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Abstract Shoreline armoring is extensive in urban areas
worldwide, but the ecological consequences are poorly
documented. We mapped shoreline armoring along the
Duwamish River estuary (Washington State, USA) and
evaluated differences in temperature, invertebrates, and ju-
venile salmon (Oncorhynchus spp.) diet between armored
and unarmored intertidal habitats. Mean substrate temper-
atures were significantly warmer at armored sites, but water
temperature similar to unarmored habitats. Epibenthic inver-
tebrate densities were over tenfold greater on unarmored
shorelines and taxa richness double that of armored loca-
tions. Taxa richness of neuston invertebrates was also higher
at unarmored sites, but abundance similar. We did not detect
differences in Chinook (O. tshawytscha) diet, but observed a
higher proportion of benthic prey for chum (O. keta) from
unarmored sites. Given that over 66% of the Duwamish
shoreline is armored—similar to much of south and central
Puget Sound—our results underscore the need for further
ecological study to address the impacts of estuary armoring.
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Introduction

As human populations continue their exponential growth in
cities, over half of the world’s population now resides in
urban areas (UNPF 2007). Nowhere is urban development
more concentrated than around the world’s estuaries, which
as major transportation corridors and fertile agricultural
areas have typically served as the epicenters of human
settlements (Lotze et al. 2006; Peterson and Lowe 2009).
Among the many ways in which human activities have
degraded estuarine habitats, shoreline modification is
among the most pervasive (Airoldi et al. 2005; Bulleri and
Chapman 2010). Common practices such as shoreline
armoring and associated removal of riparian vegetation
decrease habitat complexity and reduce connectivity to
terrestrial habitats (Peterson et al. 2000; Romanuk and
Levings 2003).

As active areas of sediment and organic matter exchange
between land and water, estuarine shorelines are physically
complex and biologically rich (Lubbers et al. 1990; Ruiz et
al. 1993). The extent to which shoreline armoring disrupts
this land-water interface and alters habitat quality for inter-
tidal and supratidal species is poorly understood (Rice 2006;
Jackson et al. 2008). Yet increasing shoreline development
pressure and predicted sea-level rise suggest that shoreline
armoring will continue to spread globally (NRC 2006;
Dugan et al. 2008). Greater study of the biological effects
of shoreline armoring is needed to improve future shoreline
management (Bilkovic and Roggero 2008) and provide
context for regional restoration efforts such as the Puget
Sound Nearshore Ecosystem Restoration Project (Shipman
et al. 2010).

Puget Sound is the southern portion of the Salish Sea—a
deep, well-mixed fjordal estuary that spans British Columbia
and Washington State (Simenstad et al. 2011). As the Puget
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Sound area population has doubled to three and a half million
people over the last three decades, shoreline development
pressure has also intensified. Currently, a third of the total
Puget Sound shoreline is armored, rising to over 60% in
South-Central Puget Sound where most urban development
is concentrated (Simenstad et al. 2011). At the industrial heart
of the City of Seattle is the Duwamish River estuary—the
gateway through which seven species of both hatchery-raised
and naturally spawning anadromous salmonids (Oncorhyn-
chus spp.) migrate between the forested headwaters of the
Green River watershed and the saltwater of Elliott Bay (Blom-
berg et al. 1988, Ruggerone et al. 2000).

Considerable energy and funds have been dedicated to
habitat restoration projects in the Duwamish River over the
last quarter century (Simenstad et al. 2005). Much of this
restoration work has focused on relatively small-scale shore-
line improvement efforts that involve removing bank armor-
ing, overwater structures, and seawalls that currently
dominate the landscape; re-grading and softening banks;
and re-vegetating shorelines (Cordell et al. 2011). As such,
they are intended to increase land—water interaction, and
thus improve habitat quality for fish—in particular, rearing
habitat for juvenile salmonids. These are good goals, but
they lack context. Relatively little is known about the
biological consequences of shoreline armoring or to what
extent intertidal communities differ between armored and
unarmored habitats (Shipman et al. 2010; Sobocinski et
al. 2010).

The objective of this study is to help address this data gap
by examining differences in upper intertidal temperature,
invertebrate assemblages, and juvenile salmonid diet in
relation to shoreline armoring in the Duwamish River estu-
ary. Specifically, we ask the following questions: (1) What is
the extent and spatial distribution of shoreline modification
across the estuary; (2) Does increased armoring and de-
creased shoreline vegetation alter intertidal temperatures;
(3) How does composition of benthic and terrestrial inver-
tebrates differ between armored and unarmored shorelines;
and (4) Are these potential differences reflected in the diets
of juvenile salmonids migrating through the estuary?

