Skip to main content
Log in

Electrospinning Inorganic/Organic Nanohybridization Membranes with Hydrophobic and Oleophobic Performance

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polytetrafluoroethylene (PTFE) nano-porous membrane has been widely used in various fields due to its excellent thermal stability and chemical stability. However, PTFE nanofiber membranes with simultaneous hydrophobic and oleophobic properties are essential to promote the application of PTFE. Here, based on inorganic/organic nanohybridization, we report a strategy for constructing nanostructures on fibers by adding nanoparticles, such as MOF and ZrO2. The results of FTIR and XRD confirmed MOF was synthesized successfully. At the same time, the SEM results showed UiO-66-(COOH)2 is spherical with an average diameter of 152 nm, and there is no agglomeration, which is suitable for electrospinning. Further, MOF and ZrO2 were payload into PTFE nanofibers. The results of SEM and AFM confirmed nanostructures will be more uniform and pronounced with the increase of UiO-66-(COOH)2 content, and nanostructures are most obvious when the content of UiO-66-(COOH)2 is 15%. The introduced nanostructures can increase the oil contact angle of the PTFE nano-porous membrane to 110° without introducing other groups, and further improve the water contact angle from 133° to 145°. Meanwhile, the introduction of a certain amount of hydrophilia groups can increase the oil contact angle to more than 120°. The simple strategy is of great significance to expand the application of PTFE fiber membrane in dealing with waste water treatment fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. A. Wang, X. Li, T. Hou, Y. Lu, J. Zhou, X. Zhang, B. Yang, Mater. Lett. 295, 129831 (2021)

    CAS  Google Scholar 

  2. Q. Huang, C. Xiao, X. Hu, X. Li, Desalination 277, 187 (2011)

    CAS  Google Scholar 

  3. X. Wang, J. Gao, J. Zhang, X. Zhang, R. Guo, Chem. Eng. Technol. 38, 215 (2015)

    CAS  Google Scholar 

  4. Z. Ding, R. Ma, A.G. Fane, Desalination 151, 217 (2003)

    CAS  Google Scholar 

  5. P. Xu, Z. Jin, T. Zhang, X. Chen, M. Qiu, Y. Fan, Ind. Eng. Chem. Res. 60, 2492 (2021)

    CAS  Google Scholar 

  6. P. Zhao, N. Soin, K. Prashanthi, J. Chen, S. Dong, E. Zhou, Z. Zhu, A.A. Narasimulu, C.D. Montemagno, L. Yu, J. Luo, ACS Appl. Mater. Interfaces. 10, 5880 (2018)

    CAS  PubMed  Google Scholar 

  7. Y. Huang, Q. Huang, H. Liu, C. Zhang, Y. You, N. Li, C. Xiao, J. Membr. Sci. 523, 317 (2017)

    CAS  Google Scholar 

  8. J. Cheng, Q. Huang, Y. Huang, W. Luo, Q. Hu, C. Xiao, J. Membr. Sci. 603, 118014 (2020)

    CAS  Google Scholar 

  9. C. Xu, J. Fang, Z. Low, S. Feng, M. Hu, Z. Zhong, W. Xing, Ind. Eng. Chem. Res. 57, 10431 (2018)

    CAS  Google Scholar 

  10. J. Yong, F. Chen, Q. Yang, J. Huo, X. Hou, Chem. Soc. Rev. 46, 4168 (2017)

    CAS  PubMed  Google Scholar 

  11. S. Wu, Y. Wang, M. Iqbal, K. Mehmood, Y. Li, Z. Tang, H. Zhang, Environ. Pollut. 304, 119241 (2022)

    CAS  PubMed  Google Scholar 

  12. M.N. Ahmad, A. Zia, L. van den Berg, Y. Ahmad, R. Mahmood, K.M. Dawar, S.S. Alam, M. Riaz, M. Ashmore, Environ. Pollut. 298, 118820 (2022)

    CAS  PubMed  Google Scholar 

  13. Y. Lin, F. Liu, China Econ. Rev. 63, 101282 (2020)

    Google Scholar 

  14. Z. Meng, Q. Wang, X. Qu, C. Zhang, J. Li, J. Liu, Z. Yang, Polymer 52, 597 (2011)

    CAS  Google Scholar 

  15. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 14, 1857 (2002)

    CAS  Google Scholar 

  16. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)

    CAS  Google Scholar 

  17. Y. Chujo, KONA-Powder Part. 25, 255 (2007)

    Google Scholar 

  18. K. Li, Y. Zhang, L. Xu, F. Zeng, D. Hou, J. Wang, J. Membr. Sci. 550, 126 (2018)

    CAS  Google Scholar 

  19. D. Hou, J. Wang, D. Qu, Z. Luan, X. Ren, Sep. Purif. Technol. 69, 78 (2009)

    CAS  Google Scholar 

  20. B.B. Ashoor, S. Mansour, A. Giwa, V. Dufour, S.W. Hasan, Desalination 398, 222 (2016)

    CAS  Google Scholar 

  21. I. Ochoa, S.G. Hatzikiriakos, Powder Technol. 153, 108 (2005)

    CAS  Google Scholar 

  22. W. Ma, J. Zhao, O. Oderinde, J. Han, Z. Liu, B. Gao, R. Xiong, Q. Zhang, S. Jiang, C. Huang, J. Colloid Interface Sci. 532, 12 (2018)

