Skip to main content
Log in

One-Step Hydrothermal Deposition of Ag-Doped g-C3N4-TiO2 Nanocomposites on Cotton Fabric Surface with Enhanced Photocatalytic Activity

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, Ag-doped g-C3N4-TiO2 nanocomposite photocatalysts were deposited on the surface of cotton fabric by a simple one-step hydrothermal method. The structure features of as-modified cotton fabric were examined by a series of characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). The experimental results showed that highly dispersed Ag nanoparticles were doped into g-C3N4-TiO2 nanocomposites which were evenly coated on the fabric surface. The introduction of Ag nanoparticles into g-C3N4-TiO2 composites could significantly improve the photodegradation rate of methyl orange (MO) dye under visible light irradiation. Importantly, the doping site of Ag nanoparticles had a significant influence on the photocatalytic activity of Ag-doped g-C3N4-TiO2 nanocomposites. Compared with the g-C3N4-TiO2 coated cotton fabric, the Ag-doped g-C3N4-TiO2 coated cotton fabric displayed excellent photocatalytic properties for the photodegradation of MO dyes because of the narrowed band gap and the faster separation and transfer of photoinduced charge carriers. The substrate of cotton fabric had little influence on the active radicals produced by the Ag-doped g-C3N4-TiO2 nanocomposites. In addition, the as-modified cotton fabric exhibited good reusability and stability after five recycles for the photodegradation of MO dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The data are available upon reasonable request from the authors.

