Skip to main content
Log in

Silk Nonwoven: Recycling and Upcycling of Waste Silk into Bio-based Materials with High Value-Added Properties

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

With the increasing awareness of human environmental protection, the development of biodegradable bio-based materials has received more attention. As the off-cuts of silk, a natural protein fiber, waste silk still retains excellent properties such as biodegradability and biocompatibility, recycling and utilization of waste silk is currently very limited. To find a possible method to recycle low-cost waste silk and process it into high-value-added products, in this work, the waste silk from the silk spinning process was prepared into silk nonwoven (SN) with excellent air permeability, softness, water–oil amphiphilicity, biodegradability, and ultraviolet resistance by the wet laid process. The results showed that the uniform SN could be prepared when the alkali concentration was higher than 0.6%. The permeability of SN is higher than 80 mm/s, and the bending stiffness is lower than 0.085gf·cm2/cm. Notably, SN possesses entanglement at both fiber and fibril levels, enabling it to achieve a base strength of 0.58 MPa without additional reinforcement. The water contact angle and oil contact angle of SN were below 40° and 50°, respectively. The ultraviolet protection of SN-0.6 was classified as very good, with a degradation rate of 4.31% of SN-0.6 after 30 days of burial. The present research shows that silk nonwoven is a potential bio-based material with promising applications in the field of packaging and cleaning.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. D. Briassoulis, A. Giannoulis, Polym. Test. 69, 39 (2018)

    Article  CAS  Google Scholar 

  2. R.M.D. Soares, N.M. Siqueira, M.P. Prabhakaram, S. Ramakrishna, Mater Sci Eng C Mater Biol Appl. 92, 969 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. T. Vaisanen, O. Das, L. Tomppo, J. Cleaner Prod. 149, 582 (2017)

    Article  CAS  Google Scholar 

  4. N. Halonen, P.S. Palvolgyi, A. Bassani, C. Fiorentini, R. Nair, G. Spigno, K. Kordas, Front Mater. 7, 2 (2020)

    Article  Google Scholar 

  5. M. Patricia Arrieta, M. Dolores Samper, M. Aldas, J. Lopez, Materials. 10, 2 (2017)

    Google Scholar 

  6. K. Huang, Y. Wang, Curr Opin Food Sci. 43, 7 (2022)

    Article  CAS  Google Scholar 

  7. V.G.L. Souza, J.R.A. Pires, C. Rodrigues, I.M. Coelhoso, A.L. Fernando, Polymers 12, 2 (2020)

    Google Scholar 

  8. D. Jung, J. Lee, T.Y. Park, Y.J. Yang, H.J. Cha, Acta Biomater. 136, 56 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. P.M. Gore, M. Naebe, X. Wang, B. Kandasubramanian, Chem. Eng. J. 374, 437 (2019)

    Article  CAS  Google Scholar 

  10. L. Lu, W. Fan, S. Ge, R.K. Liew, Y. Shi, H. Dou, S. Wang, S.S. Lam, Sci. Total Environ. 830, 2 (2022)

    Google Scholar 

  11. P. Hazarika, D. Hazarika, B. Kalita, N. Gogoi, S. Jose, G. Basu, J. Nat. Fibers. 15, 416 (2017)

    Article  Google Scholar 

  12. C. Zhang, L. Xia, B. Deng, C. Li, Y. Wang, R. Li, F. Dai, X. Liu, W. Xu, A.C.S. Appl, Mater. Interfaces. 12, 25409 (2020)

