urban structures, habitats which have previously been 
shown to be of high importance to fish in surf zones (Marin 
Jarrin et al. 2016; Mosman et al. 2020). There is evidence 
from elsewhere around the world that headlands and jetties 
that extend out from beaches into surf zones can impede fish 
movement into the surf zone; however, the coastline that we 
work on here does not contain coastal jetties, and headlands 
were not always located at the mouth of an estuary, nor did 
they always contain extensive rocky structures that extended 
out into the surf zone (Marin Jarrin and Miller 2016; Marin 
Jarrin et al. 2016). These factors likely lead to the reduced 
impacts of headlands and urbanisation on fish functional 
diversity. Similarly, it has previously been highlighted that 
surf zones act as a critical link between estuaries and off-
shore environments (Olds et al. 2018b), which is not shown 
to be the case in this study. We expect that the effects of 
estuarine proximity on functional diversity are likely being 
reduced, rather than not being present, due to the functional 
variety of species found on reefs. Here, we find that beaches 
that are in close proximity to rocky reefs (< 660 m) sup-
ported a greater overall functional diversity and different 
fish functional groups were found to have greater levels of 
functional niche size and species richness, suggesting that 
they have greater levels of functional complementarity. This 
was not found to be the case when looking at beaches near 
estuaries, with many estuarine fish species fitting into the 
zoobenthivore functional grouping, rather than resulting in 
functional complementarity across all functional groupings 
(Henderson et al. 2020; Mosman et al. 2020). Maintaining 
high levels of complementarity in the functional traits of 
animal assemblages within an ecosystem should be a key 
focus of management approaches and here we show that 
highly connected seascapes should remain a key link in the 
management of coastal ecosystems (Bellwood et al. 2003; 
Duffy et al. 2007; Rosenfeld 2002). High levels of com-
plementarity in systems that experience patchy productivity 
due to allochthonous derived resources have been identified 
elsewhere, with investigations into the relationship between 
biodiversity and ecosystem functioning in different forest 
fragments (Paquette and Messier 2011) or beaches (Brown 
et al. 2015).

Habitats of greater structural complexity and habitat-
forming species are often considered to be more speciose 
and support more functional niches. However, across an 
entire land- or seascape mosaic of habitats, there are often 
many habitats that play a key role in the movement of organ-
isms and energy throughout (Duffy et al. 2007; Graham 
and Nash 2012; Hyndes et al. 2014). Within coastal sea-
scapes, surf zones have traditionally been viewed to have 
low structural habitat complexity and ‘harsh’ hydrodynamic 
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conditions (McLachlan 1983); they are, however, a criti-
cal link in the movement of individuals between estuarine/
inshore and offshore ecosystems (Olds et al. 2018b). We 
detected 70 species in seven functional feeding groups over 
the austral winter, suggesting that surf zones support fish 
biodiversity that can match that of complex estuarine mosa-
ics (i.e., composed of mangroves, rocks, seagrass, mudflats, 
sandbanks, and deep channels) (Gilby et al. 2018; Olds et al. 
2012), and the levels of invertebrate biodiversity found on 
beaches (Marin Jarrin and Shanks 2011). Of the seventy 
species recorded in this study, only fourteen were found 
exclusively in surf zones where rocky reefs were directly 
under the areas of breaking waves; this suggests that many 
of the species we found will frequently use surf zones. While 
surf zones do not offer large areas of protection from preda-
tors, there are a large number of functional niches present 
within this ecosystem’s food web (Ayvazian and Hyndes 
1995; Borland et al. 2017). Most species move throughout a 
variety of habitats in coastal seascapes (e.g., rocky and coral 
reefs, pelagic environments, mangrove forests, and seagrass 
meadows), and we have shown here that a large number of 
functionally diverse species do use and reside in surf zones, 
highlighting the need to manage this ecosystem in a broader 
seascape context, where sandy beach ecosystems and their 
surf zones form part of the broader conservation ambit 
(Sheaves 2009; Stoms et al. 2005).

Seascape proximity to complex habitats shapes the func-
tional characteristics of numerous ecosystems on land and in 
the sea. We provide empirical evidence that habitat proxim-
ity can structure functional diversity and complementarity 
in the surf zones of ocean beaches, a system traditionally 
viewed as having low habitat heterogeneity. Functional 
diversity and functional group complementarity of fish 
assemblages peaked at beaches with surf zones that were 
better connected to subtidal rocky reefs offshore, enhanc-
ing ecological resilience. Therefore, given the importance 
of recreational and commercial fishing in this ecosystem and 
the economic, social, and cultural significance of the world’s 
sandy beaches and their surf zones, effective management 
and conservation of these systems will increasingly need 
to incorporate the principles of ecological connectivity and 
functional complementarity.
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