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Abstract
Potato market value is heavily affected by tuber quality traits such as shape, color, and skinning. Despite this, potato breeders 
often rely on subjective scales that fail to precisely define phenotypes. Individual human evaluators and the environments 
in which ratings are taken can bias visual quality ratings. Collecting quality trait data using machine vision allows for pre-
cise measurements that will remain reliable between evaluators and breeding programs. Here we present TubAR (Tuber 
Analysis in R), an image analysis program designed to collect data for multiple tuber quality traits at low cost to breeders. 
To assess the efficacy of TubAR in comparison to visual scales, red-skinned potatoes were evaluated using both methods. 
Broad sense heritability was consistently higher for skinning, roundness, and length to width ratio using TubAR. TubAR 
collects essential data on fresh market potato breeding populations while maintaining efficiency by measuring multiple traits 
through one phenotyping protocol.

Resumen
El valor de mercado de la papa se ve muy afectado por los rasgos de calidad del tubérculo, como la forma, el color y el 
despellejamiento. A pesar de esto, los mejoradores de papa a menudo se basan en escalas subjetivas que no definen con 
precisión los fenotipos. Los evaluadores humanos individuales y los entornos en los que se toman las calificaciones pueden 
sesgar las calificaciones de calidad visual. La recopilación de datos de rasgos de calidad mediante visión artificial permite 
mediciones precisas que seguirán siendo confiables entre los evaluadores y los programas de mejoramiento. Aquí presen-
tamos TubAR (Tuber Analysis in R), un programa de análisis de imágenes diseñado para recopilar datos para múltiples 
rasgos de calidad de tubérculos a bajo costo para los mejoradores. Para evaluar la eficacia de TubAR en comparación con 
las escalas visuales, se evaluaron las papas de piel roja utilizando ambos métodos. La heredabilidad de sentido amplio fue 
consistentemente mayor para el despellejamiento, la redondez y la relación longitud / anchura usando TubAR. TubAR reco-
pila datos esenciales sobre las poblaciones de reproducción de papa fresca del mercado mientras mantiene la eficiencia al 
medir múltiples rasgos a través de un protocolo de fenotipado.
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Introduction

Tuber quality traits, including shape, color, and skinning 
(excoriation), are key determinants for the market value of 
potatoes (Carputo et al. 2004). Therefore, they are impor-
tant selection targets for potato breeders. These tuber quality 
traits are traditionally rated on subjective five or nine point 
visual scales (Reeves 1988; Van Eck et al. 1994; Prashar 
et al. 2014; Buhrig et al. 2015). While these scales simplify 
breeder note taking and allow for comparison across pro-
grams, they may not encompass all meaningful aspects of a 
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trait. For instance, in the US National Chip Processing Trial, 
tuber shape is rated on a five-point scale from compressed 
to elongate as shown in Fig. 1. The scale fails to account for 
other deviations from ovoid, such as shoulders/or a more 
rectangular shape, pointy ends, or lumpiness. Use of calipers 
to measure tuber length to width ratios can provide a more 
precise measurement of tuber shape; however, this is labor 
intensive and does not capture other elements of tuber shape 
that are important to processors and consumers, such as sec-
ond growth which can lead to loss of yield in harvesting and 
processing (Chung et al. 1988).

Several sources of inconsistency arise in applying visual 
ratings. Results can vary across scientists due to individual 
differences in sensory perception (e.g. varying degrees of 
color perception capacity) and internalized definition of 
the target phenotype, as well as across time due to breeder 
experience level, fatigue, and differences in lighting during 
evaluation (Parker et al. 1995; Poland and Nelson 2011). In 
research involving many scientists over a large area, con-
sistent, clear phenotyping standards are vital to ensuring 
high quality data and increasing the likelihood of meaning-
ful results (Parker et al. 1995; Poland and Nelson 2011). 
Within-field or within-experiment check clones may be 
used to “visually calibrate” one’s scoring before evaluating 
experimental entries. However, genotype by environmental 
interactions account for a portion of phenotypic variance 
and relying on generalizations about the standard cultivars’ 
expected performance would result in a visual mis-calibra-
tion in some instances (Liu et al. 2019). Machine vision 
can improve consistency across programs and environments 
by eliminating differences due to evaluator bias, as well as 
measure traits of interest more accurately (Parker et al. 1995; 
Bock et al. 2008; Poland and Nelson 2011).

