Skip to main content
Log in

Wearable Heated Fabrics with Hierarchically Self-Assembled Photothermal Nanoparticles Coatings for Thermotherapy Application

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

To prepare wearable heated fabric with effective photothermal conversion property for human thermotherapy, silver (Ag) and gold nanoparticles (Au NPs) with thermoplasmonic effect were hierarchically deposited on the cellulose fabric through spray-assisted self-assembly technique, and thus fabricated Ag/Au NPs composite-coated fabric with compactly arranged nanostructures. The surface morphology of Ag/Au NPs-coated fabric was observed by scanning electron microscope (SEM), the light absorption ability was characterized through ultraviolet–visible–near infrared (UV–Vis–NIR) spectra and the correspondingly calculated optical absorbed power, and the photothermal effect was monitored by photothermal conversion test under simulated and natural solar irradiation, respectively. The results showed that the different-sized Ag and Au NPs were distributed randomly on the surface of cellulose fibers, and the small Au NPs were deposited densely in the gaps between large-sized Ag NPs. The composite-coated fabric exhibited the characteristic plasmonic peaks from Ag and Au NPs and enhanced the spectral absorption ability in the UV–Vis–NIR wavelength range, and the surface temperature of the composite-coated fabric reached ~ 48 °C under solar irradiation of 1 kW m−2, and thus improved photothermal conversion performance with ΔT ~ 20 °C compared with pristine fabric. Furthermore, the composite coatings deposited on fabric displayed favorable photothermal stability under cyclic utilization and washing treatment, as wells as the good thermochromic performance for temperature indication. The exploration of the composite-coated fabric with photothermal effect provides a feasible strategy for wearable thermotherapy application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data are available from the corresponding authors upon reasonable request.

References

  1. W. Weng, J. Yang, Y. Zhang, Y. Li, S. Yang, L. Zhu, M. Zhu, Adv. Mater. 32, 5 (2020)

    Google Scholar 

  2. Y. Chen, P. Pötschke, J. Pionteck, B. Voit, H. Qi, J. Mater. Chem. A 6, 17 (2018)

    Google Scholar 

  3. D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 47, 6 (2018)

    Google Scholar 

  4. M.A. Cimmino, P. Sarzi-Puttini, R. Scarpa, R. Caporali, F. Parazzini, A. Zaninelli, R. Marcolongo, Semin. Arthritis and Rheu. 35, 1 (2005)

    Google Scholar 

  5. P. Sarzi-Puttini, M.A. Cimmino, R. Scarpa, R. Caporali, F. Parazzini, A. Zaninelli, F. Atzeni, B. Canesi, Semin. Arthritis and Rheu. 35, 1 (2005)

    CAS  Google Scholar 

  6. J. Nakano, C. Yamabayashi, A. Scott, W.D. Reid, Phys. Ther. Sport 13, 3 (2012)

    Google Scholar 

  7. R. Habash, R. Bansal, D. Krewski, H.T. Alhafid, Crit. Rev. Biomed. Eng. 34, 6 (2006)

    Google Scholar 

  8. S. Michlovitz, L. Hun, G.N. Erasala, D.A. Hengehold, K.W. Weingand, Arch. Phys. Med. Rehab. 85, 9 (2004)

    Google Scholar 

  9. R. Zhou, P. Li, Z. Fan, D. Du, J. Ouyang, J. Mater. Chem. C 5, 6 (2017)

    Google Scholar 

  10. G.A. Halvorson, Physician Sportsmed. 18, 5 (1990)

    Google Scholar 

  11. W. Wang, X. Fan, J. Qiu, M. Umair, B. Ju, S. Zhang, B. Tang, Chem. Eng. J. 358, 6 (2019)

    Google Scholar 

  12. W.A. Sands, W.L. Kimmel, B.R. Wurtz, M.H. Stone, J.R. McNeal, Wild. Environ. Med. 20, 1 (2009)

    Google Scholar 

  13. N.S. Jang, K.H. Kim, S.H. Ha, S.H. Jung, H.M. Lee, J.M. Kim, A.C.S. Appl, Mater. Interfaces 9, 23 (2017)

    Google Scholar 

  14. S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y.B. Lee, C. Song, H.J. Hwang, J.H. Kim, T. Hyeon, D.H. Kim, ACS Nano 9, 6 (2015)

    Google Scholar 

  15. A. Hazarika, B.K. Deka, D. Kim, H.E. Jeong, Y.B. Park, H.W. Park, Nano Lett. 18, 11 (2018)

    Google Scholar 

  16. X. Zhao, L.Y. Wang, C.Y. Tang, X.J. Zha, Y. Liu, B.H. Su, K. Ke, R.Y. Bao, M.B. Yang, W. Yang, ACS Nano 14, 7 (2020)

    Google Scholar 

  17. L. Yu, S. Parker, H. Xuan, Y. Zhang, S. Jiang, M. Tousi, M. Manteghi, A. Wang, X. Jia, Adv. Funct. Mater. 30, 9 (2020)

    Google Scholar 

  18. L. Qin, Q. Tao, X. Liu, M. Fahlman, J. Halim, P. Persson, J. Rosen, F. Zhang, Nano Energy 60, 734 (2019)

    CAS  Google Scholar 

  19. X. Zhao, L.M. Peng, C.Y. Tang, J.H. Pu, X.J. Zha, K. Ke, R.Y. Bao, M.B. Yang, W. Yang, Mater. Horiz. 7, 3 (2020)

    Google Scholar 

  20. J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool, H. Jiang, F. Xiong, M. Qin, S. Gao, R. Zou, J. Mater. Chem. A 8, 38 (2020)

