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Abstract

In this paper, we are interested in studying a generalized block space (denoted as
Bf,f’r) on a space of homogeneous type. We show that this space is the predual of
certain generalized Morrey—Lorentz space. By duality, we obtain the Bf;’r—bound of
operators of Calderén—Zygmund type. In addition, we prove a weak Hardy factor-
ization in terms of commutators of integral operator of Calderén—Zygmund type in
block spaces. Thanks to the Hardy factorization result, we obtain a characterization
of functions in BMO via the boundedness of commutators of homogeneous linear
Calderén—Zygmund operators in the generalized block space (resp. the generalized
Morrey-Lorentz space). Finally, we study a compactness characterization of commu-
tators of Calderén—Zygmund type in generalized Morrey—Lorentz spaces.
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1 Introduction and Main Results

The theory of Calderén—Zygmund operators is a central part of modern harmonic
analysis. Many applications to partial differential equations are among the motivations
to study Calderon—Zygmund operators on spaces which are beyond the Lebesgue
spaces L? of the Euclidean spaces. This research direction has been studied extensively
and lead to a successful theory of function spaces including Hardy spaces, BMO
spaces, Campanato spaces, Morrey—Lorentz spaces on the Euclidean space R" or
more general, on a space of homogeneous type X (see for example [7]) in the last fifty
years.

In this paper, we study certain aspects of operators of Calder6n—Zygmund type on
various function spaces. The aim of this paper is threefold.

(i) Firstly, we study generalized block space BS’V(X ) on space of homogeneous
type, where we assume that p € (1, 00), r € [1, oo], and function ¢(¢) satisfies (1.5)

below. Then, we prove that B{;l’rl(X ) is the predual of certain generalized Morrey—
Lorentz space M} (X).

(i) Secondly, we investigate the M/, -bound (resp. Bg/’r/—bound) of operators of
Calderén—Zygmund type, and prove a weak Hardy factorization in terms of commu-

tators of Calderén—Zygmund type in Bg’rl (X) and M[; ""(X). As a result, we obtain

a characterization of functions in BMO(X) via the M, (X) (resp. Bg’r/(X )) bound-
edness of commutators of Calderén—Zygmund type.

(iii) Thirdly, we prove a compactness characterization of commutators of Calderén—
Zygmund type in M{; T(X).

Notation: In this paper, we denote by C5°(X) and D'(X), the space of infinitely dif-
ferentiable functions with compact support and the space of distributions respectively.
For any ¢ € [1, 0o], we denote ¢’ the conjugate exponent, % + % = 1. Moreover, we
denote B; by a ball in X with radius ¢ > 0.

As usual, we denote a constant by C, which may depend on p, r, n and may change
at different lines. We also denote A < B if there exists a constant C > 0 such that
A < CB. Finally, we denote A ~ Bif A < Band B < A.

Let us recall the definition of a space of homogeneous type, introduced by Coifman
and Weiss [7]. Then (X, d, 1) is a space of homogeneous type if d is a quasi-metric
on X and p is a nonzero measure satisfying the doubling condition. A quasi-metric d
on a set X is a functiond : X x X — [0, 0o) satisfying

(1) d(x,y)=d(y,x) forall x,y € X;
(i1) d(x,y) = 0if and only if x = y; and
(iii) the quasi-triangle inequality: there is a constant Ap € [1, co) such that for all
x,y,z€X,
d(x,y) = Ao (d(x,2) +d(z, ) . (1.1)

We say that a nonzero measure p satisfies the doubling condition if there is a
constant C;, only depending on 1, such that for all x € X and ¢ > 0,

w(B(x,21) < C n(B(x,1)) < 00, (1.2)
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where B(x, t) is the quasi-metric ball by B(x, 1) ={y € X : d(x,y) < t}forx € X
and ¢ > (0. We note that the doubling condition (1.2) implies that there exists a positive
constant z (the upper dimension of w) such that forallx € X, A > l,and # > 0,

p(B(x, A1) < Aid" i (B(x, 1)), (1.3)

for some constant A; > 0.

We emphasize that the ball B(x, ) may not be an open set. However, Macias—
Segovia, [30] constructed a quasi-metric d’, which is equivalent to d in the sense
that

ASld(x,y) <d'(x,y) < Axd(x,y)

for some constant A, > 0 and for all x, y € X. In addition, d’ satisfies a regularity
estimate of the type

d'(x,2) —d'(y,2)] < Asd'(x, »)[d'(x, 2) +d'(y, 21" (1.4)

for some constant A3 > 0, and for some 6 € (0, 1]. Then, the balls associated to d’ are
open sets. This fact allows us to work on the quasi-metric d having the same topology
with d’.

Throughout this paper, we assume that (X) = oo and that ({xo}) = O for every
xp € X.Inaddition, we also assume that the function ¢(7) : (0, co) — (0, co) satisfies
the following conditions:

i) ¢(t) is nonincreasing,
ii) i (By) P (¢) is nondecreasing, for any ball B; C X, (L.5)
iii) ¢(2t) < De(t), Vt > 0,

for some constant 0 < D < 1. Note that the last condition implies that ¢(¢) cannot be
a constant function.

Now, we define the generalized Morrey—Lorentz space. A real-valued function f
is said to belong to the generalized Morrey—Lorentz space M(‘Z’r(X ) provided the
following norm is finite:

f Lo (B,
I fllygpr = sup —2—E B (1.6)

Y B pu(B(x, t))% @(1) ’

where the supremum is taken over all the balls B(x, ) in X, and || f||Lr. (B(x,0))
denotes the Lorentz norm of f on B(x, t) (see e.g. [11] for more details of Lorentz
spaces).

Remark 1.1 When r = p, we denote M{;’r(X) as M{Z (X).

A canonical example is the following case: X = R” equipped with the Lebesgue
measure, and ¢(1) =t~ %, a € (0, %]. In this case, M{Z (R™) is the classical Morrey
space.
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It is known that Morrey spaces are generalizations of L”-spaces, and they play
a crucial role in studying the calculus of variations and the theory of elliptic PDE’s
(see e.g. [1, 5, 6, 12, 14-16, 31-36], and the references therein). Later, Campanato
[5] extended the classical Morrey spaces by using the modified mean oscillation. As
a matter of fact, this family of spaces includes the Morrey spaces, BMO spaces (the
spaces of functions with bounded mean oscillation), and the Lipschitz spaces.

In [42], Zorko studied the generalized Campanato spaces ££(X ). We say that
f e ES (X) if there is a constant Cy > 0 such that for every ball B(x, ¢) in X, we have

1 1/p
inff (——— —PY)IPd Co., 1.7
Plgpk(M(B(xJ))wp(t) B(X’t)lf(y) I u(y)> < Co (L.7)

where Py is the class of polynomials of degree < k.

If ¢ satisfies condition 1.5, then the author showed that the space C{; (X) is indepen-
dent of k. Furthermore, £ (R") and M (R") describe the same space, and M}, (R")
is the dual of certain atomic space Hg (R™) for p € (1, o0). We note that a celebrated
result by Fefferman—Stein [20] is that the dual of H!(R") (the classical Hardy space) is
BMO(R"). Thus, the Morrey space exhibits some similarity to BMO(IR"), concerning
duality.

For convenience, we recall here the definition of BMO(X).

Definition 1.2 A function b € L,

loc

(X) belongs to BMO(X) if

1
w(B)

IbliBmo = sup / () — ba| du(x) < oo,
B B

where

1
b= fB b(x) dp(x),

and the supremum is taken over all balls B C X.