References

  1. X.J. Lang, X.D. Chen, J.C. Zhao, Chem. Soc. Rev. 43, 473 (2014)

    CAS  PubMed  Google Scholar 

  2. S.W. Cao, J.X. Low, J.G. Yu, M. Jaroniec, Adv. Mater. 27, 2150 (2015)

    CAS  PubMed  Google Scholar 

  3. S.N. Tang, Y. Zhu, H.M. Li, H. Xu, S.Q. Yuan, Int. J. Hydrogen Energ. 44, 30935 (2019)

    CAS  Google Scholar 

  4. P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22, 4763 (2012)

    CAS  Google Scholar 

  5. H.X. Zhao, H.T. Yu, X. Quan, S. Chen, Y.B. Zhang, H.M. Zhao, H. Wang, Appl. Catal. B-Environ. 152, 46 (2014)

    Google Scholar 

  6. M.A. Mohamed, M.F.M. Zain, L.J. Minggu, M.B. Kassim, J. Jaafar, N.A.S. Amin, Y.H. Ng, Appl. Sur. Sci. 476, 205 (2019)

    CAS  Google Scholar 

  7. P.Y. Li, L. Liu, W.J. An, H. Wang, H.X. Guo, Y.H. Liang, W.Q. Cui, Appl. Catal. B-Environ. 266, 118618 (2020)

    CAS  Google Scholar 

  8. J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, Adv. Energy. Mater. 8, 1701503 (2018)

    Google Scholar 

  9. M. Ye, R. Wang, Y.H. Shao, C.C. Tian, Z.J. Zheng, X.Y. Gu, W. Wei, A. Wei, J. Photoch. Photobio. A 351, 145 (2018)

    CAS  Google Scholar 

  10. H.F. Tang, Q. Shang, Y.H. Tang, X.Y. Yi, Y.F. Wei, K. Yin, M.J. Liu, C.B. Liu, J. Hazard Mater. 384, 121248 (2020)

    CAS  PubMed  Google Scholar 

  11. Z.W. Tong, D. Yang, T.X. Xiao, Y. Tian, Z.Y. Jiang, Chem. Eng. J. 260, 117 (2015)

    CAS  Google Scholar 

  12. B. Pandey, S. Rani, S.C. Roy, J. Alloy Compd. 846, 155881 (2020)

    CAS  Google Scholar 

  13. L. Cui, S.L. Liu, F.K. Wang, J.Y. Li, Y.H. Song, Y. Sheng, H.F. Zou, J. Alloy. Compd. 826, 154001 (2020)

    CAS  Google Scholar 

  14. H. Tang, S. Chang, L. Jiang, G.G. Tang, W. Liang, Ceram. Int. 42, 18443 (2016)

    CAS  Google Scholar 

  15. J.Q. Yan, H. Wu, H. Chen, Y.X. Zhang, F.X. Zhang, S.F. Liu, Appl. Catal. B-Environ. 191, 130 (2016)

    CAS  Google Scholar 

  16. X. Song, Y. Hu, M.M. Zheng, C.H. Wei, Appl. Catal. B-Environ. 182, 587 (2016)

    CAS  Google Scholar 

  17. H.J. Yang, H.X. Yang, J. Alloy Compd. 509, L26 (2011)

    Google Scholar 

  18. W.J. Li, H. Zhang, W.D. Chen, L.M. Yang, H.L. Wu, N.T. Mao, Cellulose 29, 193 (2022)

    Google Scholar 

  19. Z.R. Zhao, W.Y. Zhang, X.L. Shen, T. Muhmood, M.Z. Xia, W. Lei, F.Y. Wang, M.A. Khan, J. Photoch. Photobio. A 358, 246 (2018)

    CAS  Google Scholar 

  20. R. Geng, J.J. Yin, J.X. Zhou, T.F. Jiao, Y. Feng, L.X. Zhang, Y. Chen, Z.H. Bai, Q.M. Peng, Nanomaterials 10, 1 (2020)

    CAS  Google Scholar 

  21. Y. Yang, C. Lu, J. Ren, X.L. Li, Y.N. Ma, W.H. Huang, X. Zhao, Ceram. Int. 46, 5725 (2020)

    CAS  Google Scholar 

  22. D. Yan, X. Wu, J.Y. Pei, C.C. Wu, X.M. Wang, H.Y. Zhao, Ceram. Int. 46, 696 (2020)

    CAS  Google Scholar 

  23. S.P. Adhikari, G.P. Awasthi, J. Lee, C.H. Park, C.S. Kim, Rsc. Adv. 6, 55079 (2016)

    CAS  Google Scholar 

  24. B.R. Gao, J. Wang, M.M. Dou, C. Xu, X. Huang, Environ. Sci. Pollut. R 27, 7025 (2020)

    CAS  Google Scholar 

  25. H.L. Li, Y. Gao, X.Y. Wu, P.H. Lee, K.M. Shih, Appl. Surf. Sci. 402, 198 (2017)

    CAS  Google Scholar 

  26. G.Z. Sui, J.L. Li, L.J. Du, Y. Zhuang, Y.L. Zhang, Y.F. Zou, B.X. Li, J. Alloy. Compd. 823, 153851 (2020)

    CAS  Google Scholar 

  27. P. Li, X.X. Zhang, Y. Si, T.T. Liang, H. Liu, L.F. Qiu, S.Q. Duan, S.W. Duo, Z. Chen, Chinese. J. Inorg. Chem. 36, 566 (2020)

    CAS  Google Scholar 

  28. B. Yu, F.M. Meng, M.W. Khan, R. Qin, X.B. Liu, Mater. Res. Bull. 121, 110641 (2020)

    CAS  Google Scholar 

  29. B. Zhou, H.T. Hong, H.F. Zhang, S.S. Yu, H.W. Tian, J. Chem. Technol. Biot. 94, 3806 (2019)

    CAS  Google Scholar 

  30. D. Masih, Y.Y. Ma, S. Rohani, Can. J. Chem. Eng. 97, 2632 (2019)

    CAS  Google Scholar 

  31. Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48, 2109 (2019)

    CAS  PubMed  Google Scholar 

  32. B.J. Huo, J. Yang, Y. Bian, D.F. Wu, J.L. Feng, J. Zhou, Q. Huang, F. Dong, X.S. Tang, Chem. Eng. J. 406, 126740 (2021)