    CAS  PubMed  Google Scholar 

  23. W. Ma, Z. Guo, J. Zhao, Q. Yu, F. Wang, J. Han, H. Pan, J. Yao, Q. Zhang, S.K. Samal, S.C. De Smedt, C. Huang, Sep. Purif. Technol. 177, 71 (2017)

    CAS  Google Scholar 

  24. Y. Liao, C. Loh, M. Tian, R. Wang, A.G. Fane, Prog. Polym. Sci. 77, 69 (2018)

    CAS  Google Scholar 

  25. J. Ju, W. Kang, L. Li, H. He, C. Qiao, B. Cheng, Mater. Lett. 171, 236 (2016)

    CAS  Google Scholar 

  26. A. Ranjbarzadeh-Dibazar, P. Shokrollahi, J. Barzin, A. Rahimi, J. Membr. Sci. 470, 458 (2014)

    CAS  Google Scholar 

  27. J.G. Drobny, Technology of fluoropolymers (CRC Press, Boca Raton, 2008)

    Google Scholar 

  28. M. Ding, R.W. Flaig, H. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48, 2783 (2019)

    CAS  PubMed  Google Scholar 

  29. W. Li, Y. Zhang, Z. Xu, Q. Meng, Z. Fan, S. Ye, G. Zhang, Angew. Chem. Int. Ed. 55, 955 (2016)

    CAS  Google Scholar 

  30. Y. Peng, Y. Zhang, Q. Tan, H. Huang, ACS Appl. Mater. Interfaces. 13, 27049 (2021)

    CAS  PubMed  Google Scholar 

  31. S. Ding, T. Zhang, P. Li, X. Wang, J. Membr. Sci. 636, 119550 (2021)

    CAS  Google Scholar 

  32. X. Zhang, Q. Hu, T. Xia, J. Zhang, Y. Yang, Y. Cui, B. Chen, G. Qian, ACS Appl. Mater. Interfaces. 8, 32259 (2016)

    CAS  PubMed  Google Scholar 

  33. D. Wu, G. Maurin, Q. Yang, C. Serre, H. Jobic, C. Zhong, J. Mater. Chem. A 2, 1657 (2014)

    CAS  Google Scholar 

  34. X. Zhu, S. Feng, S. Zhao, F. Zhang, C. Xu, M. Hu, Z. Zhong, W. Xing, J. Membr. Sci. 594, 117473 (2020)

    Google Scholar 

  35. H. Zhao, X. Li, X. Ding, L. Zhang, Y. Zhang, J. Appl. Polym. Sci. 139, 51695 (2022)

    CAS  Google Scholar 

  36. X. Dai, Y. Cao, X. Shi, X. Wang, Adv. Mater. Interfaces 3, 1600725 (2016)

    Google Scholar 

  37. R.L. Grosso, J.R. Matos, E.N.S. Muccillo, J. Therm. Anal. Calorim. 117, 567 (2014)

    CAS  Google Scholar 

  38. N.D. Alkhathami, N.A. Alamrani, A. Hameed, S.D. Al-Qahtani, R. Shah, N.M. El-Metwaly, Polyhedron 235, 116349 (2023)

    CAS  Google Scholar 

  39. X. Hua, G. Gao, S. Pan, Anal. Bioanal. Chem. 410, 7749 (2018)

    CAS  PubMed  Google Scholar 

  40. J. Ju, K. Fejjari, Y. Cheng, M. Liu, Z. Li, W. Kang, Y. Liao, Desalination 486, 114481 (2020)

    CAS  Google Scholar 

  41. M. Yao, L.D. Tijing, G. Naidu, S. Kim, H. Matsuyama, A.G. Fane, H.K. Shon, Desalination 479, 114312 (2020)

    CAS  Google Scholar 

  42. W. Kang, J. Ju, H. Zhao, Z. Li, X. Ma, B. Cheng, Fibers Polym. 17, 2006 (2016)

    CAS  Google Scholar 

  43. S. Feng, Z. Zhong, F. Zhang, Y. Wang, W. Xing, ACS Appl. Mater. Interfaces. 8, 8773 (2016)

    CAS  PubMed  Google Scholar 

  44. B. Fu, Q. Yang, F. Yang, ACS Omega 5, 8181 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. N.H. Mat Radzi, A.L. Ahmad, Double layer PVDF blends PVDF-HFP membrane with modified ZnO nanoparticles for direct contact membrane distillation (DCMD). Asia-Pacific J. Chem. Eng. 17(2), e2753 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors at Zhengzhou University would like to express their gratitude to the National Center for International Research of Micro-Nano Molding Technology of Zhengzhou University in China, the 2020 Zhengzhou Major Science and Technology Innovation Special Project (Grant Nos. 2020CXZX0057).

Funding

The 2020 Zhengzhou Major Science and Technology Innovation Special Project, 2020CXZX0057, Qian Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zihui Li or Qian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, Z., Liu, Y. et al. Electrospinning Inorganic/Organic Nanohybridization Membranes with Hydrophobic and Oleophobic Performance. Fibers Polym 24, 4169–4179 (2023). https://doi.org/10.1007/s12221-023-00358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00358-7

Keywords

Navigation