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Abstract
In this paper we explore some basic properties of quasi-Banach function spaces which
are important in applications. Namely, we show that they possess a generalised version
of Riesz–Fischer property, that embeddings between them are always continuous, and
that the dilation operator is bounded on them. We also provide a characterisation of
separability for quasi-Banach function spaces over the Euclidean space. Furthermore,
we extend the classical Riesz–Fischer theorem to the context of quasinormed spaces
and, as a consequence, obtain an alternative proof of completeness of quasi-Banach
function spaces.

Keywords Quasi-Banach function space · Generalised Riesz–Fischer theorem ·
Quasinorm · Quasi-Banach space · Separability · Dilation operator

Mathematics Subject Classification 46A16 · 46E30

1 Introduction

While the theory of Banach function spaces has been extensively developed since
their introduction by Luxemburg in [23] (see [1] for an exhaustive treatment), their
quasinormed counterparts remain surprisingly unexplored to the point where even the
most fundamental results are missing. For example, even the most natural question of
completeness has been answered only recently by Caetano, Gogatishvili, and Opic in
[3]. This lack of underlying theory constitutes a great obstacle in the field of function
spaces, given that many natural and useful function spaces happen to be quasinormed
while retaining many, if not all, of the remaining properties of Banach function norms.
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Examples of such spaces include Lebesgue spaces L p with p < 1, Lorentz spaces
L p,q with q < 1, many cases of Lorentz–Karamata spaces (as introduced in [6]),
numerous cases of classical Lorentz spaces, and generalised Orlicz spaces L� with a
non-convex function �. Further examples are the Lorentz spaces L1,q , q > 1, chief
among them being the space L1,∞, also known as the weak L1; the importance of this
space stems from the fact that it captures the endpoint behaviour of many important
operators of harmonic analysis, including the Hardy–Littlewood maximal operator,
singular integral operators, and fractional integral operators.

It comes at no surprise that, thanks to their versatility and wide field of applications,
quasi-Banach function spaces themselves attracted some attention in the recent years.
For example, Newtonian spaces based on them were studied in [25, 26]; Hardy spaces
associatedwith themwere the topic of [31, 32, 35–38], and notably the book [20]; their
interaction with a range of other concepts, including behaviour of some operators, was
investigated in [3, 8, 9, 12, 13, 15, 17, 18, 28, 29, 33]; and the paper [22] covers some
of their properties and alternative approaches to their definition.

Another example are the spaces Xα,β introduced and studied in [11, 14], that
are defined for any rearrangement-invariant quasi-Banach function space X over
((0,∞), λ) and any pair of numbers α ∈ R and β ∈ [0,∞) through the functional

‖ f ‖Xα,β = ‖t− α
n f ∗(tβ)‖X ,

where f ∗ is the non-increasing rearrangement of f (see Definition 2.21 or [1, Chap-
ter 2, Definition 1.5]). Said spaces were introduced for the purpose of extending
and generalising the Boyd’s interpolation theorem to rearrangement-invariant quasi-
Banach function spaces and operators that are bounded from L p to Lq with p �= q.

Moreover, in connection with the investigation of traces of Sobolev functions as a
particular case of upper Ahlfors measures, it was recently discovered in [4, 5] that it
is very useful to work with scales of function spaces of the form X 〈α〉, studied later in
[34], where X is a rearrangement-invariant Banach function space, α ∈ (0,∞), and
the space is defined through the functional

‖u‖X 〈α〉 = ‖(|u|α)∗∗(t)
1
α ‖X(0,μ(R)),

where X(0, μ(R)) is the representation space of X and f ∗∗ is the elementary maximal
function of f (see [1, Chapter 2, Theorem 4.10] and [1, Chapter 2, Definition 3.1]). It
is not difficult to notice that this functional becomes for small α a quasinorm even if X
was a normed space. It is thus inevitable to work with quasinorms and the information
about the basic properties of corresponding spaces comes very handy.

This paper thus aims to fill in some of the gaps in the basic theory of quasi-Banach
function spaces. We first provide a new version of the classical Riesz–Fischer con-
dition and prove the corresponding version of Riesz–Fischer theorem. We then show
that quasi-Banach function spaces satisfy the modified criterion. We thus obtain an
alternative proof of the completeness of quasi-Banach function spaces, a result that
was first obtained in [3], but this result has a much wider field of application, including
a general version of Landau’s resonance theorem and, most importantly, the result that
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an embedding between quasi-Banach function spaces is always continuous, i.e. that
X ⊆ Y implies X ↪→ Y . The latter property has proved to be extraordinarily useful
in the study of a wide variety of problems in the theory of function spaces. We then
turn our attention to separability and obtain a characterisation for the case when the
underlying measure space is the n-dimensional Euclidean space. Finally, we show
that the dilation operator is bounded on rearrangement-invariant quasi-Banach func-
tion spaces.

The paper is structured as follows. We first provide the necessary theoretical back-
ground in Sect. 2 and then state and prove our results in Sect. 3. More specifically,
the extension of the Riesz–Fischer theorem is proved in Sect. 3.1, the result that
quasi-Banach function spaces have the generalised Riesz–Fischer property and its
applications are contained in Sect. 3.2, the characterisation of separability is obtained
in Sect. 3.3, and the proof that the dilation operator is bounded on quasi-Banach func-
tion spaces is the content of Sect. 3.4.

2 Preliminaries

This section serves to establish the basic theoretical background necessary for stating
and proving our results. The notation and definitions are intended to be as standard as
possible. The usual reference for most of this theory are the books [1, 2, 16].

Throughout this paper we will denote by (R, μ), and occasionally by (S, ν), some
arbitrary (totally) sigma-finite measure space. Provided a μ-measurable set E ⊆ R
we will denote its characteristic function by χE . By M(R, μ)we will denote the set of
all μ-measurable functions defined on R with values in C ∪ {∞}. As it is customary,
we will identify functions that coincide μ-almost everywhere. We will further denote
by M0(R, μ) and M+(R, μ) the subsets of M(R, μ) containing, respectively, the
functions finite μ-almost everywhere and the functions with values in [0,∞].

For brevity, we will abbreviate μ-almost everywhere, M(R, μ), M0(R, μ), and
M+(R, μ) toμ-a.e., M , M0, and, M+ respectively, when there is no risk of confusion.

In the special case when μ is the classical n-dimensional Lebesgue measure on
R
n we will denote it by λn and in the case when it is the k-dimensional Hausdorff

measure on Rn , where k < n, we will denote it byHk . We will also denote by Bn the
n-dimensional unit ball and by S

n−1 the (n − 1)-dimensional unit sphere.
When X ,Y are two topological linear spaces, we will denote by Y ↪→ X that

Y ⊆ X and that the identity mapping I : Y → X is continuous.
Given any complex number z ∈ C we will denote its real part by Re(z) and its

imaginary part by Im(z).
Note that in this paper we consider 0 to be an element of N.

2.1 Norms and Quasinorms

Let us first present the standard definition of a norm.

Definition 2.1 Let X be a complex linear space. A functional ‖·‖ : X → [0,∞) will
be called a norm if it satisfies the following conditions:
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(1) it is positively homogeneous, i.e. ∀a ∈ C ∀x ∈ X : ‖ax‖ = |a|‖x‖,
(2) it satisfies ‖x‖ = 0 ⇔ x = 0 in X ,
(3) it is subadditive, i.e. ∀x, y ∈ X : ‖x + y‖ ≤ ‖x‖ + ‖y‖.

In praxis this definition is sometimes too restrictive, in the sense that in some
important cases the triangle inequality does not hold. This motivates the following
natural generalisation.

Definition 2.2 Let X be a complex linear space. A functional ‖·‖ : X → [0,∞) will
be called a quasinorm if it satisfies the following conditions:

(1) it is positively homogeneous, i.e. ∀a ∈ C ∀x ∈ X : ‖ax‖ = |a|‖x‖,
(2) it satisfies ‖x‖ = 0 ⇔ x = 0 in X ,
(3) there is a constant C ≥ 1, called the modulus of concavity of ‖·‖, such that it is

subadditive up to this constant, i.e. ∀x, y ∈ X : ‖x + y‖ ≤ C(‖x‖ + ‖y‖).
It is obvious that every norm is also a quasinorm with the modulus of concavity

equal to 1 and that every quasinorm with the modulus of concavity equal to 1 is also
a norm.