Machine vision is commonly utilized to assist in com-
mercial quality sorting in a variety of crops including 
potato. Most machine vision platforms for potatoes are 
designed for industrial scale processors and implement-
ing these systems in breeding programs may involve 
expensive equipment and may not provide the precision 

or consistency needed for research applications (Cubero 
et al. 2011; Moreda et al. 2012; Zhou et al. 1998). Spe-
cialized equipment for measurement of color (colorim-
eter) and skinning (torque meter) exist, but these are 
expensive and labor intensive as they are limited to the 
evaluation of one or very few traits (Krupek et al. 2021; 
Roe et al. 2014). Accurate and precise image analysis of 
multiple tuber traits using standard digital camera images 
would therefore, be advantageous to efficient and low-
cost measurement of quantitative tuber quality traits (Si 
et al. 2017; Caraza-Harter and Endelman, 2020; Neilson 
et al. 2021).

Image analysis systems for potato tubers with accuracy 
appropriate for research and breeding program applica-
tions have been previously developed for both tuber shape 
and color. Si et al. (2017) used watershed segmentation to 
identify tubers in standard two-dimensional digital images 
and measured the length to width ratio of the segmented 
tuber shapes. Accuracy of the ratios compared to caliper 
measurements was 96% for white-skinned potatoes and 
94% for red-skinned potatoes, with the lower accuracy 
in red potatoes attributed to their generally more circular 
shape. Neilson et al. (2021) developed aspect ratio and cir-
cularity measures to account for the aspects of shape that 
cannot be accounted for by length to width ratio. Caraza-
Harter and Endelman (2020) evaluated red skin color and 
skinning in digital images using the RGB Measure Plugin 
in ImageJ (Schneider et al. 2012). Plot based heritability, 
using image analysis for phenotyping, was above 0.75 for 
the hue, chroma, and lightness measures of skin color, as 
well as for skinning.

While these image analysis methods provide accurate 
results at a low cost, high throughput phenotyping requires 
more automation and simplification of the analysis pro-
cess. The tuber image analysis process could greatly ben-
efit from having a single program and protocol to measure 
multiple quality traits at once. TubAR (Tuber Analysis in 
R) provides a simple and efficient method for phenotyping 
multiple tuber traits from light box images simultaneously.

Fig. 1  USDA form OMB NO 0581 − 0055 Tuber shape classification. (USDA Plant Variety Protection Office 2015). This is converted into a 
numerical scale by breeding programs generally 1 (compressed) to 5 (long)
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Materials and Methods

Package Development

We have developed an R package called TubAR (Tuber 
Analysis in R) which calculates values for quality traits 
from lightbox images. Currently it measures roundness, 
length to width ratio, lightness, redness, and skinning. We 
describe the calculations and steps for analysis within the 
pipeline in the next four sections and then the images and 
protocols used for validation and testing.

Image Segmentation

Tubers were isolated from the image background through 
image segmentation. Images were read into the R statisti-
cal software (R Core Team 2018) environment with the 
package EBImage (Pau et al. 2010) and resized to reduce 
computation time with the function resize. Image size was 
reduced by a factor of 4 from 5840 × 3940 to 1460 × 985. 
Transformation from RGB to the CIELab color scale 
was done with the function convertColor (R Core Team 
2018). We chose the CIELab color scale because it is 
the international standard for description of the color of 
objects due to its similarity to human perception (Interna-
tional Commission on Illumination 2019). Each compo-
nent matrix of the color scales (R, G, B, L, a, and b) was 
inspected for capacity to create separation between tuber 
and background pixels. The resulting components of the 
image were subjected to a threshold to create a binary 
filter. Within-tuber gaps, due to lightly colored patches of 
skin or skinning, were filled with the function fillHull (Pau 
et al. 2010). Image segmentation was conducted with the 
function bwlabel (Pau et al. 2010). A minimum object size 
of 4000 pixels was enforced to remove objects resulting 
from shadows and small debris (e.g. tuber skin flakes and 
residual soil).

