Skip to main content
Log in

The Effects of Polyethylene Glycol on the Spinnability of Dry-jet Wet Spinning Heterocycle Aramid Fiber

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The spinnability of semi-dilute poly(p-phenylene-benzimidazole-terephthamide) (PBIA) spinning solution was regulated by a small amount of polyethylene glycol (PEG) to make it suitable for dry-jet wet spinning. The effects of different molecular weights and contents of PEG on the rheological properties and spinnability of PBIA spinning solution were investigated. Results show that the PBIA spinning solution with PEG 50,000 has the highest viscosity and the best spinnability, which can be smoothly spun by dry-jet wet spinning. The dynamic viscoelasticity study shows that the energy storage modulus and loss modulus of the PBIA spinning solution keeps increasing with PEG 50,000 and achieves the maximum value of 0.5% wt. The maximum draw ratio between the first roll and the spinneret (Dm) also reached a maximum value of 3.0 when the addition of PEG 50,000 reached 0.5% wt. Moreover, primary PBIA fibers prepared by dry-jet wet spinning and a higher draw ratio have a smoother surface appearance and better mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3

Similar content being viewed by others

References

  1. I.V. Tikhonov, A.V. Tokarev, S.V. Shorin, V.M. Shchetinin, T.E. Chernykh, V.G. Bova, Fibre Chem. 45, 1 (2013)

    Article  CAS  Google Scholar 

  2. L.A. Andres, J.M. Deitzel, S.H. Mcknight, J.W. Gillespie, Polymer 50, 1228 (2009)

    Article  Google Scholar 

  3. K.E. Perepelkin, N.N. Machalaba, V.A. Kvartskheliya, Fibre Chem. 33, 105 (2001)

    Article  CAS  Google Scholar 

  4. N.N. Machalaba, K.E. Perepelkin, J. Ind. Text. 31, 189 (2002)

    Article  CAS  Google Scholar 

  5. C. Teng, H. Li, J. Liu, H. Gu, K. Haijuan, M. Yu, Polymers 12, 1206 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Rebouillat, J.C.M. Peng, J.B. Donnet, Polymer 40, 7341 (1999)

    Article  CAS  Google Scholar 

  7. L. Tan, A. Wan, D. Pan, Mater. Lett. 65, 887 (2011)

    Article  CAS  Google Scholar 

  8. J.N. Wang, W. Dong, J.C. Yu, C.L. Yang, L.J. Xie, Y.M. Zhang, Mater. Res. Innovations 19(S9), 273 (2015)

    Google Scholar 

  9. X. Zeng, J. Chen, J. Zhao, C. Wu, D. Pan, N. Pan, J. Appl. Polym. Sci. 114, 3621 (2009)

    Article  CAS  Google Scholar 

  10. P. Zhou, C. Lu, Y. Liu, Carbon 143, 200–203 (2018)

    Google Scholar 

  11. L. Tan, H. Chen, D. Pan, N. Pan, J. Appl. Polym. Sci. 110, 1997 (2008)

    Article  CAS  Google Scholar 

  12. A. Ziabicki, R. Takserman-Krozer, Kol. Zeit. Polym. 198, 60 (1964)

    Article  Google Scholar 

  13. Y. Demay, J.F. Agassant, Int. Polym. Process. 29, 128 (2014)

    Article  CAS  Google Scholar 

  14. S. Arora, A. Shabbir, O. Hassager, C. Ligoure, L. Ramos, J. Rheol. 61, 1267 (2017)

    Article  CAS  Google Scholar 

  15. J. Bengtsson, K. Jedvert, T. Kohnke, H. Theliander, J. Appl. Polym. Sci. 136, 47800 (2019)

    Article  Google Scholar 

  16. D. Paul, J. Appl. Polym. Sci. 12, 2273 (1968)

    Article  CAS  Google Scholar 

  17. Y. Ide, J.L. White, J. Non-Newtonian Fluid Mech. 2, 281 (1977)

    Article  CAS  Google Scholar 

  18. J. Bengtsson, K. Jedvert, T. Kohnke, and H. Theliander, J. Appl. Polym. Sci. 138, e50629 (2021)

    Article  Google Scholar 

  19. Q. Liu, K. Cao, S. Qi, Y. Yang, S. Liang, H. Gao, C. Yang, D. Li, M. Jiang, Fibers Polym. 21, 1438 (2020)

    Article  CAS  Google Scholar 

  20. A. Michud, M. Hummel, H. Sixta, Polymer 75, 1 (2015)

    Article  CAS  Google Scholar 

  21. L. Palangetic, N.K. Reddy, S. Srinivasan, R.E. Cohen, G.H. Mckinley, C. Clasen, Polymer 55, 4920 (2014)

    Article  CAS  Google Scholar 

  22. S. Zhang, R. Wang, Y. Liao, Carbon 159, 688 (2020)

    Article  Google Scholar 

  23. L. Luo, Y. Wang, J. Huang, D. Hong, X. Wang, X. Liu, RSC Adv. 6, 62695 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Science and Technology Planning Project (Project No. 2019ZDZX0016), and the Fundamental Research Funds for Central Universities. The authors gratefully acknowledge the State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University and the Analytical &Testing Centre of Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjin Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1488 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Xie, Q., Feng, W. et al. The Effects of Polyethylene Glycol on the Spinnability of Dry-jet Wet Spinning Heterocycle Aramid Fiber. Fibers Polym 24, 3861–3867 (2023). https://doi.org/10.1007/s12221-023-00363-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00363-w

Keywords

Navigation