It is a well-known fact that every norm defines a metrisable topology on X and that
it is continuous with respect to that topology. This is not true for quasinorms, but it
can be remedied thanks to the Aoki–Rolewicz theorem which we list below. Further
details can be found for example in [16] or in [2, Appendix H].

Theorem 2.3 Let ‖·‖1 be a quasinorm over the linear space X. Then there is a quasi-
norm ‖·‖2 such that

(1) there is a finite constant C0 > 0 such that it holds for all x ∈ X that

C−1
0 ‖x‖1 ≤ ‖x‖2 ≤ C0‖x‖1,

(2) there is an r ∈ (0, 1] such that it holds for all x, y ∈ X that

‖x + y‖r2 ≤ ‖x‖r2 + ‖y‖r2.

The direct consequence of this result is that every quasinorm defines a metrisable
topology on X and that the convergence in said topology is equivalent to the conver-
gence with respect to the original quasinorm, in the sense that xn → x in the induced
topology if and only if limn→∞‖xn − x‖ = 0. Furthermore, we may naturally extend
the concept of completeness to quasinormed spaces.

Definition 2.4 Quasinormed space X equipped with a quasinorm ‖·‖ is said to be
complete if and only if it holds that for any sequence xn of elements of X that is
Cauchy with respect to the quasinorm ‖·‖ there is some x ∈ X such that xn → x .

Natural question to ask is when do different quasinorms define equivalent topolo-
gies. It is an easy exercise to show that the answer is the same as in the case of
norms, that is that two quasinorms are topologically equivalent if and only if they are
equivalent in the following sense.
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Definition 2.5 Let ‖·‖1 and ‖·‖2 be quasinorms over the linear space X . We say that
‖·‖1 and ‖·‖2 are equivalent if there is some C0 > 0 such that it holds for all x ∈ X
that

C−1
0 ‖x‖1 ≤ ‖x‖2 ≤ C0‖x‖1.

2.2 Banach Function Norms and Quasi-Banach Function Norms

We now turn our attention to norms acting on spaces of functions. The approach taken
here is the same as in [1, Chapter 1, Sect. 1], which means that it differs, at least
formally, from that in Sect. 2.1.

The major definitions are of course those of Banach function norm and the corre-
sponding Banach function space.

Definition 2.6 Let ‖·‖ : M(R, μ) → [0,∞] be a mapping satisfying ‖ | f | ‖ = ‖ f ‖
for all f ∈ M . We say that ‖·‖ is a Banach function norm if its restriction to M+
satisfies the following axioms:

(P1) it is a norm, in the sense that it satisfies the following three conditions:

(a) it is positively homogeneous, i.e. ∀a ∈ C ∀ f ∈ M+ : ‖a f ‖ = |a|‖ f ‖,
(b) it satisfies ‖ f ‖ = 0 ⇔ f = 0 μ-a.e.,
(c) it is subadditive, i.e. ∀ f , g ∈ M+ : ‖ f + g‖ ≤ ‖ f ‖ + ‖g‖,

(P2) it has the lattice property, i.e. if some f , g ∈ M+ satisfy f ≤ g μ-a.e., then also
‖ f ‖ ≤ ‖g‖,

(P3) it has the Fatou property, i.e. if some fn, f ∈ M+ satisfy fn ↑ f μ-a.e., then
also ‖ fn‖ ↑ ‖ f ‖,

(P4) ‖χE‖ < ∞ for all E ⊆ R satisfying μ(E) < ∞,
(P5) for every E ⊆ R satisfying μ(E) < ∞ there exists some finite constant CE ,

dependent only on E , such that the inequality
∫
E f dμ ≤ CE‖ f ‖ is true for all

f ∈ M+.
Definition 2.7 Let ‖·‖X be a Banach function norm.We then define the corresponding
Banach function space X as the set

X = { f ∈ M; ‖ f ‖X < ∞} .

Furthermore, the normed linear space (X , ‖·‖X ) will also be called a Banach func-
tion space.

Just as with general norms, the triangle inequality is sometimes too strong a con-
dition to require. This leads to the definition of quasi-Banach function norms and of
the corresponding quasi-Banach function spaces which will be our main topic in this
paper.

Definition 2.8 Let ‖·‖ : M(R, μ) → [0,∞] be a mapping satisfying ‖ | f | ‖ = ‖ f ‖
for all f ∈ M . We say that ‖·‖ is a quasi-Banach function norm if its restriction to M+
satisfies the axioms (P2), (P3), (P4) of Banach function norms together with a weaker
version of axiom (P1), namely
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(Q1) it is a quasinorm, in the sense that it satisfies the following three conditions:

(a) it is positively homogeneous, i.e. ∀a ∈ C ∀ f ∈ M+ : ‖a f ‖ = |a|‖ f ‖,
(b) it satisfies ‖ f ‖ = 0 ⇔ f = 0 μ-a.e.,
(c) there is a constant C ≥ 1, called the modulus of concavity of ‖·‖, such that it

is subadditive up to this constant, i.e.

∀ f , g ∈ M+ : ‖ f + g‖ ≤ C(‖ f ‖ + ‖g‖).

Definition 2.9 Let ‖·‖X be a quasi-Banach function norm. We then define the corre-
sponding quasi-Banach function space X as the set

X = { f ∈ M; ‖ f ‖X < ∞} .

Furthermore, the quasinormed linear space (X , ‖·‖X ) will also be called a quasi-
Banach function space.

The most natural examples of quasi-Banach function spaces are the classical
Lebesgue spaces L p with p ∈ (0, 1). To provide a natural example of quasi-Banach
function space that also satisfies the axiom (P5) we turn to the Lorentz spaces L p,q

with p > 1 and q < 1. The quasi-Banach function norm they are induced from is, in
our case q < 1, of the form

‖ f ‖p,q =
(∫ ∞

0
t
q
p −1 (

f ∗(t)
)q

dt

) 1
q

,

where f ∗ denotes the non-increasing rearrangement of f as defined in Definition 2.21.
Let us now list here two of the most important properties of Banach function spaces

which we will generalise in Sect. 3. Proofs of the standard versions presented below
can be found in [1, Chapter 1, Sect. 1].

Theorem 2.10 Let (X , ‖·‖X ) be a Banach function space. Then it is a Banach space.

Theorem 2.11 Let (X , ‖·‖X ) and (Y , ‖·‖Y ) be Banach function spaces. If X ⊆ Y then
also X ↪→ Y .

An important concept in the theory of quasi-Banach function spaces is the absolute
continuity of the quasinorm.

Definition 2.12 Let (X , ‖·‖X )be aquasi-Banach function space.We say that a function
f ∈ X has absolutely continuous quasinorm if it holds that ‖ f χEk‖X → 0 whenever
Ek is a sequence of μ-measurable subsets of R such that χEk → 0 μ-a.e.

If every f ∈ X has absolutely continuous quasinorm we further say that the space
X itself has absolutely continuous quasinorm.

This concept is important, because it is deeply connected to separability and also
reflexivity of Banach function spaces, for details see [1, Chapter 1, Sects. 3, 4, 5]. As
we will show in Sect. 3.3, at least in the case of separability this connection extends to
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the context of quasi-Banach function spaces. For now, we present here the following
two elementary observations that we will use later on. Their proofs are exactly the
same as the proofs of analogous statements in [1, Chapter 1, Sect. 3].

Proposition 2.13 Let (X , ‖·‖X ) be a quasi-Banach function space and let f ∈ X.
Then f has absolutely continuous quasinorm if and only if ‖ f χEk‖X ↓ 0 for every
sequence Ek of subsets of R such that χEk ↓ 0 μ-a.e.

Proposition 2.14 Let (X , ‖·‖X ) be a quasi-Banach function space and let f ∈ X.
Suppose that f has absolutely continuous quasinorm. Then for every ε > 0 there is a
δ > 0 such that given any μ-measurable set E ⊆ R satisfying μ(E) < δ it holds that
‖ f χE‖X < ε.