Color Correction

We used three-dimensional thin-plate spline (TPS) to color 
correct images to minimize the effects of any changes in 
light levels. TPS for color correction warps (transforms) 
pixel color values of a conserved object in an image to a 
predetermined reference RGB color value, in this case, the 
center pixel of each color chip in the 24-chip color card. An 
interpolation function is then used to transform the color 
values of the other pixels in the image using the difference 
between the observed color of the color card pixels and the 
reference colors (Menesatti et al. 2012). The tps3d function 
from the Morpho package (Schlager 2017) was utilized to 

create the interpolation function and determine the corrected 
color values for each pixel.

Shape Measures

Several measures were calculated on a per-tuber basis with 
the objective of identifying measures that correlate well 
with visually apparent aspects of tuber shape and identify 
deviations from ideal shapes. The perimeter and area were 
recorded for each tuber, as well as the convex hull of each 
tuber. The convex hull is the tuber shape modified by remov-
ing indents, which are often created by micro-environmental 
factors. Maximum length was determined as the maximum 
of distances between all possible pairs of perimeter pixels. 
The minimum bounding box was fit for each tuber result-
ing in measures of length, width, and length to width ratio. 
Convex hull area and convex hull perimeter were used to cal-
culate roundness. Roundness ranges from zero (for a straight 
line) to one (for a perfect circle) (Van der Werff and Van der 
Meer 2008).

Color and Skinning Measures

On a per tuber basis, pixels were converted from RGB to the 
CIELab color scale with the function convertColor. We used 
the nlsLM function from the minpack.lm package (Elzhov 
et al. 2016) to fit a sigmoid curve with the formula:

in which y is the percent of the tuber pixels designated 
skinned at b (from Lab) threshold x. The parameters a, c, d, 
and e were initiated at the maximum y value, 1, the median 
x value, and minimum y value, respectively. The threshold 
for designating pixels skin (red) or skinned (flesh, white to 
yellow) was set at 1.5x the d value, whereby the algorithm 
responds to differences in tuber skin and flesh colors for each 
image. It is assumed that all tubers within an image comprise 
a sample from the same variety under the same treatment.

Excluding the portions identified as skinned, tuber skin 
color was quantified in terms of redness as the median a 
(from Lab) value for each tuber and skin lightness as the 
median L (from Lab) value for each tuber (Fig. 2).

Plant Material and Phenotyping

We collected a random sample of 10 USDA medium 
(6.35–8.255 cm) sized potatoes from each plot of a nitro-
gen trial with four replicates conducted at the Sand Plain 

roundness =
convex perimeter2

4� ⋅ convex area

y =
a

1 + e−c∗(x−d)
+ e
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Research Farm in Becker, MN in the summers of 2018 
and 2019 described in Stefaniak et al. (2021). Entries were 
advanced red potato selections from the University of Min-
nesota breeding program and a selection of red potato culti-
vars favored by Minnesota growers. All entries were planted 
in 20 hill plots replicated four times per year. Plots were 
desiccated 90 days after planting (DAP) using diquat and 
mechanically harvested 104 DAP; tubers were sized with a 
Kerian sizer (Kerian Machines Inc. Grafton, ND). In 2018, 
plots were graded in a three day period three weeks after 
harvest, while in 2019 plots were graded in a three day 
period directly following harvest. Tuber shape was rated 
categorically as “rectangular”, “elongate”, “oblong”, “pear” 
or “round”. Skinning was rated on a 0 to 5 scale (none to 
severe), and tuber color intensity was rated on a 0 to 5 scale 
(white to intense red color).

Additionally, we collected samples of red potato clones 
from the University of Minnesota breeding program that 
were grown over the 2019 and 2020 field seasons. In 2019 
potatoes were grown at the North Central Research and Out-
reach Center in Grand Rapids, MN in single replicate 12-hill 
plots. Plots were desiccated 98 DAP and mechanically har-
vested 118 DAP. These tubers were not graded or rated using 
visual scales. In 2020 the same clones were grown at the 
Sand Plain Research Site in single replicate 20 hill plots. 
Plots were desiccated 90 DAP and mechanically harvested 
104 DAP. In 2020 tubers were graded on an AgRay sorter 
(Agray Vision Systems, Acampo, CA) and visually rated as 
above. They were graded within the three day period imme-
diately following harvest. All visual ratings across the three 
years were made by Dr. Shannon.

