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Abstract
In the present work, we characterized in detail strain CM-3-T8T, which was isolated from the rhizosphere soil of strawberries in 
Beijing, China, in order to elucidate its taxonomic position. Cells of strain CM-3-T8T were Gram-negative, non-spore-forming, 
aerobic, short rod. Growth occurred at 25–37 °C, pH 5.0–10.0, and in the presence of 0–8% (w/v) NaCl. Phylogenetic analysis 
based on 16S rRNA gene sequences revealed that strain CM-3-T8T formed a stable clade with Lysobacter soli  DCY21T and 
Lysobacter panacisoli  CJ29T, with the 16S rRNA gene sequence similarities of 98.91% and 98.50%. The average nucleotide 
identity and digital DNA-DNA hybridization values between strain SG-8 T and the two reference type strains listed above were 
76.3%, 79.6%, and 34.3%, 27%, respectively. The DNA G + C content was 68.4% (mol/mol). The major cellular fatty acids were 
comprised of C15:0 iso (36.15%), C17:0 iso (8.40%), and C11:0 iso 3OH (8.28%). The major quinone system was ubiquinone 
Q-8. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylethanolamine (PME), diphosphatidylglycerol 
(DPG), and aminophospholipid (APL). On the basis of phenotypic, genotypic, and phylogenetic evidence, strain CM-3-T8T 
(= ACCC  61714 T = JCM  34576 T) represents a new species within the genus Lysobacter, for which the name Lysobacter 
changpingensis sp. nov. is proposed.

Keywords Lysobacter sp. · Rhizosphere microbiota · New species · Phenotypic

Introduction

The genus Lysobacter, in the class Gammaproteobacte-
ria and family Xanthomonadaceae, was first described by 
Christensen and Cook (1978) and emended by Park et al. 
(2008). It is non-fruiting, Gram-stain-negative, aerobic, 
gliding nature of bacteria with high DNA G + C contents 
(61.7–70.7% mol/mol), contain ubiquinone Q-8 as the major 
respiratory quinone and the major polar lipids are diphos-
phatidylglycerol (DPG), phosphatidylglycerol (PG), and 
phosphatidylethanolamine (PE). At present, there are 70 
species with a validly published and correct name in the 
genus Lysobacter recorded on LPSN (https:// lpsn. dsmz. de/ 
genus/ Lysob acter; Feb 2023). Lysobacter strains are ubiq-
uitously distributed in various environments, most of them 
were isolated from Antarctic coastal sediment (Liu et al. 
2022), soil (Srinivasan et al. 2009; Coil et al. 2014; Gross 
et al. 2016; Zhang et al. 2019), plant rhizosphere (Xiao 
et al. 2019), feces (Lee et al. 2022), sludge (Ye et al. 2015), 
estuary (Sang et al. 2016), spongin (Choi et al. 2018), and 
freshwater (Siddiqi and Im 2016). In this paper, the authors 
report a novel bacterial strain CM-3-T8T, which was iso-
lated from the rhizosphere soil of strawberry. Analysis of the 
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phylogenetic and phenotypic characteristics confirmed that 
strain CM-3-T8T represents a novel species within the genus 
Lysobacter, for which the name Lysobacter changpingensis 
sp. nov. is proposed.

Materials and methods

Isolation and ecology

Rhizosphere soil samples of strawberries were collected in 
the Changping district, Beijing, China (116° 20′ E, 40° 22′ 
N). For isolation of bacteria, the samples were suspended 
in sterile water and serially diluted to  10−5,  10−6, and  10−7, 
then 100 µL from each dilution was spread on TSA plates. 
The TSA medium contained (per liter): tryptone 15 g, soy 
peptone 5 g, sodium chloride 5 g, pH 7.0. After 3 days of 
incubation at 30 °C, a colony was subcultivated on TSA 
medium and named CM-3-T8T to taxonomic characteriza-
tion. The strain CM-3-T8T was maintained on glycerol (w/v) 
and stored at −80 °C.

