Skip to main content
Log in

Finite Element Analyses on Low-velocity Impact Responses of Three-dimensional Braided Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Low-velocity impact response and failure mechanism of three-dimensional (3-D) braided composite are investigated both by experiments and finite element analysis method (FEA). A meso-structural FEA model was established. Ductile and shear failure criterions are introduced into the developed model to calculate the impact response and damage evolution under different impact velocities. Five impact velocities of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 6 m/s are applied in this work. The maximum impact load, the displacement at the maximum load and the energy absorbed at the maximum load are obtained from the model. The FE simulations kept in good consistent with experimental results. The results showed that the stress propagation exhibited unique different features along longitudinal, thickness and width direction. In addition, stress concentration regions were appeared at impact locations. Only elastic deformation appeared at impact velocity of 1 m/s, 2 m/s, 3 m/s, 4 m/s. The corresponding thickness displacement increased as velocity increased. Whereas damages were observed on composites and a zigzag damage pattern formed on back surface at impact velocity of 6 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Zhou, Z. X. Pan, R. K. Gideon, B. H. Gu, and B. Z. Sun, Compos. Part B-Eng., 86, 243 (2016).

    Article  CAS  Google Scholar 

  2. H. L. Zhou, W. Zhang, T. Liu, B. H. Gu, and B. Z. Sun, Compos. Part A-Appl. Sci. Manuf., 79, 52 (2015).

    Article  CAS  Google Scholar 

  3. Y. W. Ouyang and X. Y. Wu, Text. Res. J., 90, 710 (2020).

    Article  CAS  Google Scholar 

  4. M. Q. Hu, J. J. Zhang, B. Z. Sun, and B. H. Gu, Int. J. Mech. Sci., 148, 730 (2018).

    Article  Google Scholar 

  5. X. G. Gao, B. Z. Sun, and B. H. Gu, Aerosp. Sci. Technol., 82–83, 46 (2018).

    Article  Google Scholar 

  6. P. Turner, T. Liu, X. S. Zeng, and K. Brown, Compos. Struct., 185, 483 (2018).

    Article  Google Scholar 

  7. S. T. Jenq, J. T. Kuo, and L. T. Sheu, Key Eng. Mater., 141–143, 349 (1997).

    Article  Google Scholar 

  8. H. Hooputra, H. Gese, H. Dell, and H. Werner, Int. J. Crashworthines, 9, 449 (2004).

    Article  Google Scholar 

  9. B. H. Gu and J. Y. Xu, Compos. Part B-Eng., 35, 291 (2004).

    Article  Google Scholar 

  10. M. Shaker, F. Ko, and J. Song, J. Compos. Tech. Res., 21, 224 (1999).

    Article  CAS  Google Scholar 

  11. T. Zeng, D. N. Fang, and T. J. Lu, Mater. Lett., 59, 1491 (2005).

    Article  CAS  Google Scholar 

  12. T. Zeng, L. Z. Wu, and L. C. Guo, Mat. Sci. Eng. A-Struct., 366, 144 (2004).

    Article  Google Scholar 

  13. V. Herb, E. Martin, and G. Couegnat, Compos. Part A-Appl. Sci. Manuf., 43, 247 (2012).

    Article  CAS  Google Scholar 

  14. M. V. Hosur, M. Abdullah, and S. Jeelani, Compos. Struct., 65, 103 (2004).

    Article  Google Scholar 

  15. L. Yang, Y. N. Jiao, and H. Gao, J. Text. Res., 30, 63 (2009).

    CAS  Google Scholar 

  16. Y. Y. Li, B. Z. Sun, and B. H. Gu, Compos. Struct., 176, 43 (2017).

    Article  Google Scholar 

  17. Y. Zhang, P. Wang, and C. B. Guo, J. Ind. Text., 46, 1241 (2017).

    Article  CAS  Google Scholar 

  18. B. Z. Sun, Y. Zhang, and B. H. Gu, Appl. Compos. Mater., 20, 397 (2013).

    Article  Google Scholar 

  19. R. Kamiya, B. A. Cheeseman, P. Popper, and T. W. Chou, Compos. Sci. Technol., 60, 33 (2000).

    Article  Google Scholar 

  20. K. J. Kim, W.-R. Yu, J. S. Lee, L. Gao, E. T. Thostenson, T.-W. Chou, and J.-H. Byun, Compos. Part A-Appl. Sci. Manuf., 41, 1531 (2010).

    Article  Google Scholar 

  21. M. Pankow, A. M. Waas, C. F. Yen, and S. Ghiorse, Compos. Struct., 94, 1590 (2012).

    Article  Google Scholar 

  22. A. Gilat, R. K. Goldberg, and G. D. Roberts, Compos. Sci. Technol., 62, 1469 (2002).

    Article  CAS  Google Scholar 

  23. J. D. Littell, C. R. Ruggeri, R. K. Goldberg, G. D. Roberts, W. A. Arnold, and W. K. Binienda, J. Aerospace. Eng., 21, 162 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this paper acknowledge the financial supports from the National Natural Science Foundation of China (Grant Number 11602156 and 11802192), Natural Science Foundation of Jiangsu Province (BK 20180244). The financial supports from China Postdoctoral Science Foundation (2018M632365) and Jiangsu advanced textile engineering technology center (XJFZ/2018/03 and XJFZ/2018/07). The Natural Science Research Project of Jiangsu Higher Education Institutions (Grant No. 18KJB540003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yy., Lyu, Zq., Wang, P. et al. Finite Element Analyses on Low-velocity Impact Responses of Three-dimensional Braided Composites. Fibers Polym 22, 2296–2305 (2021). https://doi.org/10.1007/s12221-021-0597-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0597-6

Keywords

Navigation