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Abstract
Shoreline change is an importantmorphological feature used to identify impacts on coastal processes caused by coastal infrastructure or
natural conditions (e.g., storms or sea level rise), providing insightful information for coastal and shoreline management. While
shoreline measurements are not always available, remote sensing data can provide shoreline position in scarce data areas, as well as
in large and inaccessible regions. Nevertheless, few studies have used multi-temporal remote sensing data to study gradual changes for
time frames of less than 10 years due to the low spatial resolution for detecting small changes. In this study, we explore the use of image
data fusion from the Satellite Pour l’Observation de la Terre - 5 (SPOT-5), taking into account the accuracy of shoreline mapping to
detect changes in both disturbed and undisturbed coasts during 10 years in the northwestern Yucatan coast. Our results show that using
image data fusion in SPOT-5 images is a feasiblemethod to detect shoreline change trends in a relatively short time frame. Based on the
proposed method, we were able to identify the factors leading to shoreline trends. This methodology proves useful for shoreline
management and is appropriate for the planning of future developments in areas for which data are scarce.
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Introduction

Shorelines are dynamic systems that fluctuate over different time
and spatial scales according to forcing agents and their interac-
tions with coastal features (Boak and Turner 2005). Agents shap-
ing the coast include a broad range of physical phenomena that
arise from both natural processes and human intervention,
resulting in changes in sediment flux (Silva-Casarín et al.
2014). In sandy coasts, the sediment budget represents the bal-
ance between sand input and output within a system. Shifts in
sediment budget are an environmental indicator of alterations on
coastal processes, usually as a result of a reduction or increase of

sediment sources to the littoral cell, as well as shifts in wave
climate and hydrodynamics. For instance, shoreline erosion can
indicate a decrease of sand input into the system as a result of
sand retention by dams (Syvitski and Milliman 2017) or updrift
coastal structures, whereas beach widening might be a result of
beach nourishment. As such, changes in shoreline position reflect
changes in forcing agents as well as human interventions, both
modifying sediment transport patterns within the littoral cell as a
result of sand redistribution within the system.

Increasing anthropogenic pressure (e.g., sand retention by
dams and mining, and modification of transport patterns by
coastal infrastructure) directly modifies the sediment budgets
and sediment transport patterns (Defeo et al. 2009) and can
result in shoreline position fluctuations. Besides the anthropo-
genic factors, natural factors such as sea level rise and storms
are expected to vary with climate change. For instance, trop-
ical cyclones are expected to increase in intensity (Knutson
et al. 2010; Emanuel 2013; Kang and Elsner 2015), which will
further escalate the stress on coastal regions and their ecosys-
tem services (Day et al. 2008). Together with coastal en-
croachment leading to coastal squeeze (Pontee 2013), exacer-
bated erosional processes have myriad negative conse-
quences, including impacting the population of turtles and
coastal birds due to habitat reduction, increasing the
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vulnerability of coastal infrastructure and populations and
making beaches less attractive for tourism.

As shoreline changes provide insight into the littoral pro-
cesses and their interference with anthropogenic activities and
infrastructure, they can be used to assess the effect of inter-
ventions in the past and help predict the impacts of interven-
tions in the future. Furthermore, they can be useful together
with other beach features (e.g., dune height and position,
beach profile) to evaluate the long-term beach resilience
(Houser et al. 2015). Considering that it is possible to obtain
and analyze shoreline position on a spatially explicit context
and over long periods (Gens 2010), shoreline mapping and
change detection are critical for sustainable resource manage-
ment and environmental protection (Di et al. 2003; Li and
Damen 2010; Zulkifle et al. 2017). In situ measurements, such
as beach profiles and water level measurements allow for ac-
curate shoreline change detection; however, most areas of the
world lack monitoring and mapping programs and are reliant
upon available data. An alternative for studying inaccessible
areas that lack field data is the use of satellite imagery. Satellite
images provide historical information and cover vast areas,
including those that are difficult to access. For this reason,
satellite imagery has been commonly used for shoreline map-
ping at variable spatial scales over long periods.