16S RNA phylogeny

Genomic DNA of CM-3-T8T was extracted using a DNA 
extraction kit (Biotech) by following the manufacturer’s 
instructions. PCR amplification of the 16S rRNA gene was 
performed with the universal primers 27F (5′-GAG TTT GAT 
CCT GGC TCA G-3′) and 1492R (5′-ACG GCT ACC TTG TTA 
CGA CTT-3′) (Farris and Olson 2007). PCR conditions were 
an initial denaturation step at 94 °C for 2 min followed by 35 
cycles of 95 °C for 30 s denaturing, 55 °C for 30 s annealing, 
and 72 °C for 30 s followed by a 10 min final extension at 
72 °C. Purified PCR products were sequenced by the San-
gon Biotech (Shanghai, China; http:// www. sangon. com/). 
We used NCBI’s BLAST search (http:// www. ncbi. nlm. 
nih. gov/ blast) and the EzTaxone server (www. ezbiocloud.
net) to identify phylogenetic neighbors and calculate pair-
wise sequence similarities. Then, phylogenetic trees were 
reconstructed using the software MEGA 7.0 and based on 
maximum-likelihood (Felsenstein 1981), neighbor-joining 
(Saitou and Nei 1987), and minimum-evolution (Rzhetsky 
and Nei 1992) models with bootstrap values under 1000 rep-
lications (Mikkel 2016). Distances were calculated accord-
ing to Kimura’s two-parameter model (1980).

Physiology and chemotaxonomy

For this part of the study, cells are cultured in TSA medium 
under aerobic conditions, and all data presented are the 
average of three replicates. Cell morphology and size was 
observed by a transmission electron microscope at 30 k 

magnification (Hitachi, Model H-7500, acceleration voltage 
80 kV). Gram staining was performed by Beveridge (2001). 
The optimal pH and temperature for growth of strain CM-
3-T8T and the reference strains Lysobacter soli  DCY21T and 
Lysobacter panacisoli  CJ29T were determined by incubat-
ing the strains on TSA medium at different temperatures 
(4, 25, 30, 37, 42, and 45 °C), different pH levels (pH 4.0, 
5.0, 6.0, 7.0, 8.0, 9.0, 10.0; acetate buffer was used for pH 
4.0–7.0 and phosphate buffer was used for pH 7.0–10.0), and 
different NaCl levels with 0–10.0% (w/v) NaCl (1% incre-
ments). All the growth of the bacterium was determined by 
measuring the  A600 (infinite M200PRO, TECAN) of the 
cultures after 5 days, except for the temperatures of 4 and 
10 °C, which was assessed after 10 days. Enzyme activities 
were assayed using the API ZYM and API 20NE systems. 
Additional biochemical tests were determined using the API 
50CH system and the Bio GN2 microplate according to the 
manufactures’ instructions.

For assaying the differences of fatty acid composition 
between the strain CM-3-T8T and the most closely related 
species, strain CM-3-T8T, Lysobacter soli  DCY21T, and 
Lysobacter panacisoli  CJ29T were used. The strains were 
cultured under aerobic conditions on TSA medium at 30 °C 
for 48 h. Fatty acid methyl esters were prepared and identi-
fied with the MIDI Sherlock Microbial Identification System 
(Sherlock version 6.1).

The polar lipids were extracted from 1 g freeze-dried cells 
using methanol/chloroform/saline extraction (2:1:0.8 ratio 
by vol.), as described by Kates (1972). Two-dimensional 
chromatography on a silica gel thin-layer chromatography 
(TLC) plate (10 × 10 cm) was used to separate and iden-
tify polar lipids, as described by Raj et al. (2013). Total 
polar lipids were detected by spraying with 10% ethanolic 
molybdophosphoric acid solution (Sigma-Aldrich) followed 
by heating at 150 °C for 10 min, and further characterized 
by spraying with ninhydrin, molybdenum blue (specific for 
phosphates), and Dragendorff’s reagent. The quinones were 
isolated according to the methods of Minnikin et al. (1984) 
and determined using HPLC (Kroppenstedt 1982).