Another important concept is that of an associate space. The detailed study of
associate spaces of Banach function spaces can be found in [1, Chapter 1, Sects. 2,
3, 4]. We will approach the issue in a slightly more general way. The definition of an
associate space requires no assumptions on the functional defining the original space.

Definition 2.15 Let ‖·‖X : M → [0,∞] be some non-negative functional and put

X = { f ∈ M; ‖ f ‖X < ∞}.

Then the functional ‖·‖X ′ defined for f ∈ M by

‖ f ‖X ′ = sup
g∈X

1

‖g‖X
∫

R
| f g| dμ,

where we interpret 0
0 = 0 and a

0 = ∞ for any a > 0, will be called the associate
functional of ‖·‖X while the set

X ′ = { f ∈ M; ‖ f ‖X ′ < ∞} ,

will be called the associate space of X .

As suggested by the notation, we will be interested mainly in the case when ‖·‖X is
at least a quasinorm, but we wanted to indicate that such assumption is not necessary
for the definition. In fact, it is not even required for the following result, which is the
Hölder inequality for associate spaces.

Theorem 2.16 Let ‖·‖X : M → [0,∞] be some non-negative functional and denote
by ‖·‖X ′ its associate functional. Then it holds for all f , g ∈ M that

∫

R
| f g| dμ ≤ ‖g‖X‖ f ‖X ′ ,

provided that we interpret 0 · ∞ = −∞ · ∞ = ∞ on the right-hand side.
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The convention concerning the products at the end of this theorem is necessary
precisely becauseweput no restrictions on‖·‖X and thus there occur somepathological
cases which need to be taken care of. Specifically, 0 · ∞ = ∞ is required because
we allow ‖g‖X = 0 even for non-zero g while −∞ · ∞ = ∞ is required because
Definition 2.15 allows X = ∅ which implies ‖ f ‖X ′ = sup∅ = −∞.

In order for the associate functional to be well behaved some assumptions on ‖·‖X
are needed. The following result, due to Gogatishvili and Soudský in [7], provides a
sufficient condition for the associate functional to be a Banach function norm.

Theorem 2.17 Let ‖·‖X : M → [0,∞] be a functional that satisfies the axioms (P4)
and (P5) from the definition of Banach function spaces and which also satisfies for all
f ∈ M that ‖ f ‖X = ‖ | f | ‖X . Then the functional ‖·‖X ′ is a Banach function norm.
In addition, ‖·‖X is equivalent to a Banach function norm if and only if there is some
constant C > 0 such that it holds for all f ∈ M that

C−1‖ f ‖X ′′ ≤ ‖ f ‖X ≤ C‖ f ‖X ′′ , (2.1)

where ‖·‖X ′′ denotes the associate functional of ‖·‖X ′ .

As a special case, we get that the associate functional of any quasi-Banach function
space that also satisfies the axiom (P5) is a Banach function norm. This has been
observed earlier in [6, Remark 2.3.(iii)].

Additionally, if ‖·‖X is a Banach function norm then (2.1) holds with constant one.
This is a classical result of Lorentz and Luxemburg, proof of which can be found for
example in [1, Chapter 1, Theorem 2.7].

Theorem 2.18 Let ‖·‖X be a Banach function norm, then ‖·‖X = ‖·‖X ′′ where ‖·‖X ′′
is the associate functional of ‖·‖X ′ .

Let us point out that even in the case when ‖·‖X , satisfying the assumptions of The-
orem 2.17, is not equivalent to any Banach function normwe still have one embedding,
as formalised in the following statement. The proof is an easy exercise.

Proposition 2.19 Let ‖·‖X satisfy the assumptions of Theorem 2.17. Then it holds for
all f ∈ M that

‖ f ‖X ′′ ≤ ‖ f ‖X ,

where ‖·‖X ′′ denotes the associate functional of ‖·‖X ′ .

2.3 Non-increasing Rearrangement

In this sectionwepresent the concept of the non-increasing rearrangement of a function
and state some of its properties that will be important in the last part of the paper. We
proceed in accordance with [1, Chapter 2].

The first step is to introduce the distribution function which is defined as follows.
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Definition 2.20 The distribution function μ f of a function f ∈ M is defined for
s ∈ [0,∞) by

μ f (s) = μ({t ∈ R; | f (t)| > s}).

The non-increasing rearrangement is then defined as the generalised inverse of the
distribution function.

Definition 2.21 The non-increasing rearrangement f ∗ of a function f ∈ M is defined
for t ∈ [0,∞) by

f ∗(t) = inf{s ∈ [0,∞); μ f (s) ≤ t}.

For the basic properties of the distribution function and the non-increasing rear-
rangement, with proofs, see [1, Chapter 2, Proposition 1.3] and [1, Chapter 2,
Proposition 1.7], respectively. We consider those basic properties to be classical and
well known and we will be using them without further explicit reference.

An important class of Banach function spaces are rearrangement-invariant Banach
function spaces. Belowwe provide a slightlymore general definitionwhich also allows
for quasi-Banach function spaces.

Definition 2.22 Let ‖·‖X be a quasi-Banach function norm. We say that ‖·‖X is
rearrangement-invariant, abbreviated r.i., if ‖ f ‖X = ‖g‖X whenever f , g ∈ M satisfy
f ∗ = g∗.
Furthermore, if the above condition holds, the corresponding space (X , ‖·‖X ) will

be called rearrangement-invariant too.

An important property of r.i. Banach function spaces over (Rn, λn) is that the
dilation operator is bounded on those spaces, as stated in the following theorem.
Standard proof uses interpolation, details can be found for example in [1, Chapter 3,
Proposition 5.11] or [21, Sect. 2.b]. Alternatively, a direct proof can be obtained by
the means of the Lorentz–Luxemburg theorem (Theorem 2.18).

Theorem 2.23 Let n ∈ N and let (X , ‖·‖X ) be an r.i. Banach function space over
(Rn, λn). Consider the dilation operator Da defined on M(Rn, λn) by

Da f (s) = f (as).

Then Da : X → X is a bounded operator.

We extend this result to the context of r.i. quasi-Banach function spaces in Theo-
rem 3.23. To this end, we employ the concept of radial non-increasing rearrangement
which we present below.

Definition 2.24 Let n ∈ N, n ≥ 1. The radial non-increasing rearrangement f � of a
function f ∈ M(Rn, λn) is defined for x ∈ R

n by

f �(x) = f ∗(αn|x |n),
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where the constant αn is defined by

αn = 1

n
Hn−1

(
S
n−1

)
= λn

(
B
n) . (2.2)

It is obvious that f � is radially symmetrical and non-increasing in |x |. Moreover,
it is an easy exercise to check that ( f �)∗ = f ∗ and also that the operation f �→ f �

commutes with the dilation operator Da , i.e.

(Da f )
� = Da( f

�).

Those two properties are in fact the motivation behind (2.2).

3 Quasi-Banach Function Spaces

The core observation of this section is the following lemma. Although it is in fact
quite simple to prove, it is extremely useful as it provides the critical insight needed
in order to generalise the standard proofs from the theory of normed spaces.

Lemma 3.1 Let X be a quasinormed space equipped with the quasinorm ‖·‖X and
denote by C its modulus of concavity. Let xn be a sequence of points in X. Then

∥
∥
∥
∥
∥

N∑

n=0

xn

∥
∥
∥
∥
∥
X

≤
N∑

n=0

Cn+1‖xn‖X ,

for every N ∈ N.

Proof The estimate follows by fixing an N ∈ N and using the triangle inequality, up
to a multiplicative constant, of ‖·‖X (N + 1) times to obtain

∥
∥
∥
∥
∥

N∑

n=0

xn

∥
∥
∥
∥
∥
X

≤ C‖x0‖X + C

∥
∥
∥
∥
∥

N∑

n=1

xn

∥
∥
∥
∥
∥
X

≤ · · · ≤
N∑

n=0

Cn+1‖xn‖X .

��

3.1 Generalised Riesz–Fischer Theorem

Firstly, we use Lemma 3.1 to prove a generalised version of the classical Riesz–Fischer
theorem.

Let us first define a generalisation of the classical Riesz–Fischer property.

Definition 3.2 Let X be a quasinormed space equippedwith the quasinorm‖·‖X and let
C ∈ [1,∞). We say that X has the generalised Riesz–Fischer property with constant
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C if for every sequence xn of points in X that satisfies

∞∑

n=0

Cn+1‖xn‖X < ∞,

there is a point x ∈ X such that

lim
N→∞

N∑

n=0

xn = x,

in the quasinormed topology of X .
We further say that X has the strong generalised Riesz–Fischer property, if every

sequence xn of points in X for which there exists a constant C̃ ∈ (1,∞) such that

∞∑

n=0

C̃n+1‖xn‖X < ∞,

satisfies, that there is a point x ∈ X such that

lim
N→∞

N∑

n=0

xn = x,

in the quasinormed topology of X .

It is obvious that the generalised Riesz–Fischer property with constant C = 1
is simply the classical Riesz–Fischer property, that the property gets weaker as C
becomes larger, and that the strong generalised Riesz–Fischer property implies the
generalised Riesz–Fischer property for every constant C > 1. However, as follows
from the following theorem, the only special case is the classical Riesz–Fischer prop-
erty, everything else is mutually equivalent and also equivalent to the completeness of
the quasinormed space in question.

Theorem 3.3 Let X be a quasinormed space equipped with the quasinorm ‖·‖X and
denote by CX its modulus of concavity. Then the following statements are equivalent:

(1) X is complete.
(2) X has the generalised Riesz–Fischer property with some constant C ∈ [1,∞).
(3) X has the generalised Riesz–Fischer property with constant CX .
(4) X has the generalised Riesz–Fischer property with every constant C ∈ (1,∞).
(5) X has the strong generalised Riesz–Fischer property.

Proof It is evident that (5) �⇒ (4) �⇒ (2).
(2) �⇒ (1): Suppose that the space X has the generalised Riesz-Fischer property

with arbitrary constant C ∈ [1,∞) and fix some Cauchy sequence xn . Proceed to find
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a non-decreasing and unbounded sequence of natural numbers kn such that it holds
for all natural numbers i, j ≥ kn that

‖xi − x j‖X ≤ (2C)−n−2.

Now, let us consider sequence yn of points in X defined by

y0 = xk0 ,

yn = xkn − xkn−1 for n ≥ 1.

Then the sequence yn satisfies

∞∑

n=0

Cn+1‖yn‖X ≤ C‖xk0‖X +
∞∑

n=1

Cn+1‖xkn − xkn−1‖X ≤ C‖xk0‖X +
∞∑

n=1

2−n−1 < ∞,

which means that, by our assumption on X , there is some limit y ∈ X of the sequence∑N
n=0 yn . Since

N∑

n=0

yn = xk0 +
N∑

n=1

xkn − xkn−1 = xkN ,

we have shown that the sequence xn has a convergent subsequence with limit y.
Because xn is Cauchy, the standard argument yields that y is also the limit of xn .

(1) �⇒ (5): Suppose that X is complete and that xn is a sequence of points in X
for which there exists some constant C̃ ∈ (1,∞) such that

∞∑

n=0

C̃n+1‖xn‖X < ∞.

Then we might find some K ∈ N, K > 0, such that C̃ K ≥ CX . Consider now for
i ∈ {0, . . . , K − 1} the sequences yi,n defined pointwise (for n ∈ N) as

yi,n = xKn+i .

That is, we have decomposed xn uniformly into K subsequences. Each yi,n now
satisfies

∞∑

n=0

Cn+1
X ‖yi,n‖X ≤ C̃ K

∞∑

n=0

C̃ Kn‖xKn+i‖X ≤ C̃ K
∞∑

n=0

C̃n+1‖xn‖X < ∞.

(3.1)

Next, we want to prove that the partial sums of the original series are Cauchy.
Consider thus some arbitrary natural numbers N ≤ M and put as N0 the largest
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natural number such that K N0 ≤ N , while M0 will be the smallest natural number
such that M ≤ KM0. Then, by decomposing the elements xn , N ≤ n ≤ M , into K
groups according to their membership in the subsequences yi,n and applying first K
times the triangle inequality up to a constant and then Lemma 3.1, we obtain

∥
∥
∥
∥
∥

N∑

n=0

xn −
M∑

n=0

xn

∥
∥
∥
∥
∥
X

≤ CK
X

K−1∑

i=0

M0∑

n=N0

Cn−N0+1
X ‖yi,n‖X ≤ CK

X

K−1∑

i=0

∞∑

n=N0

Cn+1
X ‖yi,n‖X .

Thanks to (3.1), we can make the right-hand side arbitrarily small by taking N0 suf-
ficiently large.Hence, the partial sums areCauchy and our assumption of completeness
ensures that the series converges.

It remains to consider (3). It it obvious that (3) �⇒ (2). On the other hand, when
CX > 1 then clearly (4) �⇒ (3), while when CX = 1 then the space is normed and
we have (1) �⇒ (3) as follows from the classical Riesz–Fischer theorem. ��

This result has a significant overlap with [24, Theorem 1.1] (we would like to thank
Professor Maligranda for making us aware of this). Significantly restricted versions
were obtained earlier, see for example [39, Lemma 101.1] or [10].

3.2 Basic Properties of Quasi-Banach Function Norms

We now turn our attention to quasi-Banach function spaces as defined in Sect. 2.2 and
show that they have the same basic properties as their normed counterparts. For the
proofs of the classical versions of these results see [1, Chapter 1, Sect. 1].

The first result relates quasi-Banach function spaces with the set of simple functions
and M0.

Theorem 3.4 Let (X , ‖·‖X ) be a quasi-Banach function space. Then X is a linear
space satisfying

S ⊆ X ↪→ M0,

where S denotes the set of all simple functions (supported on a set of finite measure)
and M0 is equipped with the topology of convergence in measure on the sets of finite
measure.

Our proof of this result is inspired by that of [19, Chapter II, Sect. 2, Theorem 1].
We would also like to note that [1, Chapter 1, Theorem 1.4] contains an easier proof
for the special case when ‖·‖X satisfies (P5) and that the set theoretical inclusion
X ⊆ M0 is contained in [27, Lemma 2.4] (in both cases the results are formulated
with different assumptions but the proofs translate verbatim to our setting).

We will need the following measure-theoretical lemma.

Lemma 3.5 Let E ⊆ R satisfy 0 < μ(E) < ∞, let δ ∈ (0, μ(E)) be fixed, and let
Fn be a sequence of subsets of E satisfying μ(Fn) > δ for every n ∈ N. Then the
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pointwise sum
∑∞

n=0 χFn satisfies

μ

({ ∞∑

n=0

χFn = ∞
})

> 0.

Proof Assume contrary, i.e. that we have a sequence Fn of subsets of E that satisfies
μ(Fn) > δ for every n ∈ N, where δ is the number fixed in the formulation, while

μ

({ ∞∑

n=0

χFn = ∞
})

= 0.

Then for every ε ∈ (0, μ(E)) there is some Nε ∈ N such that

μ

({ ∞∑

n=0

χFn > Nε

})

<
ε

2
.

Put ε = δ. Then, by the monotone convergence theorem,

Nδμ(E) ≥
∫

{∑∞
n=0 χFn≤Nδ}

∞∑

n=0

χFn dμ

=
∞∑

n=0

∫

{∑∞
n=0 χFn≤Nδ}

χFn dμ

=
∞∑

n=0

μ

(

Fn ∩
{ ∞∑

n=0

χFn ≤ Nδ

})

≥
∞∑

n=0

(

μ(Fn) − δ

2

)

.

It follows that there is some n0 ∈ N such that μ(Fn0) < δ. ��
Proof of Theorem 3.4 The inclusion S ⊆ X is trivial so we will only prove the embed-
ding X ↪→ M0. We first note that X ⊆ M0 in the set-theoretical sense, as follows
from the following argument.

Let f ∈ M and let E = {| f | = ∞}. If μ(E) > 0 then it follows from the part (b)
of (Q1) that ‖χE‖X > 0 (regardless of whether μ(E) is finite; we neither claim nor
need finiteness of the quasinorm). As (P2) and part (a) of (Q1) imply ‖ f ‖X ≥ n‖χE‖X
for every n ∈ N, we conclude that ‖ f ‖X = ∞.

It remains to show that the embedding is continuous, i.e. that for every sequence fn
in X we have that ‖ fn‖X → 0 as n → 0 implies that fn converge to zero in measure
on every set of finite measure. We prove this statement by contradiction.

Let C be the modulus of concavity of ‖·‖X . Assume that fn is a sequence in X
such that ‖ fn‖X → 0 as n → 0 and that there is a set E0 ⊆ R with 0 < μ(E0) < ∞,
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ε ∈ (0,∞), and δ ∈ (0,∞) such that the sets

Fn = {x ∈ E0; | fn(x)| > ε},

satisfy μ(Fn) > δ for every n ∈ N. We may assume without loss of generality
that ‖ fn‖X ≤ C−n−12−n−1 for every n ∈ N. Then it follows from Lemma 3.1, the
properties (P2) and (P3) of ‖·‖X , and part (a) of its property (Q1) that the pointwise
sum

∑∞
n=0 χFn satisfies

∥
∥
∥
∥
∥

∞∑

n=0

χFn

∥
∥
∥
∥
∥
X

= lim
N→∞

∥
∥
∥
∥
∥

N∑

n=0

χFn

∥
∥
∥
∥
∥
X

≤ lim
N→∞

N∑

n=0

Cn+1
∥
∥χFn

∥
∥
X

≤ lim
N→∞

N∑

n=0

Cn+1
∥
∥
∥
∥
1

ε
fn

∥
∥
∥
∥
X

≤ 1

ε
.

Hence,
∑∞

n=0 χFn ∈ X . Note that the sum is defined pointwise, we do not make
any claims about convergence in X . The already proved set-theoretical inclusion X ⊆
M0 now asserts that

∑∞
n=0 χFn is finite almost everywhere; however, this statement

contradicts Lemma 3.5. ��
The next result is a version of Fatou’s lemma.

Lemma 3.6 Let (X , ‖·‖X ) be a quasi-Banach function space. Consider a sequence fn
of functions in X and f ∈ M. Then the following two assertions hold.

(1) If 0 ≤ fn ↑ f μ-a.e., then either f /∈ X and ‖ fn‖X ↑ ∞ or f ∈ X and
‖ fn‖X ↑ ‖ f ‖X .

(2) If fn → f μ-a.e. and lim infn→∞‖ fn‖X < ∞, then f ∈ X and

‖ f ‖X ≤ lim inf
n→∞ ‖ fn‖X .

The proof is omitted since it is the same as in the classical case which can be found
in [1, Chapter 1, Lemma 1.5].

The following result establishes the generalised Riesz–Fischer property, with an
appropriate constant, of quasi-Banach function spaces. We believe this result to be
interesting in its own right because its applications are not limited to proving com-
pleteness.

Theorem 3.7 Let (X , ‖·‖X ) be a quasi-Banach function space. Denote by C the mod-
ulus of concavity of ‖·‖X . Then X has the generalised Riesz-Fischer property with
constant C.

Furthermore, let fn be a sequence in X such that

∞∑

n=0

Cn+1‖ fn‖X < ∞,

and put f = ∑∞
n=0 fn in X. Then also f = ∑∞

n=0 fn μ-a.e.
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Proof Fix some sequence fn in X such that

∞∑

n=0

Cn+1‖ fn‖X < ∞. (3.2)

Denote by t and tN the following pointwise sums:

t =
∞∑

n=0

| fn|,

tN =
N∑

n=0

| fn|.

Then tN ↑ t and since it holds by Lemma 3.1 that

‖tN‖X ≤
N∑

n=0

Cn+1‖ fn‖X ≤
∞∑

n=0

Cn+1‖ fn‖X < ∞,

we get by part (1) of Lemma 3.6 that t ∈ X . Thanks to Theorem 3.4 the series∑∞
n=0| fn| converges almost everywhere and therefore the series

∑∞
n=0 fn does too.

Denote now by f and sN the following pointwise sums:

f =
∞∑

n=0

fn,

sN =
N∑

n=0

fn .

Then sN → f μ-a.e., hence, for any M , we get that sN − sM → f − sM μ-a.e. as
N → ∞. Furthermore, using Lemma 3.1 again, we get that

lim inf
N→∞ ‖sN − sM‖X ≤ lim inf

N→∞

N∑

n=M+1

Cn+1‖ fn‖X ≤
∞∑

n=M+1

Cn+1‖ fn‖X ,

which tends to 0 as M → ∞ thanks to (3.2). Therefore, if follows from part (2)
of Lemma 3.6 that f − sM ∈ X (which implies that f ∈ X too) and also that
‖ f − sM‖X → 0 as M → ∞. ��

The most obvious application of this result is the completeness of quasi-Banach
function spaces, which follows via Theorem 3.3. This result was first obtained by
Caetano, Gogatishvili and Opic in [3] using a different method.

Corollary 3.8 Let (X , ‖·‖X ) be a quasi-Banach function space. Then it is complete.
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A second application of Theorem 3.7 is the following result that characterises the
boundedness of those quasilinear operators that are in some sense compatible with the
structure of quasi-Banach function spaces.

Theorem 3.9 Let (X , ‖·‖X ) and (Y , ‖·‖Y ) be quasi-Banach function spaces over
M(R, μ) and M(S, ν), respectively, and let T : M(R, μ) → M(S, ν) be a quasilinear
operator such that the following two conditions hold:

(1) There is a constant c1 > 0 such that it holds for all f ∈ M(R, μ) that |T ( f )| ≤
c1T (| f |) ν-a.e. on S.

(2) There is a constant c2 > 0 such that it holds for all f , g ∈ M(R, μ) satisfying
| f | ≤ |g| μ-a.e. on R that |T ( f )| ≤ c2|T (g)| ν-a.e. on S.

Then T : X → Y is bounded, in the sense that there is a finite constant CT > 0
such that ‖T ( f )‖Y ≤ CT ‖ f ‖X for all f ∈ X, if and only if T ( f ) ∈ Y for all f ∈ X.

Proof We will only prove the sufficiency since the necessity is obvious.
Denote by C the modulus of concavity of both ‖·‖X and ‖·‖Y and suppose that

no finite constant CT satisfies ‖T ( f )‖Y ≤ CT ‖ f ‖X for all f ∈ X . Then there is a
sequence gn of functions in X such that

‖gn‖X ≤ 1,

‖T (gn)‖Y ≥ n(2C)n+1.

By putting fn = |gn|we obtain a sequence of non-negative functions fn that satisfy

‖ fn‖X ≤ 1,

‖T ( fn)‖Y ≥ n(2C)n+1 1

c1
,

where the second estimate holds because T satisfies the condition (1). It follows that

∞∑

n=0

Cn+1‖(2C)−n−1 fn‖X ≤
∞∑

n=0

2−n−1 < ∞,

and thus Theorem 3.7 implies that f = ∑∞
n=0(2C)−n−1 fn ∈ X . Note that this sum

converges to f both in X and μ-a.e., which together with the non-negativeness of the
functions fn yields that it holds for every k ∈ N that

f =
∞∑

n=0

(2C)−n−1 fn ≥
k∑

n=0

(2C)−n−1 fn ≥ (2C)−k−1 fk μ-a.e.

Now, T satisfies the condition (2) and it therefore holds that

‖T ( f )‖Y ≥ (2C)−k−1

c2
‖T ( fk)‖Y ≥ k

c2c1
,
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for all k ∈ N. Hence, T ( f ) /∈ Y , which establishes the sufficiency. ��
An important special case of Theorem 3.9 is an extremely useful result that tells us

that an embedding between two quasi-Banach function spaces is always continuous.