Following the methods described by Caraza-Harter and 
Endelman (2020), tubers were gently washed with water to 
remove soil and allowed to dry. Although we did not main-
tain a consistent drying time, tubers were photographed after 
they were no longer damp. For each plot, ten tubers were 
staged in an Ortery Photosimilie 200 software-controlled 
light box with a 6500 K daylight illumination system (Ortery 
Technologies Inc.) with front and rear lights turned on. One 
image was taken per plot. Photographs were taken with a 
Rebel T6i camera with a 24 mm lens, ISO 100, 1/30 sec 
shutter speed and aperture f/5.6. A CameraTrax 24Color-
Card (CameraTrax.com CT24-23-1315) was placed in the 
lower right corner of the image. Images were 6000 × 4000 
pixels with resolution of 72 × 72. Images were saved in .jpg 
(lossy compression) format. Photographs were taken over 
the month following grading.

Heritability Calculations

Broad sense heritability for redness and skinning was cal-
culated using data from visual ratings and then from image 
analysis data collected from the potato tubers. We used the 
lmer function from the lme4 R package (Bates et al. 2015) 
to create linear mixed-effect models from trait values, clone, 
nitrogen rate, and block among the nitrogen trial popula-
tions. Separate models were calculated for each year.

Where  Pijk is the trait phenotype of clone i in block j at 
nitrogen rate k, µ is the intercept,  Gi is the random effect of 
genotype,  Bj is the effect of block,  Rk is the effect of nitro-
gen rate, and εijk is the random effect of the residual. For the 
breeding program data, field year was used instead of block 
and no effect from nitrogen was present, making the linear 
mixed-effect model.

Variance components,  VG and  VE, were taken from 
the lmer function output and used to estimate broad sense 
heritability.

Sample Size Variance Calculations

In order to evaluate the optimal number of tubers per photo, 
we determined the mean standard error of standardized out-
put values for each of the five phenotypes described above 
using 3 to 10 tuber samples, which is the practical limit of 
what can easily fit in the lightbox for most clones. Samples 
were taken from images of 224 clones harvested from the 
University of Minnesota breeding program in 2020. Smaller 
sample sizes were simulated from trait data of 10 samples by 
shortening the sample data lists. Because tuber placement 

Pijk = μ + Gi + Bj + Rk + εijk .

Pij = μ + Gi + Bj + εij

Fig. 2  Percent of the tuber surface designated skinned relative to the 
Lab b value threshold within an image for each tuber (solid, black). 
The sigmoid curve fitted across tubers (short dashes, blue) was used 
to set the b threshold for the image (long dashes, red)
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within images was not ordered, these smaller tuber samples 
were still random. For each trait, the mean was standardized 
with respect to units so all traits could be plotted together 
and the standard error at a given tuber number was averaged 
across the 224 clones. These averages were plotted to evalu-
ate gain in precision from each additional tuber included in 
an image.

Visual Scale Consistency Test

We created a set of 50 red potato sample pictures, then cre-
ated two more sets of the same sample pictures in rand-
omized orders. All tubers had red skin and white flesh. The 
skin.all function in TubAR was used to remove the back-
grounds of the photos to limit information about the clone 
genotype. Four members of the University of Minnesota 
Potato Breeding and Genetics Lab with prior experience in 
rating tubers using visual scales rated the pictures from each 
of the three sets using the skinning, color intensity, and shape 
visual scales previously discussed. Scores were then deran-
domized and the coefficient of determination  (R2) within the 
sets scored by the same evaluator, as well as between each 
evaluator, was determined using the cor function in R. The 
maximum, minimum, and average coefficient of determina-
tion was determined for scores of different sets from the same 
evaluator as well as between different evaluators.

Because the skinning trait rated by TubAR is theoretically 
comparable to that rated with the visual scale, the same set 
of 50 sample pictures was rated for skinning using TubAR. 
The ratings were converted from percentages to a five point 
scale, mimicking the ratings from human observers. This set 
of skinning values was compared to each of the sets rated by 
the human evaluators using the maximum, minimum, and 
average coefficient of determination as discussed above. The 
standard deviation for visual scores of each trait for each 
sample image were averaged for each trait to measure vari-
ation in rating across evaluators.