    CAS  Google Scholar 

  33. Y.H. Wang, J.Y. Chen, X.R. Lei, Y.J. Ren, Micropor. Mesopor. Mat. 250, 9 (2017)

    CAS  Google Scholar 

  34. Z.Y. Jiang, X.H. Zhang, Z.M. Yuan, J.C. Chen, B.B. Huang, D.D. Dionysiou, G.H. Yang, Chem. Eng. J. 348, 592 (2018)

    CAS  Google Scholar 

  35. M.S. Stan, I.C. Nica, M. Popa, M.C. Chifiriuc, O. Iordache, I. Dumitrescu, L. Diamandescu, A. Dinischiotu, J. Ind. Text. 49, 277 (2019)

    CAS  Google Scholar 

  36. L.Q. Xiao, Y.X. Huang, Y. Luo, B. Yang, Y.Z. Liu, X.C. Zhou, J.M. Zhang, A.C.S. Sustain, Chem. Eng. 6, 14759 (2018)

    CAS  Google Scholar 

  37. Y.Y. Wang, X. Ding, P. Zhang, Q. Wang, K. Zheng, L. Chen, J.J. Ding, X.Y. Tian, X. Zhang, Ind. Eng. Chem. Res. 58, 3978 (2019)

    CAS  Google Scholar 

  38. S.H. Cao, H. Chen, F. Jiang, X. Wang, Appl. Catal. B-Environ. 224, 222 (2018)

    CAS  Google Scholar 

  39. Z. Wei, F.F. Liang, Y.F. Liu, W.J. Luo, J. Wang, W.Q. Yao, Y.F. Zhu, Appl. Catal. B-Environ. 201, 600 (2017)

    CAS  Google Scholar 

  40. S. Ghafoor, A. Inayat, F. Aftab, H. Duran, K. Kirchhoff, S. Waseem, S.N. Arshad, J. Environ. Chem. Eng. 7, 103452 (2019)

    CAS  Google Scholar 

  41. J.G. Sun, Z.D. Hood, S.J. Wu, P.P. Wan, L.D. Sun, S.Z. Yang, M.F. Chisholm, Nanotechnology 30, 305601 (2019)

    CAS  PubMed  Google Scholar 

  42. L.N. Zhao, Y.H. Jia, H. You, S.T. Wang, L. Fu, Catal. Today. 340, 106 (2020)

    CAS  Google Scholar 

  43. L.M. Yang, W.D. Chen, C.H. Sheng, H.L. Wu, N.T. Mao, H. Zhang, Appl. Surf. Sci. 549, 149300 (2021)

    CAS  Google Scholar 

  44. F. Chen, Q. Yang, F.B. Yao, Y.H. Ma, Y.L. Wang, X.M. Li, D.B. Wang, L.L. Wang, H.QYu. Chem, Eng. J. 355, 624 (2019)

    CAS  Google Scholar 

  45. N.N. Bahrudin, M.A. Nawi, W.I. Nawawi, Res. Chem. Intermediat. 45, 2771 (2019)

    CAS  Google Scholar 

  46. J.G. Hao, S.F. Zhang, F. Ren, Z.W. Wang, J.F. Lei, X.N. Wang, T. Cheng, L.B. Li, J. Colloid. Interf. Sci. 508, 419 (2017)

    CAS  Google Scholar 

  47. H.L. Zheng, Z.Y. Jiang, H.S. Zhai, Z.K. Zheng, P. Wang, Z.Y. Wang, Y.Y. Liu, X.Y. Qin, X.Y. Zhang, B.B. Huang, Appl. Catal. B-Environ. 243, 381 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51873169) and the International Science and Technology Cooperation Project of Shaanxi Province (2020KW-069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1284 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, H., Chen, P. et al. One-Step Hydrothermal Deposition of Ag-Doped g-C3N4-TiO2 Nanocomposites on Cotton Fabric Surface with Enhanced Photocatalytic Activity. Fibers Polym 24, 575–588 (2023). https://doi.org/10.1007/s12221-023-00061-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00061-7

Keywords

Navigation