    Article  CAS  Google Scholar 

  13. S. Viju, R.S. Rengasamy, G. Thilagavathi, C.J. Singh, H.A.K. Mohamed, J. Nat. Fibers. 19, 4082 (2021)

    Article  Google Scholar 

  14. H. Mollahosseini, H. Fashandi, A. Khoddami, M. Zarrebini, H. Nikukar, J. Cleaner Prod. 236, 2 (2019)

    Article  Google Scholar 

  15. S. Nangare, S. Dugam, P. Patil, R. Tade, N. Jadhav, Nanotechnology 32, 2 (2021)

    Article  Google Scholar 

  16. P. Pan, Y. Hu, K. Wu, Z. Cheng, Z. Shen, L. Jiang, J. Mao, C. Ni, Y. Ge, Z. Wang, J. Alloys Compd. 814, 2 (2020)

    Article  Google Scholar 

  17. T. Hemamalini, V.R. Giri Dev, J. Nat. Fibers. 18, 1823 (2019)

    Article  Google Scholar 

  18. C. Deng, R.H. Gong, C. Huang, X. Zhang, X.Y. Jin, Materials. 12, 2 (2019)

    Google Scholar 

  19. E.S. Bokova, G.M. Kovalenko, Y.N. Filatov, N.V. Evsyukova, Fibre Chem. 49, 167 (2017)

    Article  CAS  Google Scholar 

  20. D.J. Cottenden, A.M. Cottenden, J. Mech. Behav. Biomed. Mater. 28, 410 (2013)

    Article  PubMed  Google Scholar 

  21. J.H. Li, B.C. Shiu, C.W. Lou, J.C. Hsieh, W.H. Hsing, J.H. Lin, J. Text. Inst. 112, 23 (2021)

    Article  CAS  Google Scholar 

  22. S. Renuka, R.S. Rengasamy, D. Das, J. Ind. Text. 46, 1121 (2016)

    Article  CAS  Google Scholar 

  23. R. Mongkholrattanasit, J. Krystufek, J. Wiener, M. Vikova, J. Text. Inst. 102, 272 (2011)

    Article  CAS  Google Scholar 

  24. K. El-Sharkawy, S. Haavisto, K. Koskenhely, H. Paulapuro, BioResources 3, 403 (2008)

    Article  Google Scholar 

  25. B. Mandal, A. Grinberg, E.S. Gil, B. Panilaitis, D. Kaplan, J. Tissue Eng. Regen. Med. 109, 7699 (2012)

    CAS  Google Scholar 

  26. W. Yang, H. Liu, H. Du, M. Zhang, C. Wang, R. Yin, C. Pan, C. Liu, C. Shen, Sci China Mater. 1, 2 (2023)

    Google Scholar 

  27. H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao, C. Wang, C. Pan, C. Liu, C. Shen, Adv. Funct. Mater. 31, 2008006 (2021)

    Article  CAS  Google Scholar 

  28. E. Selli, C. Riccardi, M.R. Massafra, B. Marcandalli, Macromol. Chem. Phys. 202, 1672 (2001)

    Article  CAS  Google Scholar 

  29. M.-H. Wu, L.-Z. Wan, Y.-Q. Zhang, Sci. Rep. 4, 1 (2014)

    CAS  Google Scholar 

  30. S.K. Vyas, S.R. Shukla, J. Text. Inst. 107, 191 (2016)

    Article  CAS  Google Scholar 

  31. M. Shi, Y. Hu, X. Luo, L. Liu, J. Yu, Y. Fan, ACS Biomater Sci Eng. 8, 4014 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. C. Zhao, N. Liang, L. Yuan, X. Zhu, J. Coast. Res. 103, 516 (2020)

    Article  CAS  Google Scholar 

  33. A.T. Wood, D. Everett, S. Kumar, M.K. Mishra, V. Thomas, J. Biomed. Mater. Res. B Appl. Biomater. 107, 332 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. J. Tabor, C. Wust, B. Pourdeyhimi, J. Eng. Fibers Fabr. 14, 2 (2019)