An additional set of 30 sample images of red potatoes 
collected from the USDA-ARS Potato Breeding and Genet-
ics program in Prosser, WA, using a Nikon D7100 DSLR 
camera and a HAVOX HPB-80D photo studio light box 
with a non-reflective black background. These images were 
taken after at least 90 days in storage. Images were evaluated 
by a scientist from the USDA and one from the University 
of Minnesota to determine difference in ratings between 
programs and demonstrate TubAR’s extendibility to other 
lightbox set ups. Color intensity and shape were rated, while 
skinning was not due to low variance among the sample 
images. Trait scores were compared within one evaluator’s 
scores and between evaluators based on  R2 values. Human 
color ratings were compared to lightness and redness values 
from TubAR and human shape scores were compared to 
length to width ratio and roundness using  R2 values.

Time Efficacy Test

To quantify the difference in time to get trait data using 
TubAR versus previously available methods for quantita-
tive tuber trait measurement, we timed the use of TubAR, 
calipers, and a colorimeter to collect data from 10 tubers.

For TubAR measurements, timing was started at the 
beginning of staging the tubers in the lightbox. Once a photo 
of 10 tubers was taken and saved, the timer was stopped. 
An R script was run on a personal computer (AMD Ryzen 
5 3600 3.6 GHz processor, 16 GB of RAM, Microsoft Win-
dows 10 Pro version 21H1) to collect skin and shape data 
from the photo, with the timer being restarted upon running 
the script, and stopped at the console printing trait values. To 
reflect the scalability of TubAR, a sample of 100 photos was 
processed with TubAR using the skin.all function using four 
processor cores, timing started upon running the R script 
and ended upon the creation of matrices of median skin and 
shape trait values.

For the alternative manual measurement method, ten 
tubers, calipers, a reflectance colorimeter (Photovolt Instru-
ments Photoreflectometer 577PC), and a computer were 
assembled beforehand, and a timer was started once meas-
urement began. Length to width measurements and two 
values of percent reflectance were taken for each tuber and 
recorded in a spreadsheet, the timer was stopped after the last 
value was recorded. This was performed by three individuals 
and the average time was used in further calculations.

Total time to record data for one sample was directly 
timed for both methods, while time to collect data for 100 
samples was based on multiplying the time to perform 
the manual component of each method, and in the case of 
TubAR adding the processing time for 100 photos.

Weight Area Correlation

A total of 337 potato breeding lines and named cultivars 
maintained by the USDA-ARS Potato Breeding and Genet-
ics program in Prosser, WA, and the U.S. Potato Genebank 
at Sturgeon Bay, WI, were planted as two replicates of five-
hill plots in the Pear Acres field site at Washington State 
University Irrigated Agricultural Research and Extension 
Center at Prosser, WA. Tubers from the plots were assessed 
for yield in order to compare tuber weight to tuber area. 
Tubers were rinsed by applying water to the samples for sev-
eral minutes inside modified Kobalt 4-cu ft 0.5-HP cement 
mixers (Lowes LLC) lined with a ¼ inch yoga mat material 
(YogaDirect.com LLC). Measurements of sample yield were 
be taken using Ohaus Valor 7000 scale controlled by Python 
script run on a Raspberry Pi 3 computer. Those same sam-
ples were photographed and total tuber area in pixels was 
determined for each sample using TubAR. The cor function 
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in R was used to determine the  R2 between the weight data 
and total area data from each sample.

Results

Parameters for TubAR Use

Image size was reduced by a factor of four which was found 
to speed computation time while preserving the image suf-
ficiently, as determined by visual inspection of the reduced 
images. Examples of the original and reduced images are 
shown in Fig. 3.

To determine how the number of tubers per image affects 
the consistency of the measurements, we calculated standard 
errors for subsets of the tubers in each image. For all traits 
we observed a decrease in standard error with each addi-
tional tuber. However, the marginal effect of each additional 
tuber decreased as total tuber number increased (Fig. 4).

Effectiveness as Compared to Visual Ratings

We compared the performance of TubAR to visual ratings 
by looking at heritabilities and correlations. TubAR trait 
heritabilities were consistently higher than visual scores 
for the 2018 population (Table 1). In the 2019 nitrogen 
trial visual color intensity heritability was higher, with 
TubAR redness and lightness heritabilities being com-
paratively lower. TubAR trait heritabilities were recorded 
for the breeding program populations but could not be 
compared to visual scores because they were only scored 
visually one year. We could not calculate heritability for 
skinning in the breeding population due to low variation 
across clones.

