Skip to main content
Log in

Alkalization and Cationization of Cellulose: Effects on intrinsic viscosity

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Researchers have studied the cationization of polysaccharides to replace conventional cationic polyelectrolytes, linked to environmental issues. However, cationic celluloses have not achieved the success of cationic starches. The knowledge of the cellulose cationization proccess needs to be improved. In this work, we pretreat (alkalize) and cationize cotton linters and α-cellulose powder, using 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) in an aqueous-alcoholic alkaline solution. The pretreatment took place under different conditions, whereas the cationization itself was always performed at 70 ºC, for a CHPTAC/AGU (anhydro glucose units) mole ratio of 4, and for a total time of 5 h for cotton linters or 100 min for α-cellulose powder. The degree of substitution, the crystallinity index and the temporal evolution of intrinsic viscosity are provided for the 18 experiments performed. The background was uncertain about the effect of cationization on intrinsic viscosity. Here, we report increasing viscosity with increasing degree of substitution and cationization time. Furthermore, intrinsic viscosity increased with increasing cationization time, even when the degree of substitution had leveled off. Seemingly, the incorporation of positive charges into cellulose changed the polymer distribution and the interactions between the polymer and the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Prado and M. C. Matulewicz, Eur. Polym. J., 52, 53 (2014).

    Article  CAS  Google Scholar 

  2. R. Rodríguez, C. Alvarez-Lorenzo, and A. Concheiro, Biomacromolecules, 2, 886 (2001).

    Article  Google Scholar 

  3. L. Ghimici and M. Nichifor, Carbohydr. Polym., 98, 1637 (2013).

    Article  CAS  Google Scholar 

  4. Y. Liu, R. Yang, J. Zhang, and J. Sun, Fiber. Polym., 11, 744 (2010).

    Article  CAS  Google Scholar 

  5. G. Liu and J. Lei, J. Polym. Mater., 30, 435 (2013).

    Google Scholar 

  6. L. Qin, J. Liu, G. Li, and Y. Kang, J. Disper. Sci. Technol., 36, 695 (2015).

    Article  CAS  Google Scholar 

  7. R. Rahul, S. Kumar, U. Jha, and G. Sen, Int. J. Biol. Macromol., 72, 868 (2015).

    Article  CAS  Google Scholar 

  8. M. Hashem, P. Hauser, and B. Smith, Text. Res. J., 73, 1017 (2003).

    Article  CAS  Google Scholar 

  9. Y. Song, Y. Sun, X. Zhang, J. Zhou, and L. Zhang, Biomacromolecules, 9, 2259 (2008).

    Article  CAS  Google Scholar 

  10. M. R. Kweon, P. R. Bhirud, and F. W. Sosulski, Starch/Stärke, 48, 214 (1996).

    Article  CAS  Google Scholar 

  11. A. Moral, R. Aguado, M. M. Ballesteros, and A. Tijero, Int. J. Polym. Sci., 15, 283963 (2015).

    Google Scholar 

  12. L. Yan, H. Tao, and P. R. Bangai, Clean, 37, 39 (2009).

    CAS  Google Scholar 

  13. P. J. Flory, “Principles of Polymer Chemistry”, 16th ed., pp.308–314, Cornell University Press, USA, 1996.

    Google Scholar 

  14. S. Hina, Y. Zhang, and H. Wang, Rev. Adv. Mater. Sci., 36, 165 (2014).

    Google Scholar 

  15. D. Campbell, R. A. Pethrick, and J. R. White, “Polymer Characterization: Physical Techniques”, 2nd ed., pp.34–38, Stanley Thornes Ltd., United Kingdom, 2000.

    Google Scholar 

  16. Y. Liu and H. Hu, Fiber. Polym., 9, 735 (2008).

    Article  CAS  Google Scholar 

  17. E. Dinand, M. Vignon, H. Chanzy, and L. Heux, Cellulose, 9, 7 (2002).

    Article  CAS  Google Scholar 

  18. J. L. Ren, R. C. Sun, C. F. Liu, Z. Y. Chao, and W. Luo, Polym. Degrad. Stabil., 91, 2579 (2006).

    Article  CAS  Google Scholar 

  19. H. De la Motte and G. Westman, Cellulose, 19, 1677 (2012).

    Article  Google Scholar 

  20. A. C. O'Sullivan, Cellulose, 4, 173 (1997).

    Article  Google Scholar 

  21. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels, 3, 10 (2010).

    Article  Google Scholar 

  22. R. S. Merkel in “Analytical Methods for a Textile Laboratory”, 3rd ed. (J. W. Weaver Ed.), pp.47–54, American Association of Textile Chemists and Colorists, USA, 1984.

  23. A. Eisenberg and M. King in “Ion Containing Polymers: Physical Properties and Structure” (R. S. Stein Ed.), Vol. 2, pp.230–242, Academic Press, USA, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Aguado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moral, A., Aguado, R. & Tijero, A. Alkalization and Cationization of Cellulose: Effects on intrinsic viscosity. Fibers Polym 17, 857–861 (2016). https://doi.org/10.1007/s12221-016-5819-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5819-y

Keywords

Navigation