Skip to main content
Log in

Modeling the Geometry of Weft-knitted Integrated Preforms as Reinforcement of Composite Joints

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Joints are the weakest links in the composite pipes under internal pressure due to the discontinuity of reinforcement in connection area. Weft-knitted integrated preforms can be used to enhance the strength of these composite joints. The focus of this study is to develop a geometrical model for the finite element analysis of composite joints reinforced with single jersey weft knitted fabric, which take cylindrical forms. Thus our efforts are concentrated on generating geometrical models for weft-knitted integrated preforms as reinforcement of Tee-joint, and various Wye-joint composites in pipelines. A geometrical model was first developed for loops on the curved surfaces by modifying the offered model for loops on flat surfaces. Then, the joint was divided into two cylinders; main cylinder and joint. Each cylinder was modeled using the generated model for loops on curved surfaces. The modeled cylinders were assembled according to the structure of joints. A python algorithm was proposed to simulate the weft-knitted integrated preforms in Abaqus/CAE 2016 commercial package. By implementing the proposed algorithm, the geometry of reinforcement was modeled for three types of joints based on technical data of ASME-B31. To verify the generated model, T-shape weft knitted integrated preform was produced using glass yarn count of 220 tex, CPC and WPC of 6 and 4, respectively. Comparing the experiment and simulation results shows a maximum error percentage of 10 % in the predicting the structural parameters of joints. It can be concluded that the generated model can well predict the geometry of weft-knitted preforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Pastore, A. E. Bogdanovich, and Y. A. Gowayed, Compos. Part B-Eng, 3, 181 (1993).

    Article  Google Scholar 

  2. S. Adanur and T. Liao, Compos. Part B-Eng., 29, 787 (1998).

    Article  Google Scholar 

  3. M. D. Araujo, R. Fangueiro, and H. Hong, AUTEX Res. J., 4, 72 (2004).

    Google Scholar 

  4. H. Lin, X. Zeng, M. Sherburn, A. C. Long, and M. J. Clifford, Text. Res. J., 82, 1689 (2012).

    Article  CAS  Google Scholar 

  5. Y. Kyosev, Text. Res. J., 86, 1270 (2015).

    Article  Google Scholar 

  6. T. C. Lim, S. Ramakrishna, and H. M. Shang, Proc. Inst. Mech. Eng. B. J. Eng. Manuf., 214, 333 (2000).

    Article  Google Scholar 

  7. J. Hofstee and F. van Keulen, Compos. Struct., 54, 179 (2001).

    Article  Google Scholar 

  8. A. Cherouat, H. Borouchaki, and J. L. Billoet, Eur. J. Comput. Mech., 14, 693 (2005).

    Google Scholar 

  9. P. Potluri, S. Sharma, and R. Ramgulam, Compos. Part A Appl., 32, 1415 (2001).

    Article  Google Scholar 

  10. G. A. V. Leaf and A. Glaskin, J. Text. Inst., 46, 587 (1955).

    Article  Google Scholar 

  11. S. G. Vassiliadis, A. E. Kallivretaki, and C. G. Provatidis, Indian J. Fibre Text., 32, 62 (2007).

    CAS  Google Scholar 

  12. D. Semnani, M. Latifi, S. Hamzeh, and A. A. A. Jeddi, J. Text. Inst., 94, 202 (2003).

    Article  Google Scholar 

  13. A. Kurbak and O. Ekmen, Text. Res. J., 78, 198 (2008).

    Article  CAS  Google Scholar 

  14. A. Kurbak and O. Kaycan, Text. Res. J., 78, 279 (2008).

    Article  CAS  Google Scholar 

  15. A. Kurbak and A. S. Soydan, Text. Res. J., 78, 377 (2008).

    Article  CAS  Google Scholar 

  16. O. Kayacan and A. Kurbak, Text. Res. J., 78, 659 (2008).

    Article  CAS  Google Scholar 

  17. A. Kurbak and O. Kaycan, Text. Res. J., 78, 577 (2008).

    Article  CAS  Google Scholar 

  18. A. Kurbak, Text. Res. J., 79, 418 (2009).

    Article  CAS  Google Scholar 

  19. A. Kurbak and T. Alpyildiz, Text. Res. J., 79, 495 (2009).

    Article  CAS  Google Scholar 

  20. A. Kurbak and A. S. Soydan, Text. Res. J., 79, 618 (2009).

    Article  CAS  Google Scholar 

  21. A. Kurbak, Text. Res. J., 87, 838 (2016).

    Article  Google Scholar 

  22. A. Kurbak, Text. Res. J., 87, 409 (2016).

    Article  Google Scholar 

  23. W. Renkens and Y. Kyosev, Text. Res. J., 81, 437 (2011).

    Article  CAS  Google Scholar 

  24. Y. Ji, G. Jiang, M. Tang, N. Mao, and H. Wang, Text. Res. J., 90, 2639 (2020).

    Article  CAS  Google Scholar 

  25. M. J. Abghary, H. Hasani, and R. J. Nedoushan, Fiber. Polym., 17, 795 (2016).

    Article  Google Scholar 

  26. Y. Kyosev, Y. Angelova, and R. Kovar, Res. J. Text. Apparel, 9, 88 (2005).

    Article  Google Scholar 

Download references

Acknowledgement

This research has been funded by Amirkabir University of Technology (Tehran Polytechnic) via grant number of 11893.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Dabiryan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghatrenabi, M.H., Dabiryan, H. & Nosraty, H. Modeling the Geometry of Weft-knitted Integrated Preforms as Reinforcement of Composite Joints. Fibers Polym 22, 2572–2580 (2021). https://doi.org/10.1007/s12221-021-1180-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-1180-x

Keywords

Navigation