R-squared values between comparable visual and 
TubAR measurements ranged from 0.26 to 0.41 (Fig. 5). 
We observed negative correlations for roundness and light-
ness because the scales for the TubAR measurements and 
the visual measurements run in opposite directions.

Fig. 3  Original image (a, 6000 × 4000 pixels) versus resized image (b, 1500 × 1000 pixels) and indexed tubers with skinned area shown in gray (c)

Fig. 4  The mean standard errors 
of five standardized TubAR trait 
values given different numbers 
of sample tubers for 224 clones 
from the University of Min-
nesota breeding program
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Judging the effectiveness of TubAR using correlations 
assumes the visual ratings are accurate. We had multiple 
evaluators rate the same images to determine consistency 
across evaluators. Coefficients of determination for human 
visual scores (Table 2) tended to be higher between ratings 
by the same individual than between individuals but ranged 
widely in every case (less than 0.2 to more than 0.6). Shape 
scores had the highest within and between correlations while 
color intensity had the lowest. The average  R2 between 
TubAR scores and human ratings was very similar to the 
between evaluator average (≈ 0.25). The average standard 
deviation of scores across the ratings for color intensity was 
0.71, 0.76 for skinning, and 0.39 for shape.

In order to look at evaluator consistency in a different 
population and between different breeding programs, we 
also had a evaluator from the University of Minnesota and 
the USDA rate tubers from the USDA for color intensity and 
shape. Within evaluator  R2 values averaged 0.54 for color 
and 0.66 for shape. Between evaluator  R2 values averaged 
0.12 for color and 0.60 for shape. TubAR values for light-
ness and redness were compared to color intensity. Length 
to width ratio and roundness were compared to shape. Color 
intensity had an average  R2 of 0.11 with redness and 0.41 
with lightness. Shape rating had an average  R2 of 0.58 with 
length to width ratio and 0.65 with roundness.

Comparing tuber weight and tuber area as calculated by 
TubAR provides a measure of effectiveness that does not 
depend on the accuracy of visual ratings. The  R2 between 
tuber sample weights and total tuber photo area was 0.77.

Time Investment

Measuring and recording color and length to width ratio for 
a single, ten-tuber sample took 5 min 40 s using TubAR, 
and 4 min 14 s using a calipers and photovolt on each tuber. 
Taking a picture for TubAR took 2 min 23 s with the remain-
ing time being processing in R. Processing 100 samples in 
TubAR took 54 min 1 s. When the photo taking time is 

multiplied by 100 and added to TubAR processing time, the 
expected time to collect data for 100 samples in TubAR is 
4 h 52 min. The caliper and colorimeter time is multiplied 
by 100 to get the expected manual measurement time of 7 h 
3 min. Washing tubers before photography would add to the 
amount of time required for TubAR.

Discussion

TubAR was created to improve the precision and accuracy 
of tuber quality trait measurements over that of the visual 
scales often used by breeding programs to phenotype for 
selection. The more accurate the information used in breeder 
decisions, the more effective selection can be. This is par-
ticularly important as potato breeders begin implementing 
genomic selection cycles, where inaccurate predictions can 
drive populations in the wrong direction (Caruana et al. 
2019; Enciso-Rodriguez et al. 2018; Endelman et al. 2018; 
Gemenet et al. 2020; Habyarimana et al. 2017; Selga et al. 
2021; Sood et al. 2020; Stich and Van Inghelandt 2018; 
Sverrisdóttir et al. 2017; Sverrisdóttir et al. 2018).

Accuracy and Precision

When visual ratings are used, clones are assigned a whole 
number value between one and five. TubAR increases the 
potential for precision by relying on a continuous numeric 
scale rather than a rating. Accuracy is more difficult to meas-
ure, but from a breeding perspective, it is most important 
to be accurate about the genetic component of a trait. For 
traits measured using multiple methods in the same popula-
tion, comparing heritability can provide information on the 
relative accuracy of measurement techniques (Caraza-Harter 
and Endelman 2020). Because location and genotype remain 
the same across measures, any changes in heritability can 
be attributed to the accuracy of the phenotyping method. 
TubAR roundness, length to width ratio, and skinning con-
sistently had higher heritability than the visual scale meas-
urements, while redness, and lightness did not (Table 1).