Methods
Study Region and Design

The Duwamish River is the tidally influenced portion of the
150-km Green River (1,274 km? area) that begins in the City
of Tukwila, flows northwest for 18 km through unincorpo-
rated portions of King County and the City of Seattle and
empties into Puget Sound at Elliott Bay (Fig. 1). The salt-
water wedge of Elliott Bay extends upstream as far as
16 km; mean annual freshwater inflow is 48 cms, and tides

Elliott
Bay

12535 W 125.25 W

Fig. 1 Map of the Duwamish River and location of eight study reaches
with spatially paired unarmored (U) and armored (4) sample sites.
Inset map shows location of greater Green River watershed within
the Puget Sound region of Washington State

are mixed semidiurnal with a mean tidal stage of 2.0 m
above mean lower low water (MLLW). Over the last centu-
ry, the lower Duwamish River has been reduced from
9.3 km of meandering estuary to 5.3 km of dredged, chan-
nelized, and armored shipping channel; over 97% of its
mudflats and marshes have been filled, 70% of its drainage
area diverted to other basins, and the lower river declared a
federal Superfund site (Blomberg et al. 1988; Simenstad et
al. 2005). Today, land use within the greater Green River
watershed is primarily commercial forestry, mixed low-
density residential, and agriculture—transitioning to high-
density residential and industrial in the Duwamish River
sub-basin. Below the Turning Basin at river kilometer
(rkm) 8.5, the US Army Corps of Engineers maintains the
channel for shipping traffic and land use is almost exclu-
sively heavy industry and Port of Seattle terminal facilities.

This study is composed of three parts: shoreline mapping,
habitat characterization, and biological sampling. We con-
ducted shoreline mapping to inventory shoreline modifica-
tion across the entire Duwamish and selected eight study
reaches with paired armored and unarmored sites for
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comparison of habitat and biota (Fig. 1). Armored sites
represented typical Duwamish shoreline: banks and intertid-
al zone armored in riprap (unconsolidated boulders or pieces
of concrete) with sparse riparian vegetation. Unarmored
sites reflected the most “natural” habitats available in the
Duwamish: low-gradient mud and sand beaches with a mix
of native trees [such as red alder (Alnus rubra), black
cottonwood (Populus trichocarpa), big leaf maple (Acer
macrophyllum)], shrubs [willow (Salix spp.), Nootka rose
(Rosa nutkana), snowberry (Symphoricarpos albus)], and
emergent vegetation [bulrushes (Scirpus spp.), sedges
(Carex spp.)] (Fig. 2). Study reaches spanned rkm 2-15;
each study site was a minimum contiguous length of 70 m
(mean=470 m) and located no further than 0.75 km from its
pair. Shoreline mapping, physical habitat, and invertebrate
sampling took place in 2003, with fish sampling added in
2004.

Shoreline Mapping

We mapped the Duwamish shoreline by foot and boat using
a TSC1 Trimble GPS unit (<1 m accuracy) and inventoried
shoreline armoring and distribution of riparian vegetation at
the ordinary high water mark (OHWM), visually

Fig. 2 Photos of a typical a unarmored and b armored study site at low
tide
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distinguished by changes in soil and vegetation character-
istics. Banks were classified into four major categories:
bulkhead (retaining walls composed of concrete, steel, or
wood), riprap, exposed mudflat, and vegetation—using 2 m
as a minimum mapping length. Banks were classified as
vegetated if any type of plant material grew immediately
adjacent to the OHWM line. Thus, our estimates of total
shoreline armoring are conservative. We checked our GPS
field data against 2002 digital orthophotos (1-foot pixel
resolution) and where discrepancies existed, visited sites
again to verify appropriate classification. We then created
a GIS shape file coded by shoreline type and calculated
extent of bank armoring (bulkhead+riprap) and the spatial
distribution of different patch lengths of shoreline vegeta-
tion in the upper and lower estuaries.