Note that Alvarez, [2] defined H(‘Z (R™) in terms of suitable molecules, and used
this result to prove the Hé’—bound of linear Calder6n—Zygmund operators satisfying
the cancellation condition. By duality, he also obtained the boundedness of linear
Calder6n—Zygmund operators on MS (R™) space. Itis known that such a linear operator
of Calder6n—Zygmund type does not map atoms into atoms, but it maps molecules
into molecules. That is a reason why the author introduced the suitable molecules. We
emphasize that his proof relies on the cancellation condition, so it cannot be applied to
a general linear Calderén—Zygmund operators, such as the Cauchy integrals associated
to the Lipschitz curves (see [12, 29, 38]). Then, one of the main purposes in this paper
is to extend the boundedness result by Alvarez, [2] to the linear Calderén—Zygmund
operators on Mf,j "(X) (see Theorem 1.11).

For convenience, let us recall the definition of linear Calderén—Zygmund operators.
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Definition 1.3 We say that 7 is a Calder6n—Zygmund operator on (X, d, p) if T is
bounded on L2(X ) and has the associated kernel K (x, y) such that

T(H@) = poo. /X K@) fO0)dp(),

for any x ¢ supp(f), and K (x, y) satisfies the following estimates: for all x # y,

IK(x, y)| < Vo)

and for d(x, 7) < (2A40)~'d(x, y),

|K(x,y) — K@z, )|+ Ky, x) — K(y,2)| < ¢ (d(x’2)>n (1.8)
Y Y . Y=V \aey) Y
for some 1 > 0, where V(x, y) = u (B(x, d(x, y))).

Note that by the doubling condition we have that V (x, y) = V (y, x).

Definition 1.4 We say that 7' is homogeneous if for any ball B(y, #) in X, T satisfies

u(B(y,1))

_—, 1.9
w (B (x, Mt)) 4%

T (150y.0) ()] =

forall d(x, y) = Mt, M > 10Ay.

A typical example of such operator is either the Riesz transforms, or the Cauchy
integral operators associated with Lipschitz curves.
Next, we define a generalized block space B(‘Z’r (X).

Definition 1.5 Let p € (1,00), r € [1,00], and let ¢(¢) : (0,00) — (0,00). A
function b(x) is called a (p, r, ¢)-block, if there exists a ball B; in X such that

(i) supp(b) C B;,
1

@ Wblerr) = ———-
1 (B)? (1)

Next, we define space Bg’r (X) via (p, r, p)-block.

Definition 1.6 Let p € (1,00), r € [1, 00], and let ¢(¢) satisfy (1.5). We denote,

V4
by B, " (X), the family of distributions f that, in the sense of distributions, can be
written as

(o8}
f= b,
k=1

where by is a (p, r, ¢)-block and {A;}x>1 € I!.
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’o
It is clear that B(‘Z " (X) is a vector space. In addition, we denote

o0
£l = inf P
k=1

where infimum is taken over all possible decompositions of f as above.

Then, <B£l’rl(X), -l > becomes a norm space.

Bgl’r,
For short, we denote Bg’p(X) by Bg (X)ifr = p.

Remark 1.7 In Bf;/‘r/(X), the series Z,fozl Mxby 1s convergent in L' (B,) for any ball
B; in X, see Lemma 2.1.

This space was introduced by Blasco et al., [4] when X = R",r = p, and ¢(t) =
t7 4 o e (0, %] in order to prove a non-interpolation result. Moreover, the authors
also showed that B{;, (R™) is a predual of Mg (R™) for p € (1, 00).

Our first result is the duality between ML, (X) and BL " (X).

Theorem 1.8 Let p € (1, 00), r € [1, o0), and let (t) satisfy (1.5). Then, we have
’ ’ /
(Bg % (X)) — M2 (X), (1.10)

and o
Bg T(X) = ij”(X)/. (1.11)

Remark 1.9 As a consequence of Theorem 1.8, we observe that Bg " (X) is areflexive
Banach space. Moreover, M}Z ""(X) is a Banach space. This fact will be used to deduce
a compactness criterion in M(’;’r (X) under certain assumptions on X, see Lemma 5.1.

Next, we define a commutator of linear operator of Calder6n—Zygmund type.

Definition 1.10 Let 7 be a linear Calder6n—Zygmund operator. Suppose that b €
LllOC (X). Then, the commutator [b, T] is defined by

[0, T1f(x) :=b)T(f)(x) = T(f)(x)
for suitable functions f.

It is known that the theory of commutators has been generalized to other contexts,
and it has many important applications to some nonlinear partial differential equations
(seee.g. [8, 16, 23] and the references therein). When 7T is a linear Calder6n—Zygmund
operator, the L? boundedness of [b, T'] was first proved by Coifman—Rochberg—Weiss
[9]. After that this result has been developed by many authors in [3, 12, 13, 15,
17-19, 24, 26, 29, 38, 40] and the references therein. In [40], Uchiyama obtained
the compactness of operators of Hankel type. Furthermore, Beatrous—Li [3] proved
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a boundedness and compactness characterization for [b, T] on L?(X), where X is
a space of homogeneous type, and some applications to Hankel type operators on
Bergman spaces were given by the authors in [10-12, 26].

When T is the Cauchy integral operator associated with the Lipschitz curves, the
L? boundedness and compactness characterization of [b, T'] was obtained in [29].
Moreover, Tao et al. [38] extended this result to Morrey spaces (see also [13] for the
Lorentz boundedness and compactness characterization of [b, T]). It is obvious that
such an operator mentioned above is associated with akernel K of Calderén—Zygmund
type satisfying the homogeneity, i.e:

There exist positive constants ¢y and C such that for every x € X and r > 0, there
exists y € B(x, C‘r)\B(x, r) satisfying

IK(x, y)| = (1.12)

€0
w(Bx,r))’

In this case, Duong et al. [19] established the two weight commutator theorem of
Calderén—-Zygmund operators in the sense of Coifman—Weiss on spaces of homoge-
neous type. As applications, they can obtain a two weight commutator theorem for
the following Calderén—Zygmund operators: Cauchy integral operator on R, Cauchy—
Szegd projection operator on Heisenberg groups, Szegd projection operators on a
family of unbounded weakly pseudoconvex domains, the Riesz transform associated
with the sub-Laplacian on stratified Lie groups, as well as the Bessel Riesz transforms.
Next, we discuss the Hardy factorization in terms of the commutators. A famous
result of Coifman—Rochberg—Weiss [9] is that every f € H'(R") can be written as

o0 n
f= Z Z (hi,jRj(8k.j) + 8k, i R j(h,)))
k=1 j=1
with
o n
Z Z ||gk,] ”LZ(R”) |hk,j ”LZ(R") = “f”HI(R”)a
k=1 j=I
where R ; are the Riesz transform for j =1, ..., n.

As a consequence, the authors obtained a characterization of functions b in
BMO(R") through the L? boundedness of [b,R;l, j = 1,...,n. This theory has
been studied by many authors in [13, 14, 18, 25, 28, 41], and the references cited
therein. For instance, Uchiyama [41] extended the Hardy factorization to H? on the
space of homogeneous type. In addition, Komori—Mizuhara [25] proved the weak H!
factorization in terms of the commutators of Caldero6n—Zygmund type in general-
ized Morrey spaces. We do not forget to mention that a weak Hardy factorization for
the Bessel operators was obtained by the authors in [18]. Recently, the first author
and Wick [14] proved a weak Hardy factorization in terms of multi-linear operator in
Morrey spaces.
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Inspired by the above results, we would like to generalize the theory of commutators
to the generalized Morrey—Lorentz spaces, and the Block spaces. Concerning the
M/,""(X) boundedness of commutators in Definition 1.10, we have the following
theorem.