It is important to note that redness and lightness are 
affected by tuber washing/drying. Visual inspection showed 
that images from 2018, where both TubAR color measure-
ments exhibited high heritability as compared to the visual 
scores, featured consistently dry tubers, whereas images 
from 2019, where heritability was dramatically lower, fea-
tured some wet and some dry tubers. Washing tubers before 
taking pictures improves the accuracy of color ratings but 
all tubers should be left to completely dry before being pho-
tographed. We recommend letting tubers dry at least 24 h, 
however the details of the image capture protocol are less 
important than the consistency of that protocol. TubAR is 

Table 1  Broad-sense heritability of several tuber quality traits in red 
potatoes from three populations

Trait Nitrogen 
trial 2018

Nitrogen 
trial 2019

Breeding 
program 
2019–2020

Skinning (Visual) 0.63 0.62  N/A
Skinning (TubAR) 0.68 0.68  N/A
Color Intensity (Visual) 0.59 0.71  N/A
Redness (TubAR) 0.63 0.14 0.33
Lightness (TubAR) 0.63 0.12 0.60
Shape (Visual) 0.36 0.41  N/A
Roundness (TubAR) 0.64 0.50 0.51
Length:Width Ratio (TubAR) 0.61 0.48 0.48
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only as good as the input images, therefore care must be 
taken to produce consistent images.

The increases we observed in heritability for many 
TubAR traits in comparison to visual scales could be attrib-
uted to either an improvement in our ability to measure 
traits or to refining the definition of the traits. Breaking 
down a trait like shape or color into its component pieces 
may better reflect the underlying factors. For example, light-
ness increases with length of time in storage, while hue, 
or color family, remains unchanged (Caraza-Harter and 
Endelman 2020). Similarly, nitrogen affects lightness but 

not redness (Jones et al. 2021) and heat affects the expres-
sion levels of anthocyanins but not which ones are expressed 
(Liu et al. 2019). Separating color into lightness and redness, 
may be allowing us to distinguish between the aspects of 
color more dependent on environment and those that are 
more heavily genetic.

A second method we explored for determining the accu-
racy of TubAR measurements was comparing the values 
to visual scores (Fig. 5). However, the correlation between 
scores from different evaluators (Table 2) were so low as 
to bring into question the value of the visual ratings as a 

Fig. 5  Scatterplots and regres-
sion lines of a Skinning percent 
determined by TubAR vs. 
skinning 1 to 5 visual rating, 
b Redness from TubAR vs. 
color intensity 1 to 5 visual 
rating, c Lightness from TubAR 
vs. color intensity 1 to 5 visual 
rating, (while 100 is the lightest 
TubAR value, 1 is the lightest 
visual score) d Roundness as 
measured by TubAR vs. shape 
visual rating (while 1 is the 
roundest TubAR value, 1 is the 
roundest visual rating), e Length 
to width Ratio taken from the 
length and width measured by 
TubAR vs. shape visual rating
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benchmark. The correlation between TubAR traits and 
visual ratings was consistent with the correlation between 
measurements from different evaluators. We observed a 
higher correlation when comparing area as determined from 
images to tuber weight. However, this correlation was lower 
than the extremely high correlation  (R2 = 0.94) reported by 
Zhou et al. (1998) and Neilson et al. (2021). The discrep-
ancy could be accounted for by the fact that Zhou et al. only 
examined three potato cultivars and Neilson et al. focused on 
crosses for processing while we measured diverse samples 
from a fresh market breeding program where the require-
ments for specific gravity are less stringent. Significant 
variation in area to weight correlation between cultivars has 
been found in mango (Patel et al. 2020). This is likely to be 
true for potatoes as well, given genetic variation in shape and 
specific gravity both of which would influence the correla-
tion between weight and area (Slater et al. 2014). We do not 
recommend using TubAR to estimate tuber weight.

Practicality of Implementation

We were able to collect and process images for a very low 
material cost. While some labor cost is saved in the faster 
processing of many images, staging and taking photos of 
each set of tubers is still labor intensive. However, when 
taking measurements for many samples, time is ultimately 
saved compared to using calipers and a colorimeter to man-
ually measure traits. Additionally, TubAR measures more 
traits than the two measured by manual devices and adding 
trait measurements does not add to the time it takes to col-
lect data. It should also be noted that much of the processing 
time using TubAR does not require a human to be actively 
involved, potentially lowering labor costs well beyond the 
time saved compared to manual measurement.