Genome features

The High Pure PCR Template Preparation kit (Roche) was 
employed for isolation of genomic DNA for whole-genome 
sequencing and DNA-DNA hybridization experiments. 
The genome of strain CM-3-T8T was sequenced at Siste-
mas Genomicos (Valencia, Spain) using Illumina paired-
end sequencing technology. The reads were trimmed using 
Trimmomatic 0.32 (Bolger et al. 2014). Genome assembly 
was performed using SPAdes 3.6.1 (Nurk et al. 2013). The 
average nucleotide identity blast (ANIb) values were calcu-
lated as described by Richter and RossellóMóra (2009) using 

http://www.sangon.com/
http://www.ncbi.nlm.nih.gov/blast
http://www.ncbi.nlm.nih.gov/blast
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JSpecies (version 1.2.1) and Lee et al. (2016). The G + C 
content of chromosomal DNA was calculated on the basis 
of its whole-genome sequence. The estimated DNA-DNA 
hybridization (dDDH) value was determined among these 
strains using the Genome-to Genome Distance Calculator 
(version 2.1) (Auch et al. 2010; Meier-Kolthoff et al. 2013).

Results and discussion

Molecular phylogenetic analysis

The 16S rRNA gene sequence (1408  bp) used NCBI’s 
BLAST search (http:// www. ncbi. nlm. nih. gov/ blast) and the 

Fig. 1  The maximum-likelihood 
(ML) tree based on partial 
16S rRNA gene (1210 bp) 
sequence comparison showing 
the relationships between strain 
CM-3-T8T and related strains of 
the family Lysobacter; bootstrap 
values > 50%, based on 1000 
replications, are shown at 
branch points; bar corresponds 
to 0.005 substitutions per nucle-
otide position. Xanthomonas 
campestris strain LMG  568 T 
was using as the outgroup

Fig. 2  Scanning transmission 
electron microscopic of cells of 
strain CM-3-T8T; cells were cul-
tured in TSA medium at 30 °C 
for 20 h; scale bar 2 μm

http://www.ncbi.nlm.nih.gov/blast
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EzTaxone server (www. ezbio cloud. net) to identify phylo-
genetic neighbors and calculate pairwise sequence similari-
ties. Lysobacter soli  DCY21T and Lysobacter panacisoli 
 CJ29T exhibited the greatest similarity to the strain CM-
3-T8T (98.84% and 98.44% identities). The 16S rRNA gene 
sequence was deposited in the GenBank/EMBL/DDBJ data-
base under accession number MW295626. The phylogenetic 
trees (Figs. 1, S1, S2) demonstrated that strain CM-3-T8T 
belonged to the genus Lysobacter and formed a cluster with 
strains Lysobacter soli  DCY21T and Lysobacter panacisoli 
 CJ29T and other type strains were in different clades dis-
persedly in the maximum-likelihood, neighbor-joining, and 
minimum-evolution trees. In conclusion, Lysobacter soli 
 DCY21T and Lysobacter panacisoli  CJ29T were chosen as 
reference strains for further study.

Physiology and chemotaxonomy analysis

Cells of strain CM-3-T8T were Gram-negative, non-spore-
forming, aerobic, short rods (0.4–0.7 μm × 0.8–1.6 μm), 
commonly observed as single cells under the microscope 
(Fig.  2). Strain CM-3-T8T can grow at 25–37  °C, pH 
5.0–10.0, and in the presence of 0–8% (w/v) NaCl. The 
results of enzyme activities and other biochemical tests 
were listed in the species description (Table 1). Although 
strain CM-3-T8T shared many phenotypic features with 
closely related taxa Lysobacter soli  DCY21T and Lysobac-
ter panacisoli  CJ29T, there were some differences among 
them. Strain CM-3-T8T showed N-acetyl-D-glucosamine, 
N-acetyl-β-D-mannosamine, L-glutamic acid, and lithium 
chloride reactions are positive, but L. panacisoli  CJ29T 
and L. soli  DCY21T were negative for these characteristics. 
Whole cell fatty acid analysis revealed that the predominant 
fatty acids in strain CM-3-T8T were  C15:0 iso (36.15%),  C17:0 
iso (8.40%), and  C11:0 iso 3OH (8.28%). These results were 
in line with other members of the genus Lysobacter. Nev-
ertheless, there were several differences in the proportions 
of some fatty acids, such as more  C15:0 iso and  C15:0 anteiso 
(Table 2). The major polar lipids of strain CM-3-T8T contain 
phosphatidylethanolamine (PE), phosphatidylethanolamine 
(PME), diphosphatidylglycerol (DPG), aminophospholipid 
(APL), small account of phosphatidylmonomethylethanola-
mine (PL), phosphatidylglycerol (PG), and unknownpolar-
lipids (Fig. S3). Q-8 was found to be the major quinone, 
in agreement with other members of the genus Lysobacter 
(Fig. S4).