Theorem 1.11 Assume the same hypotheses as in Theorem 1.8. Ifb € BMO(X), and T
is a linear Calderon—Zygmund operator in Definition 1.3, then [b, T'| maps M(‘Z’r(X )
into itself continuously. Moreover, we have

116, TYCH vz S IBIBMOlLf vz, V€ MZT(X).

Remark 1.12 By duality in Theorem 1.8, we have that [b, T'] also maps B{,f,’r, X) —
B " (X) continuously.

Our nextresult is the weak Hardy factorization in terms of commutators in Bg’r, (X)
and M3 (X).

Theorem 1.13 Let p € (1,00), r € [1, 0], and let ¢(t) satisfy (1.5). Suppose that
T is a homogeneous operator of Calderon—Zygmund type. Then, for every function
f e H!(X), there exist sequences {Ay j} € IR and functions {g, ;}, {hk,j} C L2°(X)
(the space of bounded functions with compact support), such that

F=2"0 e (e T2k ) — 8ai T (i ) (1.13)

k=1 j=1

in the sense of H!(X). In addition, we have that

o o0
Il ~inf 3303 al |8k gy

k=1 j=1

hej g |

where the infimum above is taken over all possible representations of f that satisfy
(1.13).

We prove this result in Sect. 4.

Remark 1.14 Note that our assumption on the homogeneity of operator T in Theo-
rem 1.13 is weaker than (1.12) used in [19, 25].

As a consequence of Theorem 1.13, we obtain a characterization of functions

in BMO(X) via the M, (resp. B(’Z/’r/) boundedness of commutators of Calderén—
Zygmund types.

Corollary 1.15 Let p € (1, 00), r € [1, o], and let ¢(t) satisfy (1.5). Suppose that T
is a linear Calderon—Zygmund operator. If b € BMO(X), then the commutator [b, T ]
maps Mf;’r(X) into Mg’r(X) continuously. Moreover, it holds true that

1B, Tz oz < Clibllnmo-
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Conversely, for b € LIIOC(X), if T is homogeneous, and [b, T] maps M{;’r(X) —
Mg’r(X) continuously, then b € BMO(X), and

IbllBMo < CIILb, Tllypr oz -

Remark 1.16 By duality, the result of Corollary 1.15 also holds for Bg/’r/(X ) in place
of ML (X).

The last result is a Mg’r—compactness characterization in terms of [b, T]. Since
our assumptions on the homogeneous space (X, d, ) are quite general, then we have
to make some additional assumptions to (X, d, ). Concerning the compactness, we
suppose that the homogeneous space (X, d, i) is a vector space, and is a locally
compact space such that

dix+z,y)~d(z,y —x), forallx,y,zeX, (1.14)

and
w(Bx,))~t", VxeX. (1.15)

A typical example of such space is the Euclidean space, equipped with the Lebesgue
measure. In addition, we also note that any Ahlfors n-regular metric measure space
(X, d, ) satisfies (1.15).

Then, we have the following theorem.

Theorem 1.17 Let p € (1,00), r € [1,00], and let ¢(t) satisfy (1.5). Assume that
(X,d, n) is a locally compact space such that (1.14) and (1.15) hold. Then the fol-
lowing statements hold true.

If b € CMO(X), and T is a linear Calderon—Zygmund operator, then [b, T] is
compact on MS T(X).

Conversely, forb € LllOC (X), if T is homogeneous, and [b, T is a compact operator
on My" (X), then b € CMO(X).

To end this section, we list some operators of Calder6n—Zygmund type that our
results are applicable to: the Cauchy integral operators, the Cauchy-Szego projection
operator on the Heisenberg group H", the Szeg6 projection operator on a family of
unbounded weakly pseudo-convex domains, the Riesz transforms associated with sub-
Laplacian on stratified nilpotent Lie groups, the Riesz transform associated with the
Bessel operator on R, the Riesz transforms associated with Bessel operators on Rf’i_ﬂ .
We refer to [19] for the details of these operators.

Finally, we emphasize that our results extend the boundedness and compactness
characterization of linear Calder6n—Zygmund operators to the generalized Morrey—
Lorentz spaces, and Block spaces.

2 Generalied Morrey-Lorentz Space as Dual of Block Space

In this part, we study some properties of the Morrey—Lorentz spaces and the block
spaces.
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Lemma 2.1 Let p € (1,00), r € [1, oo], and let ¢(t) satisfy (1.5). Then, we have
B2 (X) < Lb.(X).
Proof of Lemma 2.1 1t suffices to show that for any ball B(x, ) C X, we have

||f||L1(B(xz))_C||f||Bpr, VfGBp (X)), (2.1)

where constant C > 0 is independent of f.
Indeed, let b be a (p’, r’, )-block. Suppose that supp(b) C B(z, t), for some ball
B(z, ) in X. Then, applying Holder’s inequality in Lorentz spaces yields

1
L u(B@T)NB@.N)?
1Bl 5y S WBN Lyt (B(z, T N B, )7 < 1 - @2

n(B(z, 1)) ¢(1)

1
If T > 1, then since w(B(z, T))? ¢(t) is nondecreasing, then we deduce from (2.2)
that

1
B B » 1
1601 5y < w(B(z, )N 1(x,t)) PR

nB@remn YO

Otherwise, we have ¢(t) > ¢(¢). Therefore

1
B(z, N B(x, » 1
161 (Bx.y) S # (B ) l(x H) < —.

1w(B(z, T)7 o(t) ¢()

As a result, we obtain from (2.2) that

1
16 1 By S o0 (2.3)

Now, for any f € Bg/’r/(X), we can write
f=Y b,

k>1

where {by}k>1 is a sequence of (p’, ', ¢)-blocks, and D ;| [Ax| < oo.
Thanks to (2.3), we get

Wy

1t By < D0 BRI By S D 1Akl ——
L'(B(x,t)) Z LY(B(x,t)) Z (p(t) (p(t)

k>1 k>1

This yields (2.1).
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Hence, we obtain Lemma 2.1. O

Remark 2.2 As a consequence of Lemma 2.1, for every ball B(x,t) C X the series
Z?’;l A jb; is convergentin L' (B(x, t)) whenever Y321 |l < o0o,and (b} =1 isa
sequence of (p’, r’, ¢)-blocks.

Proposition 2.3 Let p € (1, 00), r € [1, 0o], and let ¢(t) satisfy (1.5). Then, for every
ball B(z,t) in X we have

Hlmz,ofHng < (B )70 [1sen £l (2.4)

for f € Lp/’r/(X).

loc
In addition, we have

B0 ||Mg-r ~ (2.5)

()
and
I8l ~ 1w B e@. 2.6)

Proof of Proposition 2.3 The proof of (2.4) is done by letting

1,0 f(x)

b(x) = o )
w(B(z, )7 @) | 1pen £l

Next, we prove (2.5). By (1.6), we can mimic the proof of a) in Lemma 2.1 in order
to obtain

MBenllr Beo o 1
1 ~ '
Ba.OCX y (B(x,1)7 o(r) W)

1150 lmpr =

On the other hand, it is obvious that

MBenllrrBe 1
i @)
Be,OCX p(B(x, 1) o(r) ¥

Thus, we obtain the desired result.
Concerning (2.6), it follows from duality and (2.5) that

||lB(Z,l‘) ||Bp/,r’ = sup
N P

/ go(x)dp(x)
B(z,1)

with go = colp(;,n®(t), and cg is a normalized constant such that ||8||Mg~' =1.
With the last inequality noted, and by applying (2.4) with f = 1, we obtain (2.6).
O

f 1508 () dpn(x)
X

v

~ (B(z, 1) @),
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The next result is a dual inequality.