Corollary 3.10 Let (X , ‖·‖X ) and (Y , ‖·‖Y ) be quasi-Banach function spaces. If X ⊆
Y then also X ↪→ Y .

As another consequence of Theorem 3.7 we present here the following result
concerning associate spaces. Statements of this type are sometimes called Landau’s
resonance theorems and they can be quite useful as a tool in the study of associate
spaces. For the more classical version concerning Banach function spaces see for
example [1, Chapter 1, Lemma 2.6].

Theorem 3.11 Let (X , ‖·‖X ) be a quasi-Banach function space and let ‖·‖X ′ and X ′,
respectively, be the corresponding associate norm and associate space. Then arbitrary
function f ∈ M belongs to X ′ if and only if it satisfies

∫

R
| f g| dμ < ∞, (3.3)

for all g ∈ X.

Proof The necessity is an immediate consequence of the Hölder inequality (Theo-
rem 2.16).

As for the sufficiency, denote by C the modulus of concavity of ‖·‖X and suppose
that f /∈ X ′. By the definition of X ′, this means that there exists some sequence gn of
non-negative functions in X such that ‖gn‖X ≤ 1 while

∫

R
| f gn| dμ > n(2C)n+1.

Then, as in the preceding theorem, we obtain that

∞∑

n=0

Cn+1‖(2C)−n−1gn‖X < ∞,

which yields us, by the means of Theorem 3.7, a function g = ∑∞
n=0(2C)−n−1gn ∈ X

which satisfies g ≥ (2C)−n−1gn μ-a.e. for all n ∈ N and thus

∫

R
| f g| dμ ≥ (2C)−n−1

∫

R
| f gn| dμ ≥ n,

for all n ∈ N. That is, we have shown that there is a g ∈ X which violates (3.3). ��
The final application we present here is a result about those quasi-Banach function

norms that do not satisfy the axiom (P5) of Banach function norms.
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Theorem 3.12 Let (X , ‖·‖X ) be a quasi-Banach function space. Suppose that E ⊆ R
is a set such that μ(E) < ∞ and that for every constant K ∈ (0,∞) there is a
non-negative function f ∈ X satisfying

∫

E
| f | dμ > K‖ f ‖X .

Then there is a non-negative function fE ∈ X such that

∫

E
fE dμ = ∞. (3.4)

Proof Denote by C the modulus of concavity of ‖·‖X and consider some sequence fn
of non-negative functions in X such that

‖ fn‖X ≤ 1,
∫

E
fn dμ > n(2C)n+1.

As before, we get that

∞∑

n=0

Cn+1‖(2C)−n−1 fn‖X < ∞

and we thus obtain a function fE = ∑∞
n=0(2C)−n−1 fn ∈ X satisfying fE ≥

(2C)−n−1 fn μ-a.e. for all n ∈ N. Consequently,

∫

E
fE dμ > n

for all n ∈ N which shows that fE satisfies (3.4). ��

3.3 Separability

In this sectionwe examine the separability of quasi-Banach function spaces.We restrict
ourselves to the case when (R, μ) = (Rn, λn) and arrive to the expected conclusion
that a quasi-Banach function space is separable if and only if it has absolutely contin-
uous quasinorm. Note that our approach differs from that which is usually used in the
context of Banach function spaces, see e.g. [1, Chapter 1, Sect. 5]. This is due to the
fact that this classical approach depends on the fact that the Banach function spaces
have separating dual and is therefore unusable in the context of quasi-Banach function
spaces which, in general, do not have this property.

We first introduce some auxiliary terms as well as some notation.

123



  231 Page 20 of 29 A. Nekvinda, D. Peša

Definition 3.13 Let k ∈ Z and let a = (a1, a2, . . . , an) ∈ Z
n . Denote by Qk,a the

dyadic cube

Qk,a =
n∏

i=1

( ai
2k

,
ai + 1

2k

)
.

Moreover, denote by Dk the collection

Dk = {Qk,a; a ∈ Z
n},

of all dyadic cubes of order k and by D the collection

D =
⋃

k∈Z
Dk,

of all dyadic cubes.
We say that a set � ⊂ R

n is a complex of order k if there are finitely many sets
Qi ∈ Dk that satisfy

� =
⋃

i

Qi .

Note that D is a countable collection of sets.

Definition 3.14 We denote by S the following family of simple functions:

S =
{

f ∈ M(Rn, λn); f =
k∑

i=1

αiχQi , Qi ∈ D, αi ∈ C,Re(αi ) ∈ Q, Im(αi ) ∈ Q

}

.

Note that S is a countable family of functions.
The last thingwe need in order to prove our results is the following covering lemma.

Lemma 3.15 Let K ⊂ R
n be a compact set. Then for any open set G such that K ⊆ G,

any ε > 0 and any k0 ∈ Z there is a complex � of order k, where k ≥ k0, that has the
following properties:

(1) � ⊆ G,
(2) λn(K \ �) = 0,
(3) λn(� \ K ) < ε,
(4) if Q ∈ Dk satisfies Q ⊆ � then Q ∩ K �= ∅.
Proof Find some open set H̃ such that K ⊆ H̃ and λn(H̃ \ K ) < ε, set H = G ∩ H̃
and put δ = dist(K ,Rn\H) > 0. Then there is a k ≥ k0 such that 2−k√n < δ. Put

� =
⋃

{Q ∈ Dk; Q ∩ K �= ∅} .
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Then� is a complex of order k (because K is bounded) and clearly has the properties
(2) and (4). Furthermore, it holds for any x ∈ � that it belongs to some Qx ∈ Dk such
that Qx ∩ K �= ∅ and thus

dist(x, K ) ≤ diam(Qx ) = 2−k√n < δ.

Hence, � ⊆ H and the remaining properties (1) and (3) follow. ��
We are now suitably equipped to prove our results. We begin by the sufficiency in

its following precise form.

Theorem 3.16 Let (X , ‖·‖X ) be a quasi-Banach function space over M(Rn, λn). Sup-
pose that χK has absolutely continuous quasinorm for any compact K ⊆ R

n. Then
for any function f ∈ X that has absolutely continuous quasinorm and any ε > 0 there
is a function s ∈ S such that ‖ f − s‖X < ε.

Proof Denote by C the modulus of concavity of ‖·‖X and fix some f ∈ X and
ε > 0. Because f is finite λn-a.e. by Theorem 3.4 and is assumed to have absolutely
continuous quasinorm, there is some N > 0 such that the restrictions of f onto the
sets

E0 = {
x ∈ R

n; | f (x)| > N
}
,

E1 = {
x ∈ R

n; |x | > N
}
,

satisfy

‖ f χE0‖X < ε, (3.5)

‖ f χE1‖X < ε. (3.6)

Consider now the set E = R
n \ (E0 ∪ E1) and denote L = ‖χE‖X ∈ (0,∞).

We may assume L > 0, because otherwise χE = 0 λn-a.e. in which case f can be
approximated by the zero function. Since E is bounded we can find some compact set
K̃ such that there is an open set G satisfying E ⊆ G ⊆ K̃ . Thanks to the assumption
that both f and χK̃ have absolutely continuous quasinorm we may find δ > 0 such
that it holds for all A ⊆ G satisfying λn(A) < δ that both

‖ f χA‖X < ε, (3.7)

‖χA‖X <
ε

N + ε
L

. (3.8)

By the classical Luzin theorem (see e.g. [30, Theorem 2.24]) there is a compact
K ⊆ E such that λn(E\K ) < δ and that the restriction of f onto K is uniformly
continuous on K . We may thus find some 
 > 0 such that it holds for all x, y ∈ K
satisfying |x − y| < 
 that

| f (x) − f (y)| <
ε

L
. (3.9)
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Find now some k0 ∈ N such that 2−k0
√
n < 
. By Lemma 3.15 there is a complex

� of order k, where k ≥ k0, such that � ⊆ G, λn(K\�) = 0 and λn(�\K ) < δ.
Denote by Qi the finite sequence of dyadic cubes from Dk for which � = ⋃

i Qi .
Choose for every i some arbitrary point xi ∈ Qi ∩ K (existence of this point follows
from Lemma 3.15) and find some ai ∈ {z ∈ C; Re(z) ∈ Q, Im(z) ∈ Q} such that

|ai − f (xi )| <
ε

L
. (3.10)

We are now in position to define s by

s(x) =
{
0, x /∈ �,

ai , x ∈ Qi .

It remains to estimate ‖ f − s‖X . We expand it to get that

‖ f − s‖X ≤ C‖( f − s)χK ‖X + C‖( f − s)χRn\K ‖X ,

and estimate the two terms on the right-hand side separately.
Consider first the term ‖( f − s)χK ‖X . Because χK = χK∩� λn-a.e. it suffices to

estimate ‖( f − s)χK∩�‖X . To this end, consider arbitrary point x ∈ K ∩ � and find
the appropriate index i such that x ∈ Qi . Then

|x − xi | ≤ diam(Qi ) = 2−k√n < 
,

and thus, by (3.9) and (3.10),

| f (x) − s(x)| ≤ | f (x) − f (xi )| + | f (xi ) − s(x)| <
2ε

L
.

From this uniform estimate it now follows that

‖( f − s)χK ‖X = ‖( f − s)χK∩�‖X ≤ 2ε

L
‖χK∩�‖X ≤ 2ε

L
‖χE‖X = 2ε.

As for the remaining term ‖( f − s)χRn\K ‖X , because χE0 +χE1 +χE\K ≥ χRn\K
λn-a.e. we may further expand it by Lemma 3.1 to get

‖( f − s)χRn\K ‖X ≤ C‖ f χRn\K ‖X + C‖sχRn\K ‖X
≤ C4‖ f χE0‖X + C3‖ f χE1‖X + C2‖ f χE\K ‖X+C‖sχRn\K ‖X ,

and again examine those four terms separately.
The terms ‖ f χE0‖X , ‖ f χE1‖X , and ‖ f χE\K ‖X are estimated immediately by

(3.5), (3.6), and (3.7), respectively, one only has to remember in the last case that
E\K ⊆ G and λn(E\K ) < δ.
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Finally we turn ourselves to the term ‖sχRn\K ‖X . The function s is zero on Rn\�
and also bounded onRn by N+ ε

L , while the set�\K satisfies that both λn(�\K ) < δ

and �\K ⊆ G. Hence, we get by (3.8) that

‖sχRn\K ‖X = ‖sχ�\K ‖X ≤
(
N + ε

L

)
‖χ�\K ‖X <

(
N + ε

L

) ε

N + ε
L

= ε.

By combining the above obtained estimates we arrive at the conclusion that

‖ f − s‖X ≤ (
2C + C2 + C3 + C4 + C5)ε.

��
Theorem 3.17 Let (X , ‖·‖X ) be a quasi-Banach function space over M(Rn, λn). Then
X is separable if and only if it has absolutely continuous quasinorm.

Proof The sufficiency follows directly from Theorem 3.16.
As for the necessity, assume that there is a non-negative function f ∈ X , ε > 0,

and a sequence Ek of subsets of Rn such that χEk ↓ 0 λn-a.e. while

‖ f χEk‖X > ε.

Wewill now construct, by induction, a strictly increasing sequence of natural num-
bers ki such that the formula

fi = f
(
χEki

− χEki+1

)
, (3.11)

will define a sequence of functions fi such that it will hold for every i that

(1) ‖ fi‖X > ε,
(2) supp( fi ) ∩ supp( f j ) = ∅ for all j ∈ N such that j �= i ,
(3) fi ≤ f λn-a.e.

The construction proceeds as follows. Set k0 = 0. Assume now that we already
have ki for some i ≥ 0 and consider the sequence f (χEki

− χEk ), k ≥ ki . Since
χEk ↓ 0, we get that f (χEki

− χEk ) ↑ f χEki
and thus

‖ f (χEki
− χEk )‖X ↑ ‖ f χEki

‖X > ε.

Consequently, there is an index ki+1 > ki such that the function fi+1, defined
by (3.11), satisfies the requirement (1). Since the condition (3) is satisfied trivially, it
remains only to consider the condition (2). To this end, note that supp( fi+1)∩Eki+1 = ∅
which gives for any j < i + 1 that

supp( fi+1) ∩ supp( f j ) = ∅.

This concludes the construction.
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Now, consider the following family of functions:

F =

⎧
⎪⎪⎨

⎪⎪⎩
fη ∈ M(Rn, λn); η ∈ {0, 1}N, fη =

∑

j∈N,
η( j)=1

f j

⎫
⎪⎪⎬

⎪⎪⎭
.

Thanks to the properties (2) and (3) of the functions fi , we obtain that it holds for
every η ∈ {0, 1}N that fη ≤ f and thus F ⊆ X . Furthermore, if η1, η2 ∈ {0, 1}N
satisfy for some j0 that η1( j0) �= η2( j0) then we have | fη1 − fη2 | ≥ f j0 λn-a.e. and
consequently

‖ fη1 − fη2‖X ≥ ‖ f j0‖X > ε.

It follows that F is an uncountable discrete subset of X and X therefore cannot be
separable. ��

3.4 Boundedness of the Dilation Operator

The final question we are dealing with in this paper is whether the dilation operator is
boundedon r.i. quasi-Banach function spaces over (Rn, λn).As stated inTheorem3.23,
the answer is positive, but an entirely new method had to be developed, since the
proof of the classical result from the setting of r.i. Banach function spaces uses either
interpolation or the property that X coincides with its second associate space X ′′,
neither of which is in general available in the setting of quasi-Banach function spaces.

Before we begin proving our results, let us just note that with our additional
assumption of rearrangement-invariance, our concept of quasi-Banach function spaces
coincides with the alternative approach explored in [22] and also with the so-called
ball quasi-Banach function spaces as introduced in [31, Definition 2.2].

Let us now move on to proving our result, which will be done via a series of
lemmata. The first step is the rather obvious observation that the dilation operator Da

is, in the following sense, monotone with respect to the parameter a.

Lemma 3.18 Let (X , ‖·‖X ) be an r.i. quasi-Banach function space over M(Rn, λn).
Assume that 0 < a < b < ∞. Then the dilation operators Da and Db satisfy

‖Db f ‖X ≤ ‖Da f ‖X ,

for all f ∈ M(Rn, λn). Consequently,

(1) if a ∈ (0,∞), Da is bounded, and b > a then Db is also bounded,
(2) if b ∈ (0,∞), Db is unbounded, and a < b then Da is also unbounded.

Proof It follows from the monotonicity of f � with respect to |x | and the assumption
a < b that it holds for all f ∈ M(Rn, λn) and all x ∈ R

n that

f �(bx) ≤ f �(ax).
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Because ‖·‖X is assumed to be rearrangement-invariant the conclusion holds by
the following chain of equalities and inequalities:

‖Db f ‖X = ‖(Db f )
�‖X = ‖Db( f

�)‖X ≤ ‖Da( f
�)‖X = ‖(Da f )

�‖X = ‖Da f ‖X .

��
The next lemma shows that in order to prove the boundedness of Da for any a ∈

(0,∞) it is actually sufficient to prove it for any fixed a ∈ (0, 1).

Lemma 3.19 Let (X , ‖·‖X ) be an r.i. quasi-Banach function space over M(Rn, λn).
Set

s = sup{a ∈ [0,∞); ‖Da‖ = ∞},

where ‖Da‖ is the operator norm of Da. Then s is equal to either zero or one.

Proof Because D1 is the identity operator on M(Rn, λn), which is bounded on X , it
follows from Lemma 3.18 that s ∈ [0, 1].

Assume s ∈ (0, 1) and choose some t ∈ (s,
√
s). Then t2 < s < t and therefore

we get from Lemma 3.18 and the definition of s that Dt is bounded while Dt2 is
unbounded. But this is a contradiction, since Dt2 = Dt ◦ Dt and thus it must be
bounded with a norm that is at most equal to ‖Dt‖2. ��

We now proceed by proving the boundedness of Db for b = ( 2
3

) 1
n . To this end, we

will employ the four auxiliary operators defined bellow.

Definition 3.20 Set

G1 =
⋃

k∈Z

(
1

22k+2 ,
1

22k+1

)

,

G2 =
⋃

k∈Z

(
1

22k+1 ,
1

22k

)

.

We then define the operators R1, R2 for functions in f ∈ M((0,∞), λ) by

R1 f = f χG1 ,

R2 f = f χG2 ,

and the corresponding operators S1 and S2 for functions f ∈ M(Rn, λn) by

S1 f (x) = [R1 f
∗](αn|x |n),

S2 f (x) = [R2 f
∗](αn|x |n),

for all x ∈ R
n , where αn is the same constant as in the Definition 2.24 of radial

non-increasing rearrangement.
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Lemma 3.21 Let g ∈ M((0,∞), λ). Then it holds for i = 1, 2 and almost every
t ∈ (0,∞) that

(Ri g
∗)∗(t) ≤ D 3

2
g∗(t).

Proof We perform the proof only for i = 1 because the other case is analogous.

Denote g1 = R1g∗ and fix some k ∈ Z and some x ∈
(

1
22k+2 ,

1
22k+1

)
. Then the

non-increasing rearrangement shifts the value g1(x) to a point tx given by

tx = x − 1

22k+2 +
∞∑

l=k+1

(
1

22l+1 − 1

22l+2

)

= x − 2

3

1

22k+2 .

It is easy to see that this tx satisfies tx ∈
(
2
3

1
22(k+1)+1 ,

2
3

1
2k+1

)
. Conversely, given any

t in this interval, one can find an appropriate xt ∈
(

1
22k+2 ,

1
22k+1

)
such that t = txt .

Note that intervals of this form cover almost every point of (0,∞).
Fix now arbitrary t ∈ (0,∞) such that there is some k ∈ Z satisfying t ∈(

2
3

1
22(k+1)+1 ,

2
3

1
22k+1

)
. We have by the arguments presented above that

g∗
1(t) = g∗(xt ),

where xt satisfies

xt = t + 2

3

1

22k+2 = t + 1

2

2

3

1

22k+1 ≥ t + 1

2
t = 3

2
t .

Since g∗ is non-increasing we have

g∗
1(t) = g∗(xt ) ≤ D 3

2
g∗(t)

for almost every t ∈ (0,∞). ��
Lemma 3.22 Let (X , ‖·‖X ) be an r.i. quasi-Banach function space over M(Rn, λn)

and denote its modulus of concavity by C. Put b = ( 2
3

) 1
n . Then the dilation operator

Db is bounded on X and its operator norm satisfies ‖Db‖ ≤ 2C.

Proof The operators S1 and S2 were defined in such a way that they satisfy, for any
f ∈ M(Rn, λn), the following two crucial properties:

f � = S1 f + S2 f λn-a.e. on R
n, (3.12)

(Si f )
∗ = (Ri f

∗)∗ on R for i = 1, 2. (3.13)

While (3.12) is obvious directly from the respective definitions, the property (3.13)
is more involved, as it follows from examination of the level sets {Si f > t} and
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{Ri f ∗ > t} that uses both their structure and the fact that the preimage of an interval
in (0,∞) with respect to the mapping x �→ αn|x |n is an annulus centered at zero
whose n-dimensional measure is equal to the length of the original interval. We leave
out the details.

Using Lemma 3.21 (with g = f ∗) in combination with (3.13) we now obtain for
i = 1, 2 and almost every x ∈ R

n the following:

(Si f )
�(x) = (Si f )

∗(αn|x |n) = (Ri f
∗)∗(αn|x |n) ≤ (D 3

2
f ∗)(αn|x |n) = Db−1 f �(x).

(3.14)

We are now suitably equipped to prove the boundedness of Db, since wemay obtain
from (3.12) and (3.14) that it holds for all f ∈ M(Rn, λn) that

‖Db f ‖X = ‖(Db f )
�‖X

= ‖S1(Db f ) + S2(Db f )‖X
≤ C(‖S1(Db f )‖X + ‖S2(Db f )‖X )

= C(‖(S1(Db f ))
�‖X + ‖(S2(Db f ))

�‖X )

≤ C(‖Db−1(Db f )
�‖X + ‖Db−1(Db f )

�‖X )

= 2C‖ f �‖X
= 2C‖ f ‖X .

��
The desired boundedness of Da for any a ∈ (0,∞) now follows by combining the

previous results. Moreover, we also obtain an upper bound on the operator norm of
Da .

Theorem 3.23 Let (X , ‖·‖X ) be an r.i. quasi-Banach function space over M(Rn, λn).
Denote its modulus of concavity by C. Then the dilation operator Da is bounded on
X for any a ∈ (0,∞) and its operator norm satisfies

‖Da‖ ≤
{
2Ca

log(2C)
log(b) for a ∈ (0, 1),

1 for a ∈ [1,∞),

where b is as in Lemma 3.22, that is, b = ( 2
3

) 1
n .

Proof The boundedness follows directly from Lemmata 3.19 and 3.22 while the esti-
mate on the norm in the case a ∈ [1,∞) follows from Lemma 3.18 and the fact that
D1 is the identity operator on M(Rn, λn). It thus remains only to prove the estimate
for a ∈ (0, 1).

Let a ∈ (0, 1) and fix k ∈ N such that

a ∈
[
bk+1, bk

)
.
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It then follows from Lemmata 3.18 and 3.22 that

‖Da‖ ≤ ‖Dbk+1‖ ≤ ‖Db‖k+1 ≤ (2C)k+1 ≤ 2Ca
log(2C)
log(b) .

��
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18. Kolwicz, P., Leśnik, K., Maligranda, L.: Symmetrization, factorization and arithmetic of quasi-Banach
function spaces. J. Math. Anal. Appl. 470(2), 1136–1166 (2019)

19. Kreı̆n, S.G., Petunı̄n, Y.I., Semënov, E.M.: Interpolation of LinearOperators, Volume 54 of Translations
of Mathematical Monographs. American Mathematical Society, Providence (1982)

20. Li, Y., Yang, D., Huang, L.: Real-Variable Theory of Hardy Spaces Associated with Generalized Herz
Spaces of Rafeiro and Samko Lecture Notes in Mathematics, vol. 2320. Springer, Singapore (2022)

21. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Volume 97 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (Results in Mathematics and Related Areas). Springer, Berlin (1979)

22. Lorist, E., Nieraeth, Z.: Banach function spaces done right. In: Indagationes Mathematicae (2023)
23. Luxemburg, W.A.J.: Banach function spaces. Thesis, Technische Hogeschool te Delft (1955)
24. Maligranda, L.: Type, cotype and convexity properties of quasi-Banach spaces. In:Banach andFunction

Spaces, pp. 83–120. Yokohama Publications, Yokohama (2004)
25. Malý, L.: Minimal weak upper gradients in Newtonian spaces based on quasi-Banach function lattices.

Ann. Acad. Sci. Fenn. Math. 38(2), 727–745 (2013)
26. Malý, L.: Newtonian spaces based on quasi-Banach function lattices. Math. Scand. 119(1), 133–160

(2016)
27. Mizuta, Y., Nekvinda, A., Shimomura, T.: Optimal estimates for the fractional Hardy operator. Stud.

Math. 227(1), 1–19 (2015)
28. Nieraeth, Z.: Extrapolation in general quasi-Banach function spaces. J. Funct. Anal. 285(10), 109

(2023)
29. Pan, Z., Yang,D.,Yuan,W., Zhang,Y.:Gagliardo representation of norms of ball quasi-Banach function

spaces. J. Funct. Anal. 286(2), 78 (2024)
30. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)
31. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Dis-

sertat. Math. 525, 102 (2017)
32. Sun, J., Yang, D., Yuan, W.: Weak Hardy spaces associated with ball quasi-Banach function spaces on

spaces of homogeneous type: decompositions, real interpolation, and Calderón–Zygmund operators.
J. Geom. Anal. 32(7), 85 (2022)

33. Tao, J., Yang, D., Yuan, W., Zhang, Y.: Compactness characterizations of commutators on ball Banach
function spaces. Potential Anal. 58(4), 645–679 (2023)
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