Satellite shoreline mapping can be performed by using a
single satellite sensor (Kuleli et al. 2011; W. Li and Gong
2016; Pardo-Pascual et al. 2012; Sagar et al. 2017) or the
combination of multiple sensors with or without aerial images
(Maiti and Bhattacharya 2009; Li and Damen 2010; Ford
2013; Castelle et al. 2018). However, the coarse spatial reso-
lution often obtained via satellite imagery can make it difficult
to detect subtle changes over short periods. Nevertheless, if a
satellite has panchromatic and multi-spectral bands, the use of
an image fusion algorithm between these bands can enhance
both spatial resolution and visual quality (Zulkifle et al. 2017).
Image fusion, also known as pan-sharpening, is the process in
which two or more images are combined to produce an indi-
vidual image that integrates the information of the combined
images, effectively increasing their spatial and spectral reso-
lutions (Pradham et al. 2011). Successful application of this
technique has been demonstrated to increase classification ac-
curacy (Lin et al. 2015) and reduce errors associated with
change detection (Du et al. 2013). Image fusion methods have
been applied to shoreline mapping studies (Pohl and Van
Genderen 1998; Pranzini 2007; Li et al. 2008; Yang 2009;
Maglione et al. 2014) but, to the best of our knowledge, have
not been used to identify dynamic shoreline trends.

In this study, we analyze multi-temporal satellite imagery
of the northwestern Yucatan coast using multi-temporal image
fusion to enhance the spatial resolution from the Satellite Pour
l’Observation de la Terre - 5 (SPOT-5) imagery and allow
coastal pattern detection. As with many anthropomorphized
coastlines, the Yucatan coast contains erosional areas

associated with non-engineered coastal protection structures
and sediment transport gradients (Appendini et al. 2012; Lira-
Pantoja et al. 2012). Comparing pristine and affected areas
enables us to determine and understand the impacts of coastal
structures on shoreline change. As such, the study aims to
provide a method to characterize the medium-term (10-year)
shoreline dynamic based on image fusion from SPOT-5,
allowing detection and comparison of shoreline trends in pris-
tine and human-affected beaches. This method allows for the
extraction of fundamental information for coastal and shore-
line managers, particularly for non-accessible areas or loca-
tions lacking monitoring programs.

Study Area

The study area is located on the northwestern coast of the
Yucatan peninsula (Fig. 1), extending for approximately
50 km from the State Reserve El Palmar (21° 2′ 10.71″ N,
90° 17′ 52.05″ W) to the western side of Chuburna harbor
jetties (21° 14′ 49.05″ N., 89° 50′ 43.98″ W). The shoreline
under study comprises the following zones: (1) the natural
protected area (State Reserve El Palmar) which is considered
Bpristine^, reflecting an area with no human infrastructure
despite the fact that shoreline processes could be influenced
by human interventions in other areas of the littoral cell; (2)
the developed shoreline along the town of Sisal, where fishing
and recreational beach activities take place and where there is
a harbor with jetties and the old Sisal dock, both affecting
sediment transport; (3) the natural area between Sisal and
Chuburna, which is a pristine area similar to El Palmar; and
(4) the area west of the Chuburna jetties, which is a natural
area generally devoid of human activity, but severely affected
by erosion due to the effect of the jetties on sediment transport.
The morphological changes at the inlet of the coastal lagoon
La Carbonera (located between zones 3 and 4) involve com-
plex processes beyond the scope of this study resulting in the
exclusion of this area from our analysis.

The study area is characterized as a barrier island system
with a 1/1000 slope wide continental shelf (Herrera-Silveira
et al. 2010), with a mixed micro-tidal regime with diurnal
dominance. Sediment sources are mainly biogenic as there
are no rivers in Yucatan, and the sediment is mainly composed
of skeletal fragments (Neal et al. 2016). Sediment transport is
mainly driven by NE waves arriving the coast with a mean
significant wave height of 0.75 m and periods of 5 s at 20 m
depth, generating a dominant net sediment transport towards
the west (Appendini et al. 2012). However, during winter, the
sediment transport is inverted during the arrival of NWwaves
generated by cold surge intrusions (Nortes) into the Gulf of
Mexico (Appendini et al. 2018), which are more energetic (1–
2.5 m waves with periods between 5 and 10 s at 10 m depth)
but with a low occurrence (Appendini et al. 2012).
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Coastal research in Yucatan has addressed vulnerability to
erosion and flooding (Mendoza et al. 2014; Cuevas Jiménez
et al. 2016), beach morphodynamics (Cuevas-Jiménez and
Euán-Ávila 2009; Ruiz-Martínez et al. 2015), and sediment
transport (Appendini et al. 2012; Lira-Pantoja et al. 2012).
Regarding shoreline change assessment studies, Cuevas-
Jiménez and Euán-Ávila (2009) used in situ measurements
over limited spatial scales, while García-Rubio et al. (2015)
used a limited number of images to assess shoreline change
over long periods. Both studies only considered the central
portion of the Yucatan peninsula, where most of the touristic
activities and residential development occur.