Genome features

The DNA G + C content of strain was estimated at 68.4% 
(mol/mol) according to the draft genome of strain CM-3-T8T, 
which is in the range of the genus Lysobacter 66.8–72.2% 
(mol/mol). The estimated DNA-DNA hybridization (dDDH) 

values for strain CM-3-T8T with strains Lysobacter soli 
 DCY21T and Lysobacter panacisoli  CJ29T were 34.3% and 
27%, respectively. The average nucleotide identity (ANI) 
values of CM-3-T8T with the Lysobacter soli  DCY21T and 

Table 1  Differential phenotypic characteristics between strain CM-
3-T8T and closely related type strains in the genus Lysobacter 

a ( +)—positive, ( −)—negative, (W)—weakly positive; (N)—no data
b Strains: 1—CM-3-T8T (this study); 2—Lysobacter panacisoli  CJ29T 
(this study); 3—Lysobacter soli  DCY21T (this study)

Characteristicsa 1b 2b 3b

Morphology Short rods Rod Rod
pH range for growth
(optimum)

5–10
(7–9)

5–11
(7)

5–10.5
(7–7.5)

Temperature range for growth (°C)
(optimum)

25–37
(30)

10–42
(30)

4–42
(30)

NaCl for growth (%, W/V)
(optimum)

0–8 0–1
(1)

N

BIOLOG
   pH 6  +  + W
   N-Acetyl-D-glucosamine  +  −  − 
   N-Acetyl-β-D-mannosamine  +  −  − 
    1% NaCl  +  + W
    D-Galactose  +  + W
   L-Fucose  + W W
   L-Rhamnose W  −  − 
   1% sodium lactate  +  −  − 
   D-Fructose-6-PO4  −  − W
   L-Glutamic acid  +  −  − 
   Guanidine HCl  +  − W
   D-Galacturonic acid  +  +  − 
   D-Glucuronic acid  +  + W
   Lithium chloride  +  −  − 
   Tween 40 W  −  − 
   Sodium butyrate  −  −  + 

API ZYM
   Cystinol arylamidase  +  + W
   Trypsin W W  − 
   Chymotrypsin  +  +  − 
   α-Glucosidase  +  +  − 
   β-Glucosidase  −  −  + 

API 20NE
   4-Nitroso-β-D-methyl galactose W W  − 
   D-Glucose  + W  + 
   Gluconate W W  − 

API 50CH
   Galactose W  − W
   Glucose  − W W
   Geranyl  −  − W
   D-Lyxose W  − W
   D-Fucose  +  − W
   5-Keto-gluconate  − W  − 

http://www.ezbiocloud.net
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Lysobacter panacisoli  CJ29T are between 76.3 and 79.6% 
(Fig. 3). The average nucleotide identity and in silico esti-
mated DNA-DNA reassociation values among strain CM-
3-T8T, strains Lysobacter soli  DCY21T and Lysobacter pana-
cisoli  CJ29T were in all cases below the respective threshold 
for species differentiation (95–96% for ANI, 70% for dDDH) 
(Lee et al. 2016), suggesting that strains be proposed as a 
novel species of the genus Lysobacter. The whole-genome 
phylogenetic tree was constructed with other eleven pub-
licly available Lysobacter species genomes (Fig. 4), showing 
the close phylogenetic relationship between closely related 
type strains Lysobacter panacisoli  CJ29T, Lysobacter soli 
 DCY21T and strain CM-3-T8T, suggesting that strain CM-
3-T8T was affiliated to the genus Lysobacter. The genome 
of strain CM-3-T8T was sequenced and compared to two 
reference genomes of Lysobacter species (Table 3). These 
genomic features can distinguish strain CM-3-T8T from its 
closely related strains.