Habitat Characterization

At each of our 16 study sites, we recorded relative elevation
(meters) and substrate type at 1-m intervals along three
transects extending 10 m perpendicular to the shoreline from
the OHWM and from this, calculated mean bank slope (%)
and percent bank armoring. To characterize riparian condi-
tion, we digitally overlaid a randomly generated grid over
2002 orthophotos and calculated the proportion of total
vegetative and tree cover within 10 m of the shoreline. To
examine potential temperature (°C) differences between
paired sites due to shading from riparian vegetation, we
installed temperature loggers within the upper intertidal at
elevations +2.0 (£0.25)m MLLW-—determined by timing
and elevation of low tide events. Loggers were deployed
from 2003-2004 and set to record at 15-min intervals. For
the time period corresponding to our biological sampling
(May—July), we used tide charts to determine the timing of
logger submersion, and evaluated water (logger submerged)
and substrate (logger exposed) temperature separately. One
logger was lost to vandalism at study reach 2, reducing our
sample size to seven complete study pairs.

Biological Sampling

Biological sampling occurred in the upper intertidal zone
during the lower of the daily high tides (2-3 m>MLLW) of
late spring and early summer (mid-May to mid-July) when
juvenile salmonids are migrating through the Duwamish
(Ruggerone et al. 2006). To evaluate differences in inverte-
brate assemblages by shoreline type, we used a neuston net
(40%20 cm frame size, 150-um mesh) to collect three 10-m
surface tows adjacent and parallel to the shoreline and an
epibenthic pump (14.8 cm diameter, 150-um mesh size, 2-
min sample period) to suction invertebrates from the surface
layer of the benthos from five randomly determined points
along a transect parallel to shore (water depths 0.2—1.1 m).
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Neuston samples were identified to order or family level and
epibenthic samples to the lowest practical taxonomic level
(ranging from species to order).

Fish were collected at five of the eight paired reaches (1,
3—-6) where a net could feasibly be deployed and sampled on
three occasions in May and June. Three non-overlapping
seines were collected at each site using a floating beach
seine (2.0 m high at cod-end with 3 cm mesh joined to a
2x2.4 m cod-end with 6 mm mesh) to sample a small area
(1010 m per seine) adjacent to the shore. All fish were
identified to species with up to 100 individuals from each
species measured to the nearest mm (fork length for salmo-
nids and total length for non-salmonids). Salmonids were
classified as marked if their adipose fin was clipped or if
they were implanted with a coded-wire tag (indicating
hatchery origin).

To evaluate juvenile salmonid diet, we collected
stomach contents from up to 15 individuals per site
for Chinook (O. tshawytscha) and chum salmon
(O. keta). Chinook were sampled using non-lethal gastric
lavage, stomach contents preserved in formalin, and fish
released after recovery. Due to their small size, chum fry
were preserved in formalin for laboratory dissection. Prey
items from both species were identified to the lowest
practical taxonomic level, blotted dry, and weighed to
the nearest 0.0001 g. For a given prey item, we calcu-
lated the frequency of occurrence (%F) across all sam-
ples, and the numeric (%N) and weight (%W)
contribution of each prey taxa to a given fish. To rank
the overall contribution of prey items to a sample popu-
lation, we calculated the percentage that each prey item
contributed to the index of relative importance (IRI)
using the formula %IRI=%F (%N+%W) (modified from
Pinkas et al. (1971)).

Statistical Analyses

Shoreline spatial data were intended to be primarily descrip-
tive and were graphically analyzed as described above.
Similarly, because modified and natural sites were intention-
ally selected to differ in physical habitat features such as
bank armoring, we present the habitat characterization data
simply to illustrate the extent of morphological and riparian
differences between paired sites. As beach seining is less
effective at capturing fish at rocky and steep shores typical
of our armored sites (Rozas and Minello 1997), we report
the frequency of occurrence and relative abundance of dif-
ferent species across our study sites, but confine formal
statistical analyses to diet data. Due to uneven catch rates
across all study sites, we used a two-sample design for
statistical testing of fish diet data (restricting analyses to
those reaches where a species was present at both sites),
but a paired design for all other datasets.