    Google Scholar 

  35. M.G. Uddin, B.J. Allardyce, N. Rashida, R. Rajkhowa, Int. J. Biol. Macromol. 179, 20 (2021)

    Article  CAS  PubMed  Google Scholar 

  36. L. Mei, M. Chi, Z. Dawang, C. Shiyan, Z. Liming, W. Huaping, W. Jing, Carbohydr. Polym. 288, 2 (2022)

    Google Scholar 

  37. P.M. Gore, M. Naebe, X. Wang, B. Kandasubramanian, J. Hazard. Mater. 389, 2 (2020)

    Article  Google Scholar 

  38. Z.G. Xu, Y. Zhao, H.X. Wang, H. Zhou, C.X. Qin, X.G. Wang, T. Lin, A.C.S. Appl, Mater. Interfaces. 8, 5661 (2016)

    Article  CAS  Google Scholar 

  39. T. Dong, F. Wang, G. Xu, Mar. Pollut. Bull. 91, 230 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. T. Yang, X. Xiong, R. Mishra, J. Novák, J. Chaloupek, F. Sanetrnik, J. Militký, Fibers Polym. 17, 2078 (2017)

    Article  Google Scholar 

  41. M. Habibi, E. Ruiz, G. Lebrun, L. Laperriere, Text. Res. J. 88, 1776 (2018)

    Article  CAS  Google Scholar 

  42. X. Li, X. Yu, C. Cheng, L. Deng, M. Wang, X. Wang, A.C.S. Appl, Mater. Interfaces. 7, 21919 (2015)

    Article  CAS  Google Scholar 

  43. A.K. Pradhan, D. Das, R. Chattopadhyay, S.N. Singh, J. Text. Inst. 108, 788 (2016)

    Article  Google Scholar 

  44. F. Miao, M. Zhang, R. Yang, J. Sheng, Cellulose 29, 4125 (2022)

    Article  CAS  Google Scholar 

  45. A. Ferrer, C. Salas, O.J. Rojas, Cellulose 22, 3919 (2015)

    Article  CAS  Google Scholar 

  46. H.Y. Mou, E. Iamazaki, H.Y. Zhan, E. Orblin, P. Fardim, BioResources 8, 2325 (2013)

    Google Scholar 

  47. S. Gharehkhani, E. Sadeghinezhad, S.N. Kazi, H. Yarmand, A. Badarudin, M.R. Safaei, M.N.M. Zubir, Carbohydr. Polym. 115, 785 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. J. Szostak-Kotowa, Int. Biodeterior. Biodegrad. 53, 165 (2004)

    Article  CAS  Google Scholar 

  49. S. Sheik, G.K. Nagaraja, K. Prashantha, Polym. Eng. Sci. 58, 1923 (2018)

    Article  CAS  Google Scholar 

  50. Q.T.H. Shubhra, M. Saha, A. Alam, M.D.H. Beg, M.A. Khan, J. Reinf. Plast. Compos. 29, 3338 (2010)

    Article  CAS  Google Scholar 

  51. K.K. Balan, S. Sundaramoorthy, J. Ind. Text. 48, 1291 (2018)

    Article  Google Scholar 

  52. M. Li, M. Ogiso, N. Minoura, Biomaterials 24, 357 (2003)

    Article  CAS  PubMed  Google Scholar 

  53. P.D. Dubrovski, D. Golob, Text. Res. J. 79, 351 (2009)

    Article  CAS  Google Scholar 

  54. N. Abidi, E. Hequet, S. Tarimala, L.L. Dai, J. Appl. Polym. Sci. 104, 111 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would especially like to thank the Science and Technology Commission of Shanghai Municipality (20015800200), the National Key R&D Program of China (2022YFC3006100), and the University-Industry Collaborative Education Program (220606429135509).

Author information

Authors and Affiliations

Authors

Contributions

HW was involved in the conceptualization, methodology, validation, investigation, and writing—original draft. LC contributed to the data curation, validation, and formal analysis. YL contributed to writing—review and editing. GX & RW assisted in the writing—review and editing and funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Run Wen or Guangbiao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 282 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cao, L., Li, Y. et al. Silk Nonwoven: Recycling and Upcycling of Waste Silk into Bio-based Materials with High Value-Added Properties. Fibers Polym 24, 3489–3500 (2023). https://doi.org/10.1007/s12221-023-00258-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00258-w

Keywords

Navigation