Methodology

To address the shoreline changes in the northwest coast of the
Yucatan peninsula over a decade, we used eight multi-spectral
and panchromatic satellite images from the SPOT-5 platform
between 2004 and 2014, coupled with Digital Shoreline
Analysis (DSAS). SPOT-5 images have four multi-spectral

bands with a spatial resolution of 10 m in the green (500–
590 nm), red (610–680 nm), near infrared (NIR, 780–
890 nm), and short wavelength infrared (SWIR, 1580–
1750 nm), while it has one panchromatic band (480–
710 nm) with a spatial resolution of 2.5 m. These images are
suitable for shoreline extraction as SPOT-5 includes two of the
spectral bands that are the most effective for the visualization
of the shoreline with the combination of MIR, NIR, and green
bands (Li and Damen 2010; Petropoulos et al. 2015). The
images were obtained during different times of the year and
at different astronomical tide heights (Table 1). The astronom-
ical tide heights were determined using the tidal constituents
from analyzing the measured water levels in Sisal, Yucatan,
located in the study area. Nevertheless, we did not consider
the tidal height, which due to the SPOT-5 spatial resolution
leads to an error between 1 and 2 pixels as the shoreline posi-
tion varies between 2.5 and 4 m when considering the mini-
mum and maximum astronomical tides (Espadas-Sánchez
2017). Such an error is indeed considered when determining
shoreline trends. An overview of the methodology is shown in
Fig. 2.

Fig. 1 The study area is represented by a line on the map, where different colors indicate each zone. The area is overlapped with at least six of the eight
SPOT images. The western zone is located inside an ecological reserve. The wave rose indicates the wave climate in the area

1763



Pan-Sharpening Assessment

When applying an image fusion algorithm between high spa-
tial resolution panchromatic and low spatial resolution multi-
spectral data, it is important to maintain the spectral fidelity as
much as possible to the resulting image fusion (Garguet-
Duport et al. 1996; Ashraf et al. 2012). As such, the selection
of an appropriate fusion method is essential for improving
image analysis accuracy (Bai et al. 2015). For selecting the
most accurate image fusion algorithm, we used the correlation
coefficient, which is considered to be a spectral quality metric
to test pan-sharpening (Vijayaraj 2004; Pradham et al. 2011).
Two image fusion algorithms were tested by checking the
correlation of pixels between unsharpened and pan-
sharpened pairs of bands. The tested algorithms corresponded
to the category of multi-resolution-based pan-sharpening, as
we needed to increase the spectral and spatial resolution of all
our bands. These algorithms were subtractive resolution

merge (SRM) and hyperspherical color space resolution
merge (HCS). The rest of the methods available in ERDAS
Imagine were excluded from the analysis because they con-
sidered only three bands, or the ratio between the panchromat-
ic and multi-spectral band was not ideal for our images. The
SRM algorithm was tested over other algorithms on a similar
environment, i.e., freshwater coastal areas (Ashraf et al. 2012),
while the HCS algorithm produced a fused image with accept-
able color and spatial recovery (Padwick et al. 2010). HSC is a
method designed to be used with the WorldView 2 satellite,
which presents a spatial resolution of 0.64 and 1.84 m in its
panchromatic and multi-spectral bands, which is the same
ratio between the multi-spectral and panchromatic SPOT-5
bands.

To assess the image fusionmethods, we selected a subset of
1975 × 5615 pixels in a highly heterogeneous land cover, in-
cluding sand, human settlements, lagoons, mangroves, and
dune vegetation (Fig. 3). The pixels from the original multi-
spectral bands were divided into 16 pixels for comparison
with the fused images. To conserve the natural shoreline
shape, we used the cubic convolution resampling method
(Alparone et al. 2015). After finding the image fusion algo-
rithm best suited to our study, it was applied to the rest of the
images.

The resulting pan-sharpened images were co-registered to
the 2014 image, ensuring a root mean square error (RMSE) <
0.5 pixels. Image co-registration is a pre-requisite for change
detection to geometrically align two images and to ensure that
the corresponding pixels represent the same objects in reality
(Huhdanpaa et al. 2014). The image pre-processing was per-
formed using ERDAS Imagine 2015, which is a remote sens-
ing software that supplies tools for geodata analysis.

Fig. 2 Methodology flowchart

Table 1 Date of acquisition ofmulti-spectral and panchromatic SPOT-5
images and their corresponding astronomical tide level

Year Month Day Tide (mm)

2004 March 10 50

2006(a) January 15 − 360
2006(b) November 28 − 90

2007 April 08 270

2009 January 01 − 390

2011 January 04 − 310

2012 March 21 − 60

2014 March 03 − 60
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Shoreline Extraction and Change Assessment

In this study, we understand shoreline as the water/landline,
while coastline as the line of a more permanent morphological
structure such as the toe of bluffs or cliffs, dunes, or vegetation
lines. To characterize the morphological changes on the shore-
line, we then used the instantaneous water line to define the
shoreline position at both the pristine and human-affected
areas. We used this definition of shoreline as it is a good
indicator in micro-tidal and low slope beaches (Sytnik et al.
2018) which are typical of the northern coast of the Yucatan
Peninsula.

The shorelines were extracted from the satellite images
using the method proposed by Liu and Jezek (2004). This
method consists of three groups of image processing algo-
rithms: pre-segmentation, segmentation, and post-segmen-
tation. In the pre-segmentation stage, two filters are applied
to all the images (noise reduction and edge enhancement),
allowing the shoreline to show a higher contrast with the
other land covers in the image. The SWIR band (1.580–
1.750 μm) exhibits a sharp contrast between land and wa-
ter features due to the high degree of absorption by water
and the strong reflectance by vegetation and natural fea-
tures in the range. Thus, the MNDWI algorithm, which is a
combination of green and mid-infrared bands, is ideal for
discriminating between land and water at their interface
(Ghosh et al. 2015). However, when using the method of
Liu and Jezek (2004), which only accepts one band, the
green band was selected since it presented a better overall
performance in exhibiting a higher contrast between the
sand and the water than the SWIR band (Fig. 4). The ex-
ceptions were the images for 2006b and 2011, where the
tide level was − 36 cm and − 33 cm, respectively. For those
tidal levels, the exposed sandbars appeared to have the
same pixel values as the beach in the green band,
preventing the precise extraction of the shoreline position
(Fig. 5). Therefore, we used the SWIR band (Fig. 5c) for
these images, considering this band is better suited for low
tide conditions. During the segmentation stage, the images
were partitioned into squares of 25 × 25 pixels to select

only two types of land cover: water and sand. As the beach
in the coast of Yucatan is relatively narrow, the frequency
of the water cover was higher in each square to avoid the
presence of the vegetation class, which had similar values
as the water. We, therefore, forced the samples to have only
these two classes, and we avoided the bimodality test men-
tioned by Liu and Jezek (2004). Finally, during the post-
segmentation stage, we extracted the coastal edges by first
producing a binary image output (water and sand) and then
by delineating the shoreline between the edges of these two
land cover types. The precision of the shoreline is mea-
sured at the spatial resolution of the fused images, which
in this case is 2.5 m. We then used Matlab scripts to iden-
tify the shoreline on the satellite images following the
methodology of Liu and Jezek (2004). We did not consider
the few areas where the shoreline could not be extracted
due to the presence of clouds and/or macroalgae. However,
if a cloud shadow covered the shoreline, we corrected the
line manually as it was visible, but it was not possible to be
extracted with the Jesek and Liu method. We finally calcu-
lated each shoreline error as the sum of the error of the
image co-registration plus the pixel size error for the meth-
od to extract the shorelines.

To assess the possible type of shoreline changes over our
study timeframe and the data employed, we used the Digital
Shoreline Analysis System (DSAS) Version 4.0 developed by
Thieler et al. (2009). DSAS is a software extension for ArcGIS
developed by the US Geological Survey widely used to assess
shoreline changes. This program plots transects perpendicular
to a baseline and calculates the distance from the baseline to
the shoreline for each transect on each image. In our study, we
plotted transects separated at 50 m intervals with a longitude
of 350 m. We created the baseline with a 50-m buffer of the
2014 shoreline and smoothed it manually to obtain a straight
line. Measurements were computed only if there were at least
five shorelines in the same transect, resulting in 960 transects
in our study area. The measures used to assess the shoreline
change were the shoreline change envelop (SCE), weighted
linear regression (WLR), and net shoreline movement (NSM)
with a 95% confidence interval. SCE is the distance in meters

Fig. 3 Image fusion assessment
subset denoted inside the purple
box
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between the closest and farthest shorelines to the baseline and
therefore represents the variability of the shoreline between
the years. Weighted Linear Regression (WRL) is the trend of
change in meters per year taking into account the shoreline
position error. Within our spatial resolution, we classified four
types of shorelines: erosional, accretion, dynamic, and stable.
The transects with either positive or negative WRL and with
an r2 value higher than a specific threshold were considered
erosional or accretional shorelines. The threshold value was
obtained by comparing r2 with the absolute value of SCE/
NSM and identifying the r2 where the SCE/NSM ceases to
fluctuate and remains near one. We determined a minimum r2

value of 0.68 as the threshold to identify shorelines with ero-
sional or accretional trends (Fig. 6).

The remaining transects were assessed by SCE and were
consider either stable or dynamic shorelines based on the
shoreline errors and therefore the limits of the mapping accu-
racy. Since we use a minimum of five shorelines to compute
the SCE, stable shorelines were considered to have a change
in position that is five times less than the maximum shoreline
error, while dynamic shorelines were considered to have an
SCE higher than five times the maximum shoreline error.

Results

Pan-Sharpening Assessment

We compared the HSC and the SRM pan-sharpening
methods on SPOT-5 images, which helped delineate the
shoreline with higher precision than only using the multi-
spectral bands. In most of the original panchromatic im-
ages, the shoreline was not visible as it presented a satura-
tion in the area of water and land, while the pan-sharpening
method allowed us to discern the shoreline (Fig. 4). While
the visual interpretation showed more enhancement with
the SRM method (Fig. 4b1) in the green (Fig. 4b2) and
the SWIR bands (Fig. 4b3), the HCS showed a better con-
trast between land and water, enhancing the shoreline vi-
sualization (Fig. 4c2 and 4c3). Furthermore, the HCS was
the method with the higher inter-correlation between each
pair of the unsharpened bands and the sharpened band,
with r2 values greater than 0.9 (p > 0.05), while the SMR
presented r2 values around 0.7 (Table 2). As a result, we
used the HCS method for image fusion in the remaining
images.

Fig. 4 Original and fused images. a1 and a2 are the original multi-
spectral and panchromatic images. The b images corresponds to the im-
ages fused with SRM, where b2 is the green band and b3 the SWIR. The c

images are the images fused with HCSwhere c2 corresponds to the green
band and c3 to SWIR. The RGB combination for the false color (a1, 1,
and c1) is SWIR, NIR, and green

Estuaries and Coasts (2019) 42:1761–17731766
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Shoreline Extraction and Change Assessment

Errors of the shorelines relative to the reference shoreline po-
sition varied from 2.5 to 3.75 m (Table 3). The minimum error
corresponded to the image of 2014 as it was the reference for
co-registering the rest of the images, and therefore, it did not
include the co-register error. We used these values to compute
the measurements for WLR and r2 in the DSAS analysis.

We assume that the value of r2 > 0.68 indicates that shoreline
changes over the year had a significant trend, and therefore,
tidal variations did not interfere in detecting these patterns
(Fig. 7). As observed in Fig. 7b, there is a clear tendency of
erosion as the shoreline in 2004 is followed by a retreated
shoreline in 2006a and sequentially until the most retreated
position in 2014. Other areas also present a relatively high value
of WLR; however, we cannot infer if these areas have a pattern
of erosion or accretion because of the low r2 value (Fig. 7c), and
therefore, coastal processes in these transects produce a more
dynamic shoreline. In other areas, the shoreline errors over-
lapped between each other, and we consider them as stable
areas within the 10-year timeframe of our study (Fig. 7d).

A total of 960 transects were analyzed to detect shoreline
patterns in the northwest of the Yucatan Peninsula. Changes
range from − 6.45 to 5.63 m/year for WLR and from 3.88 to
67.3 m for SCE. All the zones presented an average negative
WLR value, with an average SCE above 24 m. The effect of
the Chuburna jetties blocking the longshore sediment trans-
port from reaching zone 4 was evident as the average WLR
was − 3.7 m/year (Table 4) with 67% of the transects showing
an erosional trend and 31% classified as dynamic. Another
area affected by jetties was zone 2, showing most of the ero-
sion downstream of the jetties and accretion upstream (Fig. 8).
Interestingly, the transects immediately downstream of the
jetties in zones 4 and 2 were dynamic, which could be a result
of sediment transport inversion during Norte events creating
an accumulation of sand in these areas, accumulation due to
transport inversion as a result of the jetties diffraction, and/or
the result of human intervention. Zone 1 is characterized by
erosion (average WLR of − 3.6 + − 1.3 m/year) and accretion
(average WLR of 2.92 + − 1.0 m/year) areas alternated with
dynamic stretches. In contrast to zone 1, 65% of the transects
in zone 3 were dynamic, while 31% were stable. After the
immediate accumulation of sand downdrift of the jetties, both

Fig. 6 SCE/NSM absolute values
vs. r2. The constant values of
erosion and accretion are
indicated in the red circle. The
threshold value of r2 is 0.68

Fig. 5 Four hundred and twenty-one false color (a), green (b) and SWIR
(c) for the 2011 image. Sandbars are noted in the green band (b), while in
the SWIR, these are not visible (c). The same effect is presented with the
2006b image during low tide
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zones 1 and 3 show erosion up to 2.5 and 3.3 km downdrift of
the jetties respectively, with minimum erosion of − 1.72 and
maximum of − 5.34 m/year.

Discussion

Pan-Sharpening Assessment

The HCS pan-sharpening method outperformed the SRM in
our analysis, but other studies should consider analyzing dif-
ferent algorithms to select the most appropriate for their spe-
cific area. For instance, Wang et al. (2018) compared different
methods, finding that for Landsat-Oli, the Brovey Transform
method performed better, while Ashraf et al. (2012) found that
SRM performed better when using Quickbird. Other works
have also used different pan-sharpening algorithms to extract
the shoreline from satellite images (Pranzini 2007; Alhin and
Niemeyer 2009; Maglione et al. 2014). Considering that the
performance of the pan-sharpening algorithm used varies de-
pending on both satellite and environmental conditions, we
recommend that shoreline studies provide a comparative as-
sessment of the available pan-sharpening methods regardless
of the remote-sensing software package.

We calculated the shoreline error by summing the position-
al error (2.5 m) + co-registering error. Although other people
have used more precise methods to estimate the shoreline
(Kermani et al. 2016; Li and Gong 2016), we did not have

enough data to perform such calculations, which will be the
case for most of the coastlines of the world or studies at a
regional scale. Our maximum shoreline error was 3.725 m,
which would have resulted in an error of at least 10 m without
performing image fusion, as this is the pixel size of the multi-
spectral images of SPOT-5. We would therefore not be able to
identify shoreline patterns and differentiate between erosion,
accretion, and dynamic shorelines as performed herein.
Furthermore, we did not consider the tide, which has a varia-
tion between the minimum and maximum height from 2.4 to
4 m or 1–2 pixels (Espadas-Sánchez 2017). In turn, the only
trends that we could not detect when applying the fusion
method were for the areas with shoreline changes inside the
error margin (18.625 or 5 times the shoreline maximum error),
classified as stable. However, these associated errors do not
interfere with our results, as our objective is not to detect the
absolute changes but rather to detect changes with WRL to
classify them as erosional, accretional or dynamic. Based on
the r2 value, we can identify if the changes are significant,
allowing to detect those changes that have a clear trend and
are not a result of inter-annual or seasonal changes.

Another consideration is that although higher spatial resolu-
tion images would allowminimizing the shoreline error, such as
WorldView, Quickbird, or Ikonos (Li et al. 2008; Ashraf et al.
2012; Maglione et al. 2014), the cost associated obtaining this
data is often prohibitive in non-developed countries.
Alternatively, the use of drones could minimize these costs,
but the spatial extensionwould be reduced, and historical shore-
lines could not be detected. For this reason, shoreline detection
using remote sensing data combined with image fusion is an
appealing alternative for studies needed to assess shoreline
trends at regional scales andwhere funding and data availability
are limited. Nevertheless, subpixel mappingmethods could also
be used to enhance shoreline mapping (Pardo-Pascual et al.
2012, 2018; Liu et al. 2016), and future work should explore
this technique coupled with pan-sharpening images.

Shoreline Extraction and Change Assessment

The infrared band from Landsat has been used for shoreline
assessment (Liu and Jezek 2004; Li and Gong 2016), as well
as the SWIR band (Pardo-Pascual et al. 2018). In our case, we

Table 2 Inter-correlation
parameters (p > 0.05) between the
original bands and the fused
bands with different pan-
sharpening methods

Regression
coefficient

HCS SRM
Band Band

Green Red NIR SWIR Green Red NIR SWIR

r 0.964 0.945 0.956 0.972 0.675 0.706 0.724 0.665

b − 0.478 1.302 1.000 − 0.519 36.089 44.585 40.648 32.446

m 1.000 0.981 0.986 1.000 0.540 0.689 0.816 0.472

RSME 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3 Shoreline error per image. This value is the sum of the co-
register error plus the pixel size which is 2.5 m

Image year Error co-registering (m) Pixel error (m) Total error (m)

2004 1.2 2.5 3.7

2006(a) 1.225 2.5 3.725

2006(b) 0.925 2.5 3.425

2007 1.25 2.5 3.75

2009 1.125 2.5 3.625

2011 0.875 2.5 3.375

2012 1.2 2.5 3.7

2014 0 2.5 2.5

Estuaries and Coasts (2019) 42:1761–17731768
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extracted the shoreline from the green and SWIR bands de-
pending on the tide, as the green band presented an overall
higher contrast between the water and the land, while the
SWIR band allowed to visualize the shoreline when sub-
merged sandbars were present. As with pan-sharpening, the
use of certain bands relies on the sensor and the visual inter-
pretation. Similar to this work, other studies have used DSAS
to assess shoreline changes (Alhin and Niemeyer 2009; Kuleli
et al. 2011; Aiello et al. 2013; Ford 2013; Ojeda Zújar et al.
2013; Liu et al. 2013; Callaghan et al. 2015; Johnson et al.
2015; Sytnik et al. 2018). These studies did not consider
shoreline error and used linear regression or end point rate,
and the use of WLR was not necessary since their temporal
scales were tens of years. In our case, we usedWLR and SCE
as the time frame was limited to 10 years, and thus, variations
of other time scales (i.e., sea level rise) could not be detected.

Based on the shoreline analysis, we detected stable and
dynamic areas as well as areas dominated by erosion or accre-
tionary processes (Fig. 8).With the exception of zone 4, which
shows a clear erosional trend, all other zones presented an
average WLR suggesting erosion below 1 m/year (Table 4),
which confirms the conclusions of Silva-Casarín et al. (2011)
stating that the area is undergoing a process of shoreline retreat
at a very low rate. Although tidal variations are essential in
shoreline mapping, we did not consider tides since we had no
in situ water level measurements and considering the micro-
tidal regime the error will be minimal. As such, our goal was
to detect shoreline patterns with statistical significance using
multi-temporal satellite images and not to determine absolute
shoreline changes. While this allows identifying trends, tides
should be incorporated when defining precise shoreline posi-
tions for design or delineation of areas.

Fig. 7 Examples of transects with
different values of r2 and the
shoreline processes they
represent. a The location of these
transects in the study area. b
Erosion. c Dynamic. d Stable.
The location of these transects in
the study area. The width of the
shoreline represents its location
plus the shoreline error

Table 4 Average and standard
deviation of WLR and SCE per
zone

Zone Number of transects WLR SCE

1 488 − 0.72807 ± 2.471983 24.71264 ± 9.490886

2 119 − 0.02118 ± 2.683399 31.70555 ± 10.35943

3 279 − 0.50086 ± 1.610659 27.51932 ± 12.18205

4 74 − 3.48797 ± 1.040569 36.80419 ± 10.82907
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The effect of the Sisal and Chuburna harbor jetties induced
the most identifiable shoreline changes in the study area, as
they interfered with the westward longshore transport that
dominates the area (Appendini et al. 2012) and created depo-
sitional areas east of the jetties (updrift) and erosional areas to
the west/downdrift. Nevertheless, we found that immediately
downdrift of the jetties the shorelines were identified as highly
dynamic. In these areas, the wave diffraction by the jetties
may induce sediment transport inversion (Lira-Pantoja et al.
2012) depending on the wave conditions, leading to either
erosion or deposition in the area. Also, the images from
January 15, 2006, April 8, 2007, January 4, 2011, and
March 3, 2014 correspond to periods of Norte events, affect-
ing either the day of the image or the previous 2 days. While
normal wave conditions generate a west directed longshore
sediment transport, Norte events generate waves that inverse
the longshore current generating a longshore transport to-
wards the east (Torres-freyermuth et al. 2017). The presence
of Nortes, therefore, explains deposition patterns to the west
of the jetties, where normal conditions will generate erosion,
thus leading to the characterization of this shoreline as dynam-
ic. An additional factor to consider is that the updrift areas of
the jetties are dredged to prevent shoaling at the harbor en-
trances and that sediment is moved to the downdrift area
(Reyes-Cabañas 2016). This may also induce deposition in
an area of expected erosion; unfortunately, there are no re-
cords of such interventions. Nevertheless, the clear identifica-
tion of the erosion and deposition areas show that the method
presented can accurately detect shoreline change trends.

Erosion processes were only observed in 20% of the study
area. However, not all the erosive shorelines can be attributed to

human alteration as less than half of the 221 transects showing
erosion corresponded to the regression caused by the jetties in
Chuburna (50) and Sisal (33). This indicates that 62% of the
shoreline regression occurred in response to natural processes
(e.g., grain size and gradients in sediment transport capacity due
to natural oscillations in shoreline alignment). Besides the ero-
sion caused by the harbors, the loss of ecosystems is not a
natural process in our study area given that 9% of the shoreline
shows accretionary processes and 61% show dynamic shore-
lines in comparison with the only 2% of natural erosion. The
erosion–deposition patterns alternating with highly dynamic
shorelines occurredmainly in zone 1, which is devoid of coastal
infrastructure, and thus, the erosion is a natural process in the
area. Based on Appendini et al. (2012), the maximum potential
sediment transport capacity in northern Yucatan is attained with
a shore normal orientation of 320° N, which corresponds to the
orientation at the pristine area. A small change in the shoreline
orientation will then create either a decrease or increase in sed-
iment transport, which depending on the orientation shift will
create either erosion or deposition area. This indicates that small
changes in shoreline orientation may lead to these erosion and
deposition patterns, which explain their presence in an area with
no human interventions.

The method presented allows classification of erosional,
depositional, stable, and dynamic shorelines. These classifica-
tions are critical for coastal and shoreline management, as they
facilitate planning and delineate development along the coast.
For instance, long stretches of stable or depositional areas may
indicate suitable places for more permanent structures (pro-
vided they will be located in an area where coastal processes
will not be affected). In turn, erosional areas may indicate a
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high risk for permanent structures. Also, highly dynamic areas
could be indicative of shoreline variability, which may be
useful for those wanting to plan activities in the area, whether
they are seasonal or otherwise.

The case of zone 1 is particularly interesting. While being a
pristine and undisturbed area from human interventions, it
shows highly dynamic stretches of shoreline intermingled
with erosional and depositional areas. Unexpectedly, it shows
barely any stable shorelines. This indicates that other process-
es such as shoreline orientation, sediment transport capacity,
and grain size are controlling the shoreline changes. These
should be considered if there are any plans for the develop-
ment of the area. As such, the methodology presented can be
used to assess shoreline changes in remote areas with limited
data and provide managers with information for future devel-
opments or event to determine protected areas.

Conclusions

A first assessment of the shoreline changes in the northwest-
ern coast of Yucatan at a landscape scale was presented. This
was achieved by successfully detecting shoreline changes
using fused images from SPOT-5 satellite in 10 years. The
SPOT-5 images allow for an increased temporal resolution
to perform shoreline change analysis, providing better insight
into the experienced changes otherwise undetected by using
fewer images. Thus, this study demonstrates how significant
temporal and spatial resolutions are to study shoreline patterns
with satellite images in unexplored and/or inaccessible areas
with lack of monitoring.

We found that fused multi-spectral and panchromatic im-
ages from SPOT-5 using the HCS algorithm were adequate to
detect shoreline changes in 10 years in the northwest of
Yucatan at this spatial scale. The method presented is by no
means the most adequate method to detect shorelines; while it
proved to be the most adequate in our study area, different
pan-sharpened method enhancement should be explored for
specific study site conditions.

We showed that we can enhance shoreline detection preci-
sion with satellite images coupled with image fusion, and that
shoreline trends can be detected when analyzing their changes
over the years with DSAS by using weighted linear regression
(WLR) and r2, which proved essential to detect shoreline
changes in a time scale of few years with multi-temporal res-
olution. The method presented was shown to be effective for
classifying shoreline changes into erosion, accretion, stable,
and dynamic segments.

Our results confirm that the shoreline in the northwest of
Yucatan is highly dynamic, where there is high variability of
erosion and accretion in areas that are affected by structures.
The erosion and accretion patterns also occur in pristine areas
due to the shoreline having an orientation near the orientation

creating maximum potential sediment transport. In such a lo-
cation, small shifts in wave conditions may lead to positive or
negative sediment transport gradients and, in turn, cause dy-
namic shorelines alternating with erosion/deposition patterns.

The method presented shows its viability to detect shore-
line changes in relatively short time frames with low budgets,
which are usual constraints in developing countries. The use
of this methodology provides a framework to assess shoreline
change trends in remote areas and without local measure-
ments, enabling the assessment for development planning
and shoreline management.

Future work should include correction of the shorelines by
the use ofmeasured coastal profiles and a profound analysis of
the climatic seasons in this region. With the advent of more
readily available satellite images in the near future, this meth-
od can be useful to study shoreline changes in remote areas
and under strict budgets. As a final recommendation, we en-
courage future studies to use WLR as it gives a better inter-
pretation of shoreline changes, as well as considering the
shoreline error position for obtaining more accurate results.
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