The time required in staging tubers can be balanced 
with the precision desired in an experiment. The standard 

errors seen in different sample sizes largely decrease with 
every additional tuber from three up to the maximum ten in 
each trait. While the standard errors continue to decrease, 
each additional tuber decreases the standard error less than 
the previous tuber. This creates a situation of diminishing 
returns where the gain in precision will eventually not make 
up for the extra time spent staging more tubers. This tradeoff 
is particularly important for larger market classes, such as 
russets, where fitting ten tubers in one image may not be 
practical for a lightbox, or when time and labor available for 
phenotyping is constrained.

All measurements with calipers, photovolt, and light-
box were taken by experienced practitioners. As with any 
lab procedure, each technique has a learning curve which 
is not factored into the time estimates above. The learning 
curve for the TubAR system is not steep. Undergraduates in 
the Shannon lab regularly use the lightbox and analyze the 
resulting images.

Potential Benefits

Machine vision phenotyping systems such as TubAR can 
provide more accuracy from year to year within a breeding 
program if the same system is used to evaluate clones from 
generation to generation. They can also be used to increase 
accuracy between programs in situations such as national tri-
als where multiple evaluators would introduce bias to visual 
scales, as seen by the low correlations between ratings of 
different scientists.

Machine vision has been implemented in other crops. 
Most commonly it is used for quality sorting in commer-
cial settings. Within research settings, image analysis has 
been used to diagnose disease in cereals (Parker et al. 1995), 
maize (Poland and Nelson 2011), and grapefruit (Bock et al. 
2008). One of the most widely used tools for crop image 
analysis is Plant CV (Gehan et al. 2017). Plant CV aims to be 
broadly useful for a variety of tissues and image types (RGB, 
NIR, hyperspectral etc.). The tradeoff for applicability to a 
variety of crops and situations and extensive user control is 
that it takes more effort and expertise to implement.

While TubAR’s ability to score many traits from one 
image increases the speed that each of those traits can be 
scored compared to manual or visual scale measurements, 
staging tubers, tags, and color cards for each photo is still 
labor intensive and sets a practical limit on the amount of 
tubers that could be measured in a year by most breeding 
or research programs. Modifying this program for use in 
a potato sorter may allow high-throughput phenotyping by 
eliminating the need to manually stage each photograph. 
Additionally, certain sorters take pictures from multiple 
angles allowing length to thickness to be measured as well 
as length to width ratio.

Table 2  Minimum, maximum, and average coefficients of determina-
tion  (R2) for color intensity, skinning, and shape measurements

“Within” values represent a single evaluator’s consistency across 
three times rating the same picture set. “Between” values reflect con-
sistency across evaluators. The only trait measured by visual rating 
and TubAR was skinning and final row reports  R2 values for compari-
sons between evaluator scores and TubAR scores

Ratings Maximum Minimum Average

Color intensity Between 0.61 0.00032 0.22
Color intensity Within 0.64 0.047 0.38
Skinning Between 0.69 0.010 0.25
Skinning Within 0.70 0.10 0.42
Shape Between 0.68 0.077 0.43
Shape Within 0.76 0.17 0.47
Skinning TubAR 0.39 0.074 0.26
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Our current version of TubAR focuses on quality traits 
crucial to fresh market red potato including skin color, 
shape, and skinning. There is potential for other traits of 
interest to be measured with TubAR through a similar image 
analysis which would increase the applicability of TubAR 
to other market classes. Traits of interest that may include 
russeting, greening, eye depth, and diseases including com-
mon scab, Rhizoctonia, and silver scurf. Although some of 
these traits can likely be measured with thresholds and meas-
urements similar to those used above, many traits essential 
to tuber quality are more complicated and will require a 
machine learning approach. One benefit of TuBAR is that 
we can retain images and as we add functionality, we can 
measure additional traits in previous years’ breeding popula-
tions. Only limited modifications may be necessary to use 
the program to measure the color of chips and fries or even 
the color and shape of other crops such as apples.

TubAR is available at https:// github. com/ shann onlab umn/ 
TubAR. Instructions, a vignette, and sample image data are 
available for download with the package. Source code can 
also be found in the github repository.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12230- 022- 09894-z.
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