Lysobacter spp. are widely distributed and exhibit 
remarkable bactericidal activity against a wide range of 
phytopathogenic fungi, bacteria, and nematodes. The vast 
majority of Lysobacter spp. adapt to the soil environ-
ment; among the 70 species of the genus, 56 species were 
isolated from soil. These soil types include greenhouse 
soil with relatively high humidity (Weon et al. 2006), dry 
soil with strong ultraviolet radiation (Zhang et al. 2011), 
saline-alkali soil (Xu et al. 2020), oil-contaminated soil 

Table 2  Fatty acid compositions of strain CM-3-T8T and closely 
related type strains in the genus Lysobacter 

a Values are percentages of total fatty acids; (–)—not detected
b Strains: 1—CM-3-T8T (this study); 2—Lysobacter panacisoli  CJ29T 
(this study); 3—Lysobacter soli  DCY21T (this study)
c Sum In Feature 3 comprises  C16:1 ω7c/C16:1 w6c or  C16:1 ω6c/C16:1 
ω7c, Sum In Feature 9 comprises  C16:1 10-methyl or  C17:1 iso ω9c

Fatty acida 1b 2b 3b

Saturated fatty acid
    C14:0 0.32 0.42 0.35
    C16:0 1.87 2.52 1.64

Branched
    C11:0 iso 6.04 7.66 6.01
    C13:0 iso 0.22 0.45 0.20
    C14:0 iso 0.55 0.60 0.46
    C15:1 iso F 0.88 3.08 0.24
    C15:0 iso 36.15 35.60 34.45
    C15:0 anteiso 2.28 0.56 1.92
    C16:0 iso 5.83 2.91 5.54
    C17:0 iso 8.40 7.23 12.13
    C17:0 anteiso 0.39 – 0.42

Cyclopropane acids
    C17:0 cyclo 0.20 0.12 –

Hydroxy
    C11:0 iso 3OH 8.28 9.48 7.34
   Sum In Feature  3c 5.54 2.44 4.88
   Sum In Feature  9c 20.10 25.64 22.79

Fig. 3  Analysis of Lysobacter genomes. a The DNA-DNA hybridization (dDDH) values between CM-3-T8T and the selected reference strains; b 
overall orthologous average nucleotide identity (ANI) among pairwise Lysobacter genomes. Values in heatmap indicate the similarity percentage
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(Chaudhary et al. 2017), and alpine forest soil (Margesin 
et al. 2018), indicating that Lysobacter bacteria have a 
wide range of adaptability in soil. The strain CM-3-T8T in 
this study was also isolated from soil. Unlike other pub-
lished strains of the genus Lysobacter, strain CM-3-T8T 
can utilize multiple carbon sources, such as N-acetyl-D-
glucosamine, N-acetyl-β-D-mannosamine, 1% sodium lac-
tate, L-fucose, L-glutamic acid, guanidine HCl, lithium 
chloride, and D-fucose, which contributes to its distribu-
tion. N-acetyl-D-glucosamine is one of the monomers of 
chitin, glycosaminoglycans, and glycoproteins and plays 
an important role in the formation of microbial cell walls 
(Mobley et al. 1982). Strain CM-3-T8T exhibits the ability 
to oxidize N-acetyl-D-glucosamine, which may contribute 
to its antibacterial activity. Many reported Lysobacter spp. 
have demonstrated significant antagonistic effects against 
a variety of pathogens. In our future work, we will study  
and evaluate the biocontrol potential and mechanism of 
strain CM-3-T8T. We will assess its biocontrol potential 

under different environmental conditions, including its 
ability to inhibit various plant pathogens and promote crop 
growth. Our studies will help to uncover the biocontrol 
potential and mechanism of CM-3-T8T, providing a theo-
retical basis and technical support for its application in 
agricultural production.