Proposition 2.4 Same hypotheses as in Proposition 2.3. If f € Mg’r(X), and g €
BJ " (X), then

‘/X J)gx)dp(x)

<1 f Iz gl
¢

Proof of Proposition 2.4 Since g € BS/’r/(X ), then we can write
o0
g(x) =y xjbj(x),
=1

where {X;}j>1 € 1!, and {b;};>1 are (p', ', )-blocks.
Assume that supp(b;) C B; with its radius R, j > 1. Then, applying Holder’s
inequality yields

Vx.f(X)g(X)du(X) = ZM/B F)bj(x)dp(x)
j=1 B

o0
S e @bl s,

I fllLer(s))
[ 5,y 1B PR ]

j=1
[o/0]
=) " Iajl
Z D (B) (R
0
> 1l
j=1

IA

1 f gz -

This yields the proof of Proposition 2.4. O

Next, we study the Fatou property of block spaces Bf;/’r/(X ). Such a result was
obtained by the authors, [37] for Bg (X), o) =17 o € (0, %).

Lemma2.5 Let 1 < p < oo, r € [1, 00], and let ¢ satisfy (1.5). Suppose that f and
fr, kK > 1, are nonnegative, ||fk||Bpg,r <1, and fi(x) t f(x) fora.e. x € X. Then
»

FeB) X and | fll e < 1.
(4
Proof Note that the dyadic cubes were constructed by the authors, [22]. Thus, the

proof of Lemma 2.5 follows by using the same argument as in the proof of Theorem
1.2, [37] in that one can replace the L”-norm by the L”*"-norm. O

Now we have the tools to prove Theorem 1.8.
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Proof of Theorem 1.8 We first show that

MDY (X) < BL (X)) (2.7)

In fact, thanks to Proposition 2.4, we observe that operator 77 : BZ/’H(X) —- R
defined by

Tf(g)Zfo(X)g(X)dx

is linear and continuous.

Now, we define 7 (f) = 7 for f € M} (X). Itis obvious that 7 : M} (X) —
Bf,f/’r/(X ) is a linear operator. We claim that 7 is injective.

To obtain the result, it suffices to show that if 7(f) = 0, then f(x) = O for a.e
x € X. We argue with a contradiction that there is Ry > 0 such that f(x) # O for a.e.
x € Br, = B(0, Ro).

Since f € M(‘Z’r(X ),thenwehave f € L?"(Bg,). By duality, there exits a function
g € L"""(Bg,), g # 0 such that

2.8)

0< ”f”Lp’,r’(BRO) = ‘L f(x)g(x)dx .
Ro

Put

g(x)1p, )
glx) = —LOHgHL”/",(BRO)'
w(BRry)? ¢(Ro)

It is clear that g is a (p’, r’, ¢)-block. By this fact and (2.8), we obtain

T(f) Q= '/B f(x)gx)dx| >0,
Ro

which contradict to 7 (f) = 0 in Bg/’r/(X)’.

Thus, we conclude that linear operator 7 : Mf;’r(X ) — B(’Z/’r/(X ) is injective. As
aresult, (2.7) follows.
Therefore, it remains to prove that

(B{;’J’(X))/ > ML (X). (2.9)
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i /
Indeed, let F € (Bf; (X )) , and let B be a ball in X. By Proposition 2.3, we have
Flp € LP/>’/(X). Thus, by the duality, there exists fp € LP"(X) such that

(Flp,8) 1y s = /X fB()g(x) dp(x), Vg € L7 (X). (2.10)

Let X = (Jy~ Bk, with By € By for all k > 1. Then, we define f(x) = fp, if
x € By, which makes sense by (2.10). This implies that fp, (x) = fB,,,(x) for a.e.
X € By.

Thus, it suffices to prove that f € M{;’r(X ). Indeed, for any ball B, C X, there
exists ko > 1 such that B; C By,; and by the duality argument we have

I fllLrr (B 1
= (x)g(x) dp(x)
w BT o) BT (1) el =
813,
= sup / Foy——7——dp ().
181, g, =L By (BT ()
Obviously, #B}’,(pm isa (p/, r’, p)-block. Thus, it follows from the last inequality
that
Il fllLer(B,) glp,
O < WFl gy || < IF g,
w(Br) ' o(t) w(B) P o) gy ¢
Therefore,
”f”M(Z’ =< ”F”(B(]/;/J/), .

This implies that M2 (X) = BL " (X)'.
Next, we prove (1.11).
It follows from (1.10) that BS " (X) < ME” (X)' = BL™" (X)". Thus, it is enough
to show that
MP7(X) < BE(X). (2.11)

To obtain (2.11), we mimic the proof of Theorem 4.1, [37]. Assume that a measurable
function f on X satisfies

sup H/ fx)gx)dx
X

s gl = 1} <1. (2.12)

It is obvious that | f(x)| < oo for a.e. x € X. Assume without loss of generality
that f > 0 in X, if not we write f = fi — f_, with f4 = max{f,0}, and f_ =
max{— f, 0}; and we treat each of them.

For every k > 1, let us set By = B(zp, k) for some zg € X, and let fi(x) :=
min{ f (x), k}1p, (x). Note that fi(x) 1 f(x) for ae. x € X. Since f; € L°(X)
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(the space of bounded functions with compact support in X), then it is clear that
fe € BT (X).

Since Mg’r(X ) = Bf; " (X)', and by (2.12), we apply the Hahn—Banach theorem
to obtain

< sup <1.

llgllygp.r <1
My

/ Sie(x)g(x) dx
X

/ fx)gx)dx
X

I fell = sup
v Igllypr <1

Thanks to Lemma 2.5, we deduce ||f||B,,/,,/ <1
By duality and (2.12), we obtain ||f||szg.r)/ > ”f”B”/”,’ which yields (2.11).
4

Hence, we have completed the proof of Theorem 1.8. O

3 Several Lemmas

This part is devoted to the study of the M,"" (X)-bounds, and the B} (X)-bounds of
the maximal function, the sharp function, and the linear Calderén—Zygmund operators.
Let us first recall the definition of the Hardy—Littlewood maximal function.
For any ¢ > 0, we define

My f(x) = sup {

xeB

1 ||f||L‘i(B)} ,
|B|4

for any x € X, where the supremum is taken over all balls B containing x.
In brief, we denote M = M;.

Lemma3.1 Let p € (1,00), r € [1,00], and let ¢(t) satisfy (1.5). Then, for any
0 < g < p there is a positive constant C = C(q, p, r) such that

Mg (D lazr = CIF g - G.1)
ProofofLemma 3.1 Let B, = B(x, t) be a ball in X, and we write
f =S 1p, + flpe := fi + fa.
So,
My (f)(x) = My (f(x) + Mg(f2)(x), Vx e X.

We first estimate M, (f1). Since M, maps L?"(X) — LP"(X) (see e.g. [11]),
then we get

@ Springer



209 Page 16 of 38 T.T.Dung et al.

1 1 1
—— IMg(Dllerry S ——— I fillerr = ————— I flliLrrs)
(B ? (1) n(Be)? (1) w(B)? (1)
< If
which yields
Mg (FDllvgzr S 1L vz - (3.2)

Next, since f, = 0in By, then we observe that for any z € B, /3,

1/q
My(f2)(z) < sup < If(y)l"du(y)> .