    Google Scholar 

  21. Y. Cheng, H. Zhang, R. Wang, X. Wang, H. Zhai, T. Wang, Q. Jin, J. Sun, A.C.S. Appl, Mater. Interfaces 8, 48 (2016)

    Google Scholar 

  22. T. Qian, J. Li, X. Min, W. Guan, Y. Deng, L. Ning, J. Mater. Chem. A 3, 16 (2015)

    Google Scholar 

  23. A. Hazarika, B.K. Deka, C. Jeong, Y.B. Park, H.W. Park, Adv. Funct. Mater. 29, 31 (2019)

    Google Scholar 

  24. Q. Ye, P. Tao, C. Chang, L. Zhou, X. Zeng, C. Song, W. Shang, J. Wu, T. Deng, A.C.S. Appl, Mater. Interfaces 11, 3 (2019)

    Google Scholar 

  25. X. Liu, X. Jin, L. Li, J. Wang, Y. Yang, Y. Cao, W. Wang, J. Mater. Chem. A 8, 25 (2020)

    Google Scholar 

  26. Z. Wang, A. Roffey, R. Losantos, A. Lennartson, M. Jevric, A.U. Petersen, M. Quant, A. Dreos, X. Wen, D. Sampedro, K. Börjesson, K. Moth-Poulsen, Energ. Environ. Sci. 12, 1 (2019)

    Google Scholar 

  27. D. Mills, Sol. Energy 76, 1–3 (2004)

    Google Scholar 

  28. S. Hou, M. Wang, S. Guo, M. Su, A.C.S. Appl, Mater. Interfaces 9, 31 (2017)

    Google Scholar 

  29. C. Chang, X. Nie, X. Li, P. Tao, B. Fu, Z. Wang, J. Xu, Q. Ye, J. Zhang, C. Song, W. Shang, T. Deng, J. Mater. Chem. A 8, 40 (2020)

    Google Scholar 

  30. M. Shang, S. Zhang, N. Li, X. Gu, L. Li, Z. Wang, Sol. Energ. Mat. Sol. C. 164, 188 (2017)

    CAS  Google Scholar 

  31. G. Frens, Nature 241, 20 (1973)

    CAS  Google Scholar 

  32. M. Guo, Q. Yu, X. Wang, W. Xu, Y. Ma, J. Yu, B. Ding, A.C.S. Appl, Mater. Interfaces 13, 4 (2021)

    Google Scholar 

  33. M. Guo, L. Gao, Y. Wei, Y. Ma, J. Yu, B. Ding, Sol. Energ. Mat. Sol. C. 219, 11076 (2021)

    Google Scholar 

  34. M. Guo, P. Liu, B. Huang, Y. Qiu, Y. Wei, Y. Ma, Appl. Surf. Sci. 476, 1072 (2019)

    CAS  Google Scholar 

  35. T. Zhang, H. Li, S. Hou, Y. Dong, G. Pang, Y. Zhang, A.C.S. Appl, Mater. Interfaces 7, 2713 (2015)

    Google Scholar 

  36. J.H. Yoon, Y. Zhou, M.G. Blaber, G.C. Schatz, S. Yoon, J. Phys. Chem. Lett. 4, 1371 (2013)

    CAS  PubMed  Google Scholar 

  37. S. Sheikholeslami, Y. Jun, P.K. Jain, A.P. Alivisatos, Nano Lett. 10, 2655 (2010)

    CAS  PubMed  Google Scholar 

  38. G. Jönsson, D. Tordera, T. Pakizeh, M. Jaysankar, V. Miljkovic, L. Tong, M.P. Jonsson, A. Dmitriev, Nano Lett. 17, 6766 (2017)

    PubMed  Google Scholar 

  39. J. Chen, J. Feng, Z. Li, P. Xu, X. Wang, W. Yin, M. Wang, X. Ge, Y. Yin, Nano Lett. 19, 400 (2019)

    CAS  PubMed  Google Scholar 

  40. D. Cao, C. Xu, W. Lu, C. Qin, S. Cheng, Sol. RRL 2, 4 (2018)

    Google Scholar 

  41. K. Wu, J. Chen, J.R. McBride, T. Lian, Science 349, 6248 (2015)

    Google Scholar 

  42. M.L. Brongersma, N.J. Halas, P. Nordlander, Nat. Nanotechnol. 10, 1 (2015)

    Google Scholar 

  43. Y. Zhang, Z. Hu, H. Xiang, G. Zhai, M. Zhu, Dyes Pigments 162, 705 (2019)

    CAS  Google Scholar 

  44. I.J. Kim, M. Ramalingam, Y.A. Son, Dyes Pigments 151, 64 (2018)

    CAS  Google Scholar 

  45. M. Sun, J. Lv, H. Xu, L. Zhang, Y. Zhong, Z. Chen, X. Sui, B. Wang, X. Feng, Z. Mao, Cellulose 27, 2939 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province of China (No. ZR2022QE211), Natural Science Foundation of Shandong Province of China (No. ZR2020QE095), Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, China (No. FKLTFM1820), Open Fund of State Key Laboratory of Biobased Fiber Manufacturing Technology (No. SKL202204), Opening Project of Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province (No.QJRZ2113), Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing (Wuhan Textile University) (No. STRZ202107), Laboratory Construction Project of Shandong University of Technology (No. 2022018), Doctoral Research Startup Foundation of Shandong University of Technology (No. 4033/721025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggui Li or Zhaohui Jiang.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Li, Z., Lei, Y. et al. Wearable Heated Fabrics with Hierarchically Self-Assembled Photothermal Nanoparticles Coatings for Thermotherapy Application. Fibers Polym 24, 4203–4212 (2023). https://doi.org/10.1007/s12221-023-00379-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00379-2

Keywords

Navigation