We tested for differences in temperature and invertebrate
taxa richness and abundance with two-tailed ¢ tests and used
simple linear regression to examine the relationships be-
tween pair-wise differences in temperature and invertebrate
metrics to reach location and habitat features (% armoring,
slope, vegetative, and tree cover). To examine differences in
invertebrate and fish diet assemblage structure relative to
shoreline armoring, we used a suite of complementary mul-
tivariate techniques available in the statistical software pack-
ages PRIMER (version 6.1.13, Clarke and Gorley 2006) and
PERMANOVA (version 1.0.3, Anderson et al. 2008). We
square-root-transformed our data (densities for inverte-
brates, relative abundance for fish diet), created triangular
resemblance matrices of pair-wise similarities between all
sites using the Bray-Curtis distance, and tested for differ-
ences between armored and unarmored sites using PERMA-
NOVA—a non-parametric analog to analysis of variance
that uses permutation methods to test for compositional
differences among groups of sites based on resemblance
measures (Anderson et al. 2008). We employed a one-way
randomized block design in PERMANOVA with shoreline
type (armored or unarmored) as a fixed factor and reach (1-
8) as random for invertebrate data and a one-factor model
without blocking to test for differences in fish diet by
shoreline type. Where significant differences were detected
between armored and unarmored sites, we used the SIMPER
routine to decompose average Bray-Curtis dissimilarities
between pairs of samples and determine which taxa contrib-
uted most to dissimilarities between groups.

Results
Shoreline Mapping

Over its entire 18-km length, riparian vegetation is present
along only 35% of the Duwamish—the majority occurring
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in the upper 10 km of the estuary (Fig. 3). Below the
Turning Basin, less than 11% of the shoreline is vegetated,
and the only stretches of continuously vegetated shoreline
longer than 200 m occur at the Turning Basin and Kellogg
Island (remnant mudflats built up by dredge spoils). Over
66% of the Duwamish River estuary is armored—28%
above the Turning Basin and 86% below. Riprap is the most
common form of armoring, covering 39% of the total shore-
line. Reflecting the concentration of industry in the lower
estuary, the Duwamish is intensively armored near its
mouth: bulkhead and riprap cover 100% of the shoreline
for the first river kilometer. The first major patches of
shoreline vegetation appear near tkm 2 with a restored
intertidal salt marsh (Herring’s House Park) and nearby
Kellogg Island. With a few minor exceptions, the shoreline
is overwhelmingly armored (>87%) between rkm 3-7
(Fig. 3). This pattern begins to change near tkm 8 due to a
number of intertidal restoration projects in and around the
Turning Basin and a transition to commercial and residential
land use.

Habitat Characterization

Beach transect and aerial photo analyses confirmed that
while armored and unarmored paired study sites differed
in the habitat characteristics for which they were selected
(i.e., proportion of armoring and vegetative cover), the two
shoreline types were not completely mutually exclusive
(Table 1). It was not always possible to find study sites in
the lower estuary completely free of armoring and in the
upper estuary some riparian vegetation was typically present
even along armored shorelines. The proportion of the upper
intertidal zone occupied by riprap at armored sites ranged
from 40-100% (mean=72%) versus 0-39% (mean=7%) at
unarmored sites. Bank gradient at armored sites (mean=
49%) was also steeper than at unarmored sites (21%).
Within the 10-m zone adjacent to the shoreline, vegetation

coverage at unarmored sites averaged 95% versus 46% at
armored and tree cover, 76% versus 12%.

Across all study reaches, mean maximum daily intertidal
temperature was from 1.7°C to 2.4°C warmer at armored
than at unarmored sites from late spring through summer
(Fig. 4; two-tailed paired ¢ test, P<0.05, n=7). When
examined over individual study reaches from May—July,
maximum daily water temperature was higher at armored
sites than at unarmored in the upper estuary, cooler in the
lower estuary, and these differences positively correlated
with tkm (R*=0.58, P=0.046, n=7) (Fig. 5a). Substrate
temperature was higher at armored sites at every study reach
and was not correlated with river kilometer (P=0.19, n=7)
(Fig. 5b).