2eBs,5>1/8 \ I (Bs) Jp;

Applying Holder’s inequality in Lorentz spaces yields

M@ S sup BT flirr gy i (B) 17107
z€Bs,8>1/8

S swp fu BTl sy )
z€B;s,8>1/8

S s {e@ I g} < 0@/8) 1/ g
zeBs,6>1/8

Note that the last inequality follows from the monotonicity of ¢ ().
Then, we obtain

[ M s ) S 1 (Bess)  96/8) I f g

This implies that
[ My () g S 1 g - (33)

By combining (3.2) and (3.3), we obtain Lemma 3.1. O
As a consequence of Lemma 3.1, and duality, we obtain the Bf,/’r/—bound for M.

Corollary 3.2 Assume hypotheses as in Lemma 3.1. Then, M, maps Bg/’r/(X) —
Bg (X)) continuously.
Proof of Corollary 3.2 For any f € B{,f,”,(X ), we can assume that £ > 0.

Thanks to Lemma 3.1, applying the Fefferman—Stein inequality (see [21]), and
Holder’s inequality yields

/X My (H@)EE) dp(x) < /X FEOMg(9)(0) dpa(x)
S 1 gy 1My ) gz

S gy Il
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By duality, we obtain from the last inequality that
Mo gy = sup / My(H)()g(x) dp(x)
8lhypr =

< . o=
S Sllpr<l IIfIIng g linp IIfIIBgf,w :
Il <

Hence, we get the conclusion. O

Next we prove the M(’;’r—bound for the sharp maximal function, introduced by
Fefferman—Stein, [21]

ft _
MADC = sup )

/Blf(y)—fsldu(y),

where the supremum is taken over all balls B containing x.

Lemma3.3 Let p € (1,00), r € [1,00], and let ¢(t) satisfy (1.5). Then, for any
fe Mf;’r(X), we have that

1f vz < IMECE) g - (3.4)
Proof of Lemma 3.3 The conclusion will follow by way of the Fefferman—Stein

inequality and duality Indeed, there is a constant C = C(X) > 0 such that, for
every f € M "(X), and every function g € L1 (X), we have (see e.g. [27])

loc
/Xl.f(X)g(X)ldu(X) < C/XMﬁ(f)(x)M(g)(X)du(x)-

Thanks to duality and Corollary 3.2, we obtain

Ifllngzr = / f@gE)dux)| < su / M () () M(g)(x) dpu(x)
”g” p’ r’ 1 lIgll p/ r’ 1
< sup o IMECH) e IM@ gy
gl =1 ¢ v
By
< sup [MECH) [y I8l = IMEC) g -
Iyt =1
Then, we obtain Lemma 3.3. O

Remark 3.4 By duality, and Fefferman—Stein’s inequality, the conclusion of Lemma 3.3
also holds for Bg’r(X) in place of M{;’r (X).

Thanks to Lemmas 3.1 and 3.3, we prove the M(‘Z’r—bound for linear Calderon—
Zygmund operators as follows.
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Lemma3.5 Let p € (1,00), r € [1, o], and let ¢(t) satisfy (1.5). Let T be a linear
Calderon—Zygmund operator. Then, T maps Mg’r(X ) — Mg’r(X ). Furthermore, we
have

1T Az S NS gz - (3.5)

Proof of Lemma 3.5 Let us recall the following pointwise estimate (see e.g. [15]).
For any g > 1, there exists a constant C > 0 such that

M* (T (f)) (x) < CMy(f)(x), forx € X. (3.6)
Thanks to Lemma 3.3, for any ¢ € (1, p) we obtain
TPz < [ME TN [y S [Mg (D |y S 1 g -
This yields the proof of Lemma 3.5. O

Remark 3.6 By duality, (3.5) also holds for B " (X) in place of M5 (X).

Our next result is an inequality of Minkowski type in M(‘Z ""(X), used several times
in the following.

Lemma 3.7 Same hypotheses as in Lemma 3.5. Then, we have
H/ fCy dM(y)H = / I1FC Wz di(y) - (3.7
1\ ol

Proof of Lemma 3.7 Applying Theorem 1.8 and Proposition 2.4 yields

/(/ fx, y)du(y)) g(x)du(x)

_ 1 / / 1 (6 1)) dpe) de(y)

el e

”/f( y)du(y)H sup

M’” IlgH o, /<1

= /Ilglpr/ I G ) gz die(y)

||gn o ,/51
</’

_ / 1G9 llygpr die()

Hence, we get Lemma 3.7. O

4 Hardy Factorization in Morrey-Lorentz Spaces

Proof of Theorem 1.13 The proof follows by way of the following lemmas.
The first lemma is a fundamental result of H! (X) (see e.g. [25, Lemma 4.3]).
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Lemma4.1 Let xo, yo € X be such that d(xg, yo) = Mt, for some t > 0, and
M > 10A. If

/ F(x)du(x) =0, and |F(x)| < (18,0 () + 1,0 (X)), Vx € R,
X

 (B(xo, 1))
then there is a positive constant C independent of xo, yo, t, M, such that
| Fllgix) < ClogM.

Next, we have the following result.

Lemma4.2 If f € H'(X) can be written as

f= na

then, there exist {gi}ik=1, {hr}x=1 C L2°(X) such that

* log M
lax — [gxT* (i) — i T (g0 ]|y < € TR 4.1
and
Z il gkl gy 1hkllygr < CM L f [l (4.2)
k=1 Y
where M > 0 is sufficiently large.
Furthermore, we have
1
f = Z Akl [@eT* (i) — i T (g0)]| < E”f”Hl : (4.3)

k>1 H!

Proof of Lemma 4.2 Let a be an atom, supported in B(xg, t) C X, such that

1
llallze < m, and /Xa(x)d,u(x) =0.

Let M > 10 be a real number, which will be determined later, and let yp € X be such
that d (xq, yo) = Mt.
Now, we set

a(x)

g(x) = 1p(y,n(x), and h(x) = CT(g)(x0)

It is clear that these functions are in L2°(X). In addition, since T is homogeneous,
then we have

wn (B(yo, 1))

IT(g)(x0)| = (B, M1)"
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Thanks to Proposition 2.3, we obtain
gl ~ 1 (B(yo, ) 9 (1), (4.4)

and

el _ 1 (B(xo. M1))

IAllppr = < llall oo 11 B (xg ) lhygzr
M T T (@) (o) i (B0, 1) (o0 IMy
B Mt 1 1
_ 1 (B(xo, M1) o “s)
w(B(yo, 1)) w(B(xo, 1)) @)
Combining (1.3), (4.4), and (4.5) yields
w (B(xo, Mt))
/o h ,r<C‘—<C‘1‘4n7 46
I8 gy g < C= "= < 4.6)
where C > 0 only depends on p.
Next, we show that
logM
la = [¢7*(h) = hT(@)][ 1 < C—2 4.7)

M
Put

F=a- [gT*(h) - hT(g)] .
Then, we have

|F(x0)| < la(x) +hT ()| + [¢T*(h)]
_ |2 [T (8)(x0) — T(g)(x)]
T'(g)(x0)

‘ +gT )| =) +J2(x). (48)

We first consider J; (x). Since supp(a) C B(xp, t), then J;(x) = 0ifx ¢ B(xo, 1).
And, for any x € B(xg, ) we use the smoothness of K in (1.8) and the homogeneity
of T in order to obtain

)] < %naum /B K0, = K ()] )
L (B, MD) 1 I (dro,x)
w(B(yo, 1) 1 (B(xo0,1) Jpy,n Vx0,y) (d(XO»y)
w(BGo, MD) 1 W(Bo0.0)

m(B(yo, 1)) w(B(xo,1))  (B(xo,d(x0, y0)))

n
) du(y)
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ey M B0 M) 1
- 1 (B(xo, 3M1)) i (B(xo, 1))
1

<CM"——— (4.9)
w (B(xo,1))