Conclusion

In conclusion, the characteristics of the novel species are con-
sistent with the description of the genus Lysobacter according 
to morphological, biochemical, and chemotaxonomic proper-
ties, but there are several differences between CM-3-T8T and 
other published members of the genus Lysobacter. Phyloge-
netic and chemotaxonomic analyses demonstrate that strain 
CM-3-T8T represents a novel species within the genus Lyso-
bacter. The genome sequence of strain CM-3-T8T was depos-
ited in the GenBank/EMBL/DDBJ database under accession 
number GCA_017308985.

Fig. 4  Phylogenomic tree 
generated with Genome-to-
Genome Distance Calculator 
(GGDC); the numbers at the 
nodes indicate the gene support 
index; bar corresponds to 0.02 
substitutions per position. Strain 
Encephalitozoon cuniculi GB 
 M1T was using as outgroup

Table 3  Feature’s comparison 
of three Lysobacter sp. genomes

Genomics feature Lysobacter 
changpingensis 
CM-3-T8T

Lysobacter panacisoli 
CJ29T

Lysobacter 
soli DCY21T

Genome size (bp) 4,059,994 3,879,713 3,953,742
G + C content (% mol/mol) 68.24 67.5 67.65
Contigs 9 3 27
Contig N50 1,171,793 2,610,236 285,382
Component sequences (WGS or clone) 9 2 27
Protein 3635 3585 13,670
Gene 3635 3626 3741
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Description of Lysobacter changpingensis sp. 
nov

Lysobacter changpingensis (chang.ping.en’sis. N.L. masc. 
adj. changping of a district in Beijing of China, where the 
type strain was isolated).

Cells are Gram-negative, non-spore-forming, aerobic, short 
rods, commonly observed as single cells under the micro-
scope. Lysobacter changpingensis can grow at 25–37 °C 
(optimum, 30 °C) and at pH 5.0–10.0 (optimum, pH 7.0–9.0). 
The salt tolerance range for growth is 0–8% (w/v) NaCl. The 
major cellular fatty acids are comprised of  C15:0 iso (36.15%), 
 C17:0 iso (8.40%), and  C11:0 iso 3OH (8.28%). Reactions 
are positive for N-acetyl-D-glucosamine, N-acetyl-β-D-
mannosamine, 1% NaCl, D-galactose, L-fucose, 1% sodium 
lactate, L-glutamic acid, guanidine HCl, D-galacturonic acid, 
D-glucuronic acid, and lithium chloride in BIOLOG strip; 
cystinol arylamidase, chymotrypsin, and α-glucosidase in 
API ZYM strip; D-glucose in API 20NE strip; and D-fucose 
in API 50CH strip. Resistant to D-fructose-6-PO4, sodium 
butyrate, β-glucosidase, glucose, geranyl, and 5-keto-
gluconate, while weakly sensitive to L-rhamnose, tween 
40, trypsin, 4-nitroso-β-D-methyl galactose, gluconate, 
galactose, and D-lyxose. Strain CM-3-T8T mainly contains 
phosphatidylethanolamine (PE), phosphatidylethanolamine 
(PME), diphosphatidylglycerol (DPG), aminophospholipid 
(APL), small account of phosphatidylmonomethylethanola-
mine (PL), unknownpolarlipids (L), and phosphatidylglycerol 
(PG). The major quinone system is ubiquinone Q-8.

The type strain of Lysobacter changpingensis is CM-3-T8T 
(= ACCC  61731 T = JCM  33722 T), isolated from the rhizo-
sphere of strawberry in Changping district, Beijing, China. 
The DNA G + C content is 68.24% (mol/mol). The 16S rRNA 
gene sequence is deposited in the GenBank/EMBL/DDBJ 
database under accession number MW295626. The genome 
sequence is deposited in the GenBank/EMBL/DDBJ database 
under accession number GCA_017308985.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12223- 023- 01058-8.
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