Biological Sampling

Neuston taxa richness was higher at unarmored (mean=13.1+
2.2 SE) than at armored (9.0+2.8) sites (P=0.040, paired two-
tailed ¢ test, n=8), but abundance was not (armored=35+13
individuals per 10-m tow, unarmored=56+13) (P=0.133).
We did not observe major differences in assemblage structure
(one-way randomized block PERMANOVA, P=0.124).
Across all study sites, we identified 37 unique taxa from
neuston samples—nine of which were present only at unar-
mored sites and three only at armored. Midges (Chironomidae)
were the most abundant taxa at armored sites and water mites
(Acarina) numerically dominant at unarmored sites, although
both were well represented at all sites—as were aphids
(Aphididae) and thrips (Thysanoptera). These four groups
typically represented 50-75% of individuals captured from
neuston tows at all sites (Table 2). We did not observe a
relationship between pair-wise differences in neuston metrics
and reach location or vegetative cover (P>0.05, n=8).
Epibenthic invertebrate density was on average more
than an order of magnitude greater at unarmored sites
(Fig. 6) and taxa richness double that at armored sites (P<
0.01, two-tailed paired ¢ test, n=8). Of the 38 unique taxa

Table 1 Reach location and

habitat characteristics at Location

Intertidal Riparian

unarmored (U) and armored (A)

Bank slope (%) Bank armor (%) Veg. cover (%) Tree cover (%)

study sites Reach River Km Site length (m)
U A
1 1.9 190 253
2 2.1 94 295
3 2.3 188 1028
4 7.2 80 1431
. 14 21
River Km is the distance as the > 8.0 603
estuary flows from study reach 6 9.7 291 412
to the SW corner of Harbor 7 12.9 972 72
Island at the mouth of the ] 14.3 243 185

Duwamish

8] A 6] A 8] A 8] A
12 30 3 100 82 52 65 13
10 47 15 90 84 21 47 11
19 37 0 100 96 21 96 5

16 38 39 58 100 20 100 5

16 27 0 45 100 71 26

20 62 0 91 95 56 95 0

49 71 0 55 100 90 81 60
25 83 0 40 100 40 100 0
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Fig. 4 Box plots of mean maximum daily intertidal temperature by
month for unarmored and armored study sites from Oct 2003 to Sep
2004. Dark bands show sample median; boxes represent inter-quartile

identified across all study sites, 14 were found only at
unarmored sites and five only at armored. Significant differ-
ences existed in epibenthic assemblage structure between
armored and unarmored sites (one-way randomized block
PERMANOVA, P=0.023). SIMPER identified harpacticoid
copepods as contributing the most to this dissimilarity
(29.3%) followed by oligochaete worms (12.2%), the pro-
tists Foraminifera (11.1%), and ostrocods (9.6%)—all of
which were more abundant at unarmored sites (Table 2).
Water mites were more common at armored sites. Pair-wise

37 a
2T R2=0.58 {

( il3 6

A Maximum Daily Temperature (Armored — Unarmored) °C
(6)] (2]
—p—

River Kilometer

3+

Fig. 5 Differences between paired sites (filled triangle=armored—
unarmored) in maximum daily temperature May—July 2004, plotted as
means and 95% confidence intervals by study reach location for a water
and b substrate

range, and whiskers extend to sample minimum and maximum.
Asterisks indicate that P<0.05 for two-tailed paired ¢ test between
unarmored and armored sites (n=7)

differences in epibenthic density and taxa richness were both
inversely correlated with rkm (R*>0.75, P<0.01, n=8) and
density differences positively correlated with extent of bank
armoring (R*=0.59, P=0.026, n=8). We did not observe
relationships between epibenthic metrics and differences in
either bank slope or temperature.

We encountered only 12 fish species across the ten sites
at which we collected beach seines during late-spring sam-
pling (Table 3). Mean abundance per seine was 25.9 fish
(SE=10.4) at unarmored sites and 4.2 (SE=2.3) at armored.
Starry flounder (Platichthys stellatus), Pacific staghorn scul-
pin (Leptocottus armatus), and marked hatchery Chinook
juveniles were the most numerically abundant species across
all sites. Chinook were also caught at the greatest number of
sites. Pile perch (Rhacochilus vacca) and striped perch
(Embiotoca lateralis) were caught only at armored sites, as
was the lone hatchery steelhead (Oncorhynchus mykiss). All
other species were observed at both shoreline types—although
benthic species such as starry flounder and staghorn sculpin
were captured more frequently and in far higher numbers at
unarmored sites (Table 3). Of the salmonids, marked fish were
numerically dominant—89% of all Chinook, 27% of coho,
and 100% of steelhead. It is likely that hatchery Chinook and
coho comprised an even higher proportion of our catch as not
all hatchery fish are tagged or fin-clipped (Ruggerone et al.
2006). Based on the relatively low number of unmarked
Chinook captured and the diet overlap reported by Cordell et
al. (2011), we combined marked and unmarked Chinook for
the purpose of diet analyses.

Terrestrial insects dominated the diet of Chinook salmon
(forklengths 58-91 mm) captured from armored and unar-
mored sites numerically, by weight, and in frequency of
occurrence—contributing over 80% of total IRI (Table 2).
The aquatic immature life stages of benthic insects contrib-
uted another 10-30% of Chinook diet by relative abundance
(Fig. 7). Due to partial digestion, many insects could not be
classified beyond the class Insecta. Of those specimens still
relatively intact, taxa which consistently contributed the
most to total IRI were the terrestrial adult Chironomidae,
Aphidae, and Tethinidae; benthic immature Chironomidae;
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Table 2 Invertebrate taxa
identified in neuston, epibenthic,
and fish diet samples

Taxonomic resolution varied by
sample type, but results are
reported here as order-level or
higher. Data for neuston and
epibenthos represent the percent
contribution of each taxa to total
abundance across all 16 study
sites. Diet data are reported as
the percent contribution of each
taxa to the index of relative
abundance (IRI) by fish species
and site type—unarmored (U)
and armored (A). Sample size
(n) refers to sites sampled for
neuston and epibenthos, and
individuals for fish diet. IRI is
reported here as means across all
fish collected by species and site
type, but statistical analyses
were restricted to study reaches
where a given species was
present at both paired sites

and the amphipod genus Americorophium. In total, 34
unique prey items were identified across all Chinook
stomach-content samples. We did not detect differences in
the diet of Chinook captured from armored versus unarmored
sites based on assemblage structure (one-way PERMANOVA,

P>0.05).

@ Springer

Neuston Epibenthos Fish diet (IRI)
% of total % of total Chinook Chum
U A U A U A U A
® ®) ® ®) (43) (30 (33) an
Terrestrial arthropods
Insecta 1.9 0.7 493 583 15.6 24.0
Coleoptera 2.2 1.3 0.1 <0.1
Diptera 13.5 11.6 244 17.7 1.4 24.3
Ephemeroptera 0.1
Hemiptera 11.5 4.9 9.1 3.7 0.8 31.1
Hymenoptera 5.5 5.1 0.5 1.2 0.2
Lepidoptera 0.4 0.5 <0.1 <0.1
Pscoptera 2.3 0.9 0.2
Thysanoptera 4.1 4.0 <0.1
Polyxenidae 0.1
Semi-aquatic arthropods
Arachnida 16.5 5.6 0.8 1.3 0.3 0.5 <0.1 0.2
Collembola 4.4 2.4 <0.1 <0.1 0.9
Benthic crustaceans
Amphipoda 2.1 0.4 4.9 12.6 1.3 1.5
Cirripedia 0.7 <0.1 0.3
Cumacea 0.1 <0.1
Harpacticoida 52.3 6.0 <0.1 72.9 7.7
Isopoda 0.2 0.1
Mysida 1.1
Ostrocoda 43 0.3
Tanaidacea 1.9
Benthic insects
Coleoptera (immature) 0.1 <0.1 <0.1
Diptera (immature) 1.8 1.4 8.3 3.9 6.2 9.0
Hemiptera (immature) 0.1
Plecoptera (immature) 0.1
Benthic worms
Nematoda 53 0.5
Oligochaeta 7.9 0.5
Polychaeta 0.5 1.6 0.4
Benthic miscellaneous
Foraminifera 11.4 0.1
Tardigrada 0.4
Planktonic crustaceans
Cyclopoida 0.1 0.1 <0.1 <0.1 0.3
Decapoda (immature) 0.2 1.4

Diet composition of chum (forklengths 35-66 mm)
differed both by number and weight between armored and
unarmored sites (one-way PERMANOVA, P<0.05)
(Fig. 7). On a numeric basis, harpacticoid copepods contrib-
uted the greatest (19.4%) to dissimilarities between groups

and represented a higher proportion of the diet of chum
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Fig. 6 Epibenthic density by major taxonomic groups for unarmored
and armored study sites

collected at unarmored sites, as did immature chironomids
(10%). Aphids, adult chironomids, and other terrestrial
insects comprised a higher proportion of diet at armored
sites and contributed another 10—15% each to average dissim-
ilarity. Harpacticoid copepods also contributed the greatest to
differences between groups in terms of relative abundance by
weight. Across all study sites, a total of 19 unique chum prey
items were observed. Of those specimens identifiable beyond
the class level, taxa which contributed the most to IRI at
armored sites were Aphids (30%), adult Chironomids (24%),
and immature Chironomids (9%) (Table 2). At unarmored
sites, harpacticoid copepods contributed 73% to the IRI,

followed by immature Chironomid (6%), and adult
Chironomid (1%).

Discussion

The extensive armoring and lack of riparian vegetation that
characterize the Duwamish estuary has severed connections
between terrestrial and aquatic habitats. Over two thirds of
the total shoreline is armored and in the lower estuary
riparian vegetation present along only 11% of the shore-
line—much of this dominated by non-native species. While
the Duwamish estuary is at one end of the urban gradient in
the Pacific Northwest, it reflects a global trend. Of the
world’s 19 megacities (population>10 million), 15 are lo-
cated on estuaries (UN 2008). In most of these cities, shore-
lines have long been extensively modified—but armoring is
still accelerating in industrializing parts of the world (De
Vriend et al. 2011). Among a host of other deleterious
effects [reduced intertidal habitat, truncated delivery of up-
land sediment and organic material, and decreased tidal
deposition of fine sediment and beach wrack (Romanuk
and Levings 2005; Dugan et al. 2008; Sobocinski et al.
2010)]—Tloss of shading from vegetation removal and lower
moisture retention on armored surfaces may also alter tem-
perature regime (Rice 2006).

Temperature is one fundamental component of habitat
quality that exerts a wide array of direct and indirect biological
effects on intertidal organisms (Southward 1958). We ob-
served higher water temperatures at armored sites furthest
upstream, where tidal influence was minimal. At lower estu-
ary reaches, mean daily water temperature at armored sites
was actually slightly cooler—potentially due to less warming

Table 3 Fish species captured

across five sampled study Common name Scientific name Length % of total Occurrence (%)
reaches with mean length +£1 SE
U A U A
Starry flounder Platichthys stellatus 31 (+0.9) 308 02 100 40
Pacific staghorn sculpin  Leptocottus armatus 33 (£0.6) 235 0.7 100 40
Chinook (hatchery) Oncorhynchus tshawytscha 81 (£0.7) 6.9 8.9 100 80
Chum Oncorhynchus keta 48 (£0.6) 11.4 1.4 80 60
Shiner perch Cymatogaster aggregata 91 (£1.3) 1.2 0.7 40 80
Chinook (unmarked) Oncorhynchus tshawytscha 83 (£0.4) 0.7 0.3 100 60
Three-spine stickleback  Gasterosteus aculeatus 43 (£3.1) 0.4 0.1 80 20
Species are ordered from most to Northern anchovy Engraulis mordax 35 (#2.1) 0.3 0.3 40 20
least abundant and reported as Coho (unmarked) Oncorhynchus kisutch 114 (x2.4) 0.1 0.1 20 20
percent of total catch across all Coho (hatchery) Oncorhynchus kisutch 123 (#3.1) 0.1 0.1 20 20
iﬁiiiﬁiﬁ?ﬁ?ﬁﬁﬁeaﬁi raet d(a)  Snake prickleback Lumpenus sagitta 150 (NA) 0.1 0.1 20 20
sites. Length is recorded in mm Striped perch Embiotoca lateralis 108 (£1.7) 0.4 20
and refers to forklength for Pile perch Rhacochilus vacca 239 (£9.0) 0.2 20
salmonids and standard length Steelhead (hatchery) Oncorhynchus mykiss 150 (NA) 0.1 20

for all other fish
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of shallow-water habitats. While we did not observe consis-
tent differences by shoreline type, water temperature at all
study sites frequently exceeded 20°C from May to July. Sim-
ilar Duwamish water temperatures are reported in Ruggerone
et al. (2006) and are approaching reported thermal tolerances
for salmonids (Richter and Kolmes 2005). Where we did see
consistently warmer temperatures at armored sites was in
exposed substrate at low tide. While elevated substrate tem-
peratures at armored shorelines may not be problematic for
adult fish—aquatic vegetation and less-mobile organisms or
life stages are vulnerable to temperature-mediated stress (Rice
2006; Jackson et al. 2008).

Along with potential indirect effects via microclimate,
shoreline armoring affects aquatic and riparian species directly
via changes in physical habitat (Bilkovic and Roggero 2008;
Jackson et al. 2008). Shoreline hardening from riprap or bulk-
head placement limits burrowing habitat for benthic species,
and steeper banks constrain development of submerged aquat-
ic vegetation and the food and protection they confer to aquatic
species (Lubbers et al. 1990; Peterson et al. 2000). Armored
shorelines of the Duwamish contained only a fraction of the
epibenthic assemblage observed at nearby unarmored sites—
with dissimilarity between paired sites increasing the greater
the difference in armoring. Taxonomic dissimilarity between
paired sites was also greater at downstream reaches where
overall epibenthic density was highest—likely reflecting the
salinity gradient across our study reaches. In contrast, we did
not detect large differences in neustonic invertebrates by
shoreline type—potentially because neuston nets capture not
only invertebrates that may have recently fallen into a site from
the adjoining shoreline, but also those that are delivered by
the prevailing current. Sampling techniques such as fall-out
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traps that target direct terrestrial invertebrate input would
likely have been a better approach for shoreline comparisons
(see Gray et al. 2002).

Although a handful of international studies have exam-
ined fish use associated with armored estuarine shorelines
(see Bulleri and Chapman (2010) and Shipman et al. (2010)
for recent reviews), many questions remain. Part of the
challenge lays in finding sampling methods equally effec-
tive across different shoreline types, a difficulty we also
encountered in this study. Using enclosure nets and snorkel
surveys along City of Seattle marine shorelines, Toft et al.
(2007) found fewer flatfish associated with intertidal riprap,
and higher groupings of pelagic fish where riprap extended
into the subtidal and steepened the shoreline. We observed a
similar pattern in the Duwamish, with more pelagic species
at armored sites and far fewer flat fish (Table 3). An estuary-
wide survey of juvenile Chinook using a variety of seine
sampling across the Duwamish found no differences in
habitat utilization by bank armoring or restoration status
(Ruggerone et al. 2006), while a companion study employ-
ing enclosure net sampling detected higher densities of
juvenile Chinook in restored versus armored shorelines in
one of three pairings (Cordell et al. 2011). Identifying differ-
ences in fish assemblages associated with shoreline armor-
ing is the first step—examining the mechanisms behind
these differences still needs refinement.

We found that chum salmon captured from unarmored sites
contained more benthic prey sources than from armored.
Although we cannot be certain that prey were consumed at
the specific site at which a given fish was captured, this
finding agrees with the large difference in epibenthic inverte-
brate density between armored and unarmored sites. One
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potential reason that we did not observe differences in Chi-
nook diet is that these larger-bodied fish are likely moving
around more and may be feeding further offshore. Another
complicating factor is surface-feeding conditioning of hatch-
ery juveniles, which comprise the majority of Duwamish
Chinook (Reinhardt 2001; Ruggerone et al. 2006). Regardless
of hatchery origin, terrestrial food sources typically comprise
a large component of the diet of juvenile salmonids in estua-
rine habitats (Gray et al. 2002; Romanuk and Levings 2005).
Terrestrial invertebrates accounted for >40% of diet content
in both chum and Chinook juveniles in the Duwamish—
underscoring the importance of shoreline vegetation. Our
diet results are based on a relatively small number of fish
sampled over a limited time frame, and expanded study is
warranted. Use of enclosure net sampling would also help
reduce uncertainty on location of prey acquisition (Toft et
al. 2007; Cordell et al. 2011).

That estuarine shoreline armoring is globally widespread
and severe in urban areas is well established (Airoldi et al.
2005). With continued human population growth, migration
into cities, and climate change—the problem is set to wors-
en (Dugan et al. 2008). Although a growing body of litera-
ture has emerged over the last decade, study of the
ecological effects of shoreline armoring still lags far behind
inventories of chemical or physical habitat degradation
(Bulleri and Chapman 2010). Research is particularly need-
ed from parts of the world where estuarine cities are grow-
ing most rapidly (UN 2008). We cannot return already
industrialized estuaries to pre-development conditions, but
can help limit or at least improve the design of future
shoreline development—and where opportunities present
themselves, better direct restoration efforts. Preserving or
attempting to restore patches of natural habitat in urban
landscapes rarely is the most cost-effective approach to
species conservation (Simenstad et al. 2005), but does pres-
ent unparalleled opportunity to engage the populace in nat-
ural resource management. Ultimately, it is a shift in societal
values along with further scientific study that is needed to
better protect the world’s estuaries.
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