Note that the last inequality follows from the doubling property in (1.2).
For J»(x), by using the cancellation of a(x), and the fact supp(a) C B(xo, t), we

get that
—a(z)
K (z, —— ) du(z
/B<x0,,) « X)<T(g)(xo)> He

/ [K (x0. %) — K (2. 0)] (&)d @)
B(xo.1) o ’ T(9)xo)) "

Analogously to the proof of J;, we also obtain

[J2] < 1B(yy,n(X)

= 1By, (%)

CM—"
< —— 1By - 4.10
[J2(x0)| < L (BOo.0) B(yo,1) (4.10)
Combining (4.8), (4.9), and (4.10) yields
CM™"
IF0)| < ————— (1B(x0.n (X) + 1B(y0.n (X)) - (4.11)

w (B (xo, 1))

Thus, we obtain (4.7) by applying Lemma 4.1 to F(x).
Next, we apply (4.7) to a = ai, for k > 1. Then, there exist functions
{gk}k=1, {hidk=1 C LZ°(X), such that

log M
Mn

lax — [exT* (i) — i T (g0) ]| g1 < C

With this inequality noted, we get

<Y Il e = [ T* (i) = he T (800)]| g
H! k>1

logM 1
<C—= > Il = Sl (4.12)

k>1

Hf — > o [8k T (hi) = i T (g1)]

k>1

provided that M is large enough.
This yields the proof of Lemma 4.2. O
Now we can suppose that f € H'(X) can be written

£=> haa.

k>1
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with {Ag 1}k>1 € ', and {ak.1}k>1 are atoms.
Thanks to Lemma 4.2 and (4.6), there exist functions {gx 1}, {hx,1} C L2°(X) such
that

Y bl larallgrr 1iealygr < CM" 1l s

k>1 ¢ !

(4.13)
F=Y mageaT* i) —aT(n]| <

k>1

IS g -

N =

H!

Put

A==t lgeaT (i) = hia T (k)] -

k>1

Since f; € H!(X), then we can decompose

A=) hkaara,

k>1

where {Ax2}k>1 € ', and {ak 2}k>1 are atoms.
By (4.13), and by applying Lemma 4.2 to fj, there exist {gx 2}k>1, {hk2}k>1 C
L2°(X), such that

1
hk,gHMg.r =CM"[| fillgr = CM"EIIfIIH1

> el ool

k>1

. 1 1
Sfi— Z)»k,z [gk2T*(hi2) — hioT(gr ]| < 5||f1||H1 < ?”f”ﬂl .

k>1 H!
Similarly, we can apply the above argument to
fa=h- Zlk,z [k 2T* (hic2) — hi2T(8k2)]
k=1
=f- Z?\m [k 1 T* (hic,1) — hiea T(gk1)] — Z)»k,z [gr2T*(hi2) — hiaT(gk2)] -
k>1 k>1

By induction, we can construct sequence {Ax ;} € 1!, and functions {gk,j}, {hi,j} C
L2°(X), such that
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N
=20 hjl8k T k) = b T (g, )] + fiv

j=lk>1

N N 1
D02 s ey [ illyggr < €M™ 37 5o F

j=1k=1 j=1
1
I /Nl < sl flla s

which yields the desired result when N — oo.
Thus, we complete the proof of Theorem 1.13. O

Proof of Corollary 1.15 To obtain the upper bound of [b, T'], we recall the following
result (see e.g. [15, Lemma 1]).

Lemma4.3 Let b € BMO(X). Then, for any 1 < q < p, there exists a positive
constant C such that
MF ([b. T1(f)) (x) < ClIbllBMO (Mg (F)(x) + My (T(f)) (x)) . forx € X.
(4.14)
By Lemmas 3.1, 3.3, 3.5, and 4.3, we obtain

16, TY) gz S [MF (0. TID [y < 1bllBMO [ Mg (f) + Mg (T () gz
< Ibllavo (1M (D) + [Mg T e )

< lIbllBMO (IIfIIMgvr + IIT(f)IIMgv’) < llbllBMO I Iz -
(4.15)

Hence, we get the desired result.

Now, we prove the lower bound of [b, T']. To obtain the result, we utilize the Hardy
factorization in Theorem 1.13, and the duality between BMO(X) and H' (X).

As a matter of fact, H!(X) N L (X) is dense in H' (X).

Next, for every L > 0, let us put

br(x) = b(x)1B(xy,L)(X).

For every f € H'(X) N L2°(X), it follows from Theorem 1.13 that there exist
sequences {Ax j} € I! and functions 8k, j» hk,j € L (X), such that

F=202 mej (8T i) = ha T (8. ) -

k=1 j=

—

Furthermore, we have

o0 oo
I/l ~ ZZ EEIRIE, ||Bs/.rf

k=1 j=1

hkj”Mgw.
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Now, since by, — b in LIIOC(X) as L — oo, and f € H'(X) N L2°(X), then we
have

Jim (b, f) = (b, f).

where we denote (f, g) = [ f(x)g(x) du(x).
Thanks to the facts gx ; T*(h, j) —hi ;T (gk,j) € H!(X) and supp(gi, j T* (h,j) —
hi,;jT(gk,j)) € X, then we get

(b, f) = lim (by. f) =

—

o0 o0
m (b, DO hkj (8 T (i j) — hk,jT(gk,j))>

k=1 j=1

M Tz
WK

A, j Lli)moo (br. gk jT*(hej) — hi T (gk. 7))

~
I

-
~
I

-

M
WK

hij (b 8 T (i ) = i i T (8, )

»
I
L
~
I\

o
M2

M (b2 T1(gk.j)- P j) - (4.16)

~
Il
_

~
Il
—

By Proposition 2.4, since [b, T'] maps Bgl’r,(X) — Bgl’r,(X) (see Corollary 3.2),
then we obtain

i g

ZZ | 110 T8 )| gy
k=1 j=1

S, Tl gy ZZ LYR FIN P L
k=1 j=1
B, Ty g 1
Therefore,
IbllBmo < IIB, T]IIBgf,r;ng ,
This ends the proof of Corollary 1.15. O

5 Compactness Characterization of [b, T]in pr"(X)

In the last section, we study the compactness of [b, T] in Mé”r(X ). Then, we point
out a compactness criterion in M}"" (X).
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Lemma5.1 Let p € (1,00), r € [1,00], and let ¢(t) satisfy (1.5). Assume that
(X, d, ) is alocally compact space such that (1.15) holds, and the set G in Mf;’r(X)
satisfies the following conditions:

i) sup | fllygr < 00,
feg

i) 31_% 1fC+y) = fOllypr = O uniformly in f € G,

iii) lim || f1ge|lpppr = O uniformly in f € G.
R—o0 R™Me

Then, G is strongly precompact set in Mg T(X).

Proof of Lemma 5.1 We can assume without loss of generality that 0 € X.
For any t > 0, let us define

_ 1
= d .
fe(x) BO ) Jron fOx+y)du(y)

Fix T > 0, we first claim that the set { f, : f € G} is a precompact set in C (Bg).
Thanks to the Ascoli—-Arzela theorem, it is enough to show that {Tr . f € G}is
bounded and equicontinuous in C @.

Indeed, we have from Holder’s inequality that

_ 1
S d
[f:(x)] = (BO. ) Jaeen |f (@) du(z)

1
S o Pr(B(x.T i o
S 2B oy M lerreeomrBE. )
@
W(B(x, )P (1)
< 0Ol fllygr < Cola). o

A

| fllLrr(B(x, o))

uniformly in f € G.
Concerning the equicontinuity, we have

_ _ 1
— - - — d
[fr(x) — fr(2)] < 1BO. ) Juon [fCr+y) = fla+ydu(y)

1
= w(B(0. 1) —x) - f@)Id
HBO.7) Jaye T ETH 73 = J@IdRE)

1
S m”f(xl —x24+ ) = fOlLrr B, oym(B(x2, 1) 7
1
S—————IfGi—x2+) = fFOlLrrBea,m)
u(B(x2,7))7
<p@IfGx1 —x2+-) — f(')||Mg»’ . (5.2)
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By ii), we conclude that {f, : f € G} is equicontinuous in C (Bg), so the above
claim follows.
Next, we show that

lim || f, = fllypr =0, (5.3)
7—0 @

uniformly in f € G.
Indeed, applying Minkowski’s inequality yields

I fz = FllLrrBen) _ 1 Nf¢+y — f(’)”L/’v’(B(z,t))d
; < : n(y)
(B t)re@)  HBO.D) Jpom 1(B(z, )7 (1)

1FC+2) = FOlvpr diny)

S e
m(B, 1)) Jp.1)

sup £ C+3) = FOllyer -
d(y,0)<t

IA

This implies that

Ife = Flivgr = sup 1 C+9) = FOllagr
d(y,0)<t

With this inequality noteil, (5.3) follows from ii).
Now, we prove that {f, : f € G} is relatively compact in Mg’r (X).
By iii), for any 0 < ¢ < 1, there exist R, > 0 such that for every f € G

1/ g lnpr <€ (5.4

Since {f; : f € G} is strongly precompact in C (B_R), then for every ¢ > 0, there

exist f1, f2, ..., f™inG, withm = m(e) € Nsuch that { 1, f2,.... f7}is afinite
ep(R;)-netin { f; : f € G} with respect to the norm of C (m

As aresult, for any f € G, there exists j € {1, ..., m} such that
‘ fo— < ep(R). (5.5)
L>®(BR)
Next, we prove that {f_rl, f_rz, ceey f_t’”} is a finite e-net of { f; : f € G} with respect

to the norm of Mé,’ T(X). Ttis equivalent to show that

‘ﬁ—ﬁ <e, (5.6)

Psr
M‘P

where 7 > 0 is small enough.
In fact, we write

o= 1 = (= sy, + (2 — )1y, -
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We first estimate (f; — ffj)IBRS in the M, -norm. Then, for any ball B(z, #) in X,
we have

==

-1

IU’"(B(ZJ)) < C’ L>®(B(z,t)) 1

(B D)7 ¢(1) (B D)7 ¢(1)

oo R 1 (BE DO Br)”
w(B(z,1))7 ¢(1)

H (E—E)lﬂ&E w(B(z,1) N Bg,)

5.7

1
If t > R, then it follows from (5.7) and the monotonicity of u (B(z,1))? ¢(t) that

H AP

1
LBt Cefp(Rs)u(BRg)” _
n(B(z, 1)) ¢(t) 1 (Br.)? ¢(Re)

Otherwise, we use the monotonicity of ¢(¢) to obtain

H Fe = )1,

1
LrrBen) o EPRe) p (B, 1))

T T = Cs.
n(B(z, 1) ¢(1) n(B(z,1))7 ¢(Re)
By combining the two cases, we get
” (Fe — fD1g, | <ce. (5.8)
Y ol

Concerning the term (f; — 7)1 B, > by (5.3) and (5.4), we get

- 7)rn

W [T W (v I

(-7
1M

<2e+ | flpg llypr + 1f 1 lypr <4e. (5.9

pr
M,

p.r
14

as T > 0 is small enough.

Thus, (5.6) follows from (5.8) and (5.9).

Asaresult, {f; : f € G} is relatively compact in M} (X).

It suffices to show that G is relatively compactin ML (X). Let { f*}x>1 C G. Since
{(f : f € G} is strongly compact in Mﬁ’r(X), then there is a subsequence of {fk}k21
(still denoted as { f*}¢>1) such that f¥ converges in M} (X) as k — oc.
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Then, it follows from (5.3) that

Tk Ik
7E - 7F

L W

pr —
MW

+|

K _ gk
Mg”‘+ el T f HMQ’

<Co+ |- 1F

p.r "
M,

Therefore, {f*}¢>1 is a Cauchy sequence in M} (X). Since M}"" (X) is complete,
then { f*}x>1 converges to a function in M} (X).
This puts an end to the proof of Lemma 5.1. O

Now, we are ready to prove Theorem 1.17.

Proof of Theorem 1.17 a) Necessity: Assume that b € CMO(X). Let G be a bounded
setin M} (X). It is enough to show that [b, T1(G) is relatively compact in ML (X).
Indeed, since b € CMO(X), then for every ¢ > 0 there exists a function b, €
C2°(X) such that
16— bellemo < €.

By the triangle inequality and Corollary 1.15, we have for every f € G

(D, T](f)”M{;’ < I[b — b, T](f)”MZ" + l[be, T](f)”Mg"'
S 1B = bellgmoll £z + Ibe TIC) gz
< Ce+ llbe, TIH - -

With this inequality noted, it suffices to show that [b., T](G) is relatively compact
in M} (X) for a given & > 0 small enough.

Since G is a bounded set in Mf,f’r(X ), and by Theorem 1.13, then it is clear that
[be, T1(G) satisfies (i).

Next, we show that [b,, T](G) also satisfies (ii). Indeed, suppose that supp(b,) C
Bg,, for some R, > 10. Then, for any f € G, and for x € B, with R > 10ApR,, we
observe that d(x, y) ~ d(x,0) forany y € Bg,.

Thus, for any x € B, we have

lbe. TI(F)(x)| = [T (bf)(x)] < C0||bs||L°°/ RASDIRp e
B.R) V(X,¥)
be|| >
< Meelle | F ) du(y)

n(B(x, R —Re)) Jpy,R)

[1De || oo /
_rens - d .
= (B 180) Jrer If(x —w)ldu(w)
(5.10)

@ Springer



Commutators on Spaces of Homogeneous Page 29 of 38 209

For every ball B; = B(xg, t) in X, by (5.10) and Minkowski’s inequality, we obtain

|15, 1001

p.r bg o0 1
leremy o WPl = [ el drw)
W(B)? o(t) w(B) 7o) 1 (BOr, 3R)) Jp(e R
< IIbsllLlDo / ||f||L1’”(B(xo—uif)) di(w)
w (B, 3R) JBeir) 1 (B(xg — w, )7 0(1)
b | £ /
<7 ,rd w
S IR Jrons £ gz )
u(B(x, Re)) n(B(x, R;))
< b 0 —— r,r< b 00—,
< bellz M(B(XAR))uané, < bellL (5 TR)
uniformly in f € G.
This implies that
1 (B(x, Ry))
be, T1(f)1pe < bl o 2 Ve Gl
|6 Ty S 10 cetny

Thus, | [bs, T](f)lB;‘?

[be, T1(G) verifies (iii).
It remains to prove the equicontinuity of [b., T]. In fact, we show that for every
6 > 0, if d(z, 0) is sufficiently small (merely depending on &), then

— 0 when R — oo uniformly in f € G. In other words,

p.r

Ibe, TIC)C +2) = [be, TI Ol < €37, (5.1D)

uniformly in f € G, where the constant C > 0 is independent of f, 8, d(z, 0).
To obtain the desired result, we recall the maximal operator of 7', defined by

T(f)(x) =sup|T (fH(x)], (5.12)
>0
where T7, the truncated operator of T, is

To(f)(x) = / K(x.9) fO) du(y). (5.13)

{d(x.y)>1}

For convenience, we recall here Cotlar’s inequality (see [39, Lemma 6.1]). That is
forall/ > 0,

T(NHx) = CIM(T(f) (x) + MH] . (5.14)
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Now, for any x € X we express

[bey T1CF)(x + 2) — [be, TI)(x) = /X (be(y) — be (x +20) K(x + 2, ) F) ()
- /X (Be(y) — be () K (62 9) £ () du(y)
_ f (Be(x) — ba(x +20) K (6, ) £(3) du(y)
d(x,y)>8*ld(z,0)

+ / (be(y) — be (6 + 2) [K(x + 2, ¥) — Kt )] £O) dia(y)
d(x,y)>8"1d(z,0)

+ f (be () — be () K (x, ) £ () dia(y)
d(x.y)SB—ld(z,O)

+ / (Be(y) — be(x +2) K + 2, 9) F () die(y)
d(x,y)<6-1d(z,0)

=L+hL+13+ 14

We first estimate 1.

1| < |be(x + 2) — be(x)] K, ) f(y)du(y)

/d(x,y)>81d(z,0)
< |be(x +2) = be () T (f)(x) .

Since b is uniformly continuous on X, then we deduce from the last inequality that
L <387 (f)x),

asd(z,0) — 0.
Applying Cotlar’s inequality yields

Millyzr < SN (D lvzr S 81 f Mgz - (5.15)

For I, we use the smoothness of kernel K, (1.14), and the doubling property of 1
in order to get

n
IIzléllbelle/ ) | f )| du(y)
d(x,y)>8-1d(z,0) V (X, )

1
= d(x+ 2020 be /
‘ d(x,y)>8=1d(z,0) L (B(x,d(x, y))d(x,y

1 (d(x+z,x)
d(x,y)

X [f O du(y)

1
d L) el Y 2758"d ,0—’7/ d
<d(x+2z,0)"bellL g (z,0) e T D DN drG)
dx +z,x)" _ D 1
< LOEL I e 3 2k D) FONdu)

S A0y & " w0 kD) o,
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S lbellzee Y 27587C M(f)(x)
k>0

S 8Mbell Lo M(f)(x)

where Dy = B (x, 2567 1d(z, 0)), k > 0.
Then, we get from the last inequality that

2 llygpr S 8" M1ell oo IMC gz S 87 1bellzoo Il f llygpr - (5.16)

Next, we estimate I3. For any & > 0, let us set By = B (x, 8_12_kd(z, 0)). Then,
it follows from the size condition of K that

I3 < C||Vbs||L°°/ %If(y)ldu(y)
S d(x,y)<s-1d(z,0) 1 (B(x,d(x, y)))

27%871d(z,0
A AT Praanic) F ) du()

k=0 Hn (Bk+l) Bi\Bi+1

B 1
< 57 1d(z )| Vb e Y2k LB L
im0 M Bi+1) n(Bi)

<871z, 0| Vbelle Y CL2 M) (x)
k>0

S OIVbellLe M()(x)

/ [fO)Idu(y)
By

provided that d(z, 0) < 82,
With the last inequality noted, it follows from the M(’,f ""_bound of operator M that

Mllagzr S SNVbellLoe IM Iz < SIVDell Lol f Iy - (5.17)

Finally, we treat I4. Since supp(b.) C B(0, R.), then it is sufficient to consider
x € B(0,2R,) when z — 0.
Thanks to the quasi-triangle inequality (1.1), we get

dx+2z,y) < Ag(d(x +z,x)+d(x,y))) <26,

when z — 0, for all d(x, y) < 8.
Then,

dix +2z,5)
L] < C||Vbe|l w/ [fO)Idu(y)
ol d(x,y)<6-1d(z,0) H (B(x +z,d(x + z,¥)))

dix +z,x)
< C|IVh ||oo/ Ol du(y) .
e L oo HBG+ 2 dGr 2,y DNARO
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By arguing as in I3, we also obtain
IWallygzr S 81Vl ool £l (5.18)
Combining (5.15), (5.16), (5.17), and (5.18) yields
Ibe, TIF)(x + 2) = [be, TI) @) llngzr S SIVDellLeelLf gz

uniformly in f € G. Therefore, [b, T'] satisfies ii).

Thanks to Lemma 5.1, we conclude that [b, T'] is a compact operator on M} (X).

b) Sufficiency: Suppose that 7' is homogeneous, and [b, T] is a compact operator
on M} (X). Thanks to Corollary 1.15, we have that b € BMO(X).

Next, we show that b € CMO(X). To obtain the result, we need a characterization
of a function in CMO(X) (see, e.g., [40]).

Lemma5.2 A function b € CMO(X) if and only if b satisfies the following three
conditions.

(i) lim sup
R—o00 B, >R M(B[) B

|b(z) — bp,|du(z) =0,

(ii) lim sup
R—00 (p, B,cB(0,R)} M(B1) Jp

|b(z) — bp,ldu(z) = 0.

|b(z) — bp|du(z) =0,

(iii) lim sup
8—0p, 1<s W(B1) Jp

We also need the following result for technical reasons.

Lemma 5.3 There exists a positive constant M > 10Aoq, such that for any ball
B(xo,t) in X, there is a ball B(yo,t), d(xo, yo) = Mt; and for any x € B(xg, 1),
T (18(yy.1)) (x) does not change sign and

w (B(yo, 1)

1 (B0, M) ~ T (1a(y0.0) ()] - (5.19)

Proof of Lemma 5.3 Thanks to the smoothness of K, we have

IT (18(y9.0)) () = T (18(yp.0)) (x0)| < /B ( )|K<x,y> — K (x0, )| du(y)
Yot

1 d(x, xo)"
< C/ du(y)
B(yo.) V (X0, ¥) d(x0, y)"

~ JBoon 1 (B (xo. 1)) (M1)"
n P (BGo. 1)
1 (B (xo, ML)

du(y)

<CM~
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_ oy P BGo. D) p(Blxo, M)
1 (B (xo, M1)) 11 (B (xo, L))

—n (B0, 1)
1 (B (xo, M1))

<cCyM (5.20)

If T(1B(yy,r))(x0) > O, then it follows from the homogeneity of 7', the triangle
inequality, and (5.20) that

- M (BG0.1)

T (Ap(y0,0)(x) = T (A (y0,0)(x0) = CCp 1 (B(xo, M1))

n(B(yo. 1) —y M (B(y0,1))
= 1 (B(xo, M1)) W (B(xo, M1))
1 (B(yo, 1)

Vv

w (B (xo, M1))

provided that M is large enough.
By the same argument, we also obtain the conclusion if 7'(1p(y,, ry)) (x0) < 0.
This puts an end to the proof of Lemma 5.3. O

Now, we demonstrate that b € CMO(X). Seeking a contradiction, we assume that
b ¢ CMO(X). Therefore, b violates (i), (ii), and (iii) in Lemma 5.2. We consider
these cases orderly.

Case 1. Suppose that b violates (i). Then, there exists a sequence of balls
{Bx = B(xk, Ry)};> such that Ry — oo as k — oo, and

|b(x) —bp|ldu(x) > co >0, forevery k > 1. (5.21)
/’L(Bk) By

Since Ry — oo, we can choose a subsequence of {Ry}r>1 (still denoted by {Ry}r>1)
such that

1
Ry < —Riy1, Vk=>1,
k= R >
for some constant C > 10.

For technical reason, we denote m(£2), by the median value of function b on a
bounded set 2 C R” (possibly non-unique) such that

{,L ((x € Q: b(x) > mp(Q}) < %M(Q)v (5.22)

p(fx € Q:b(x) <mp()}) = 3u(Q) .

Next, for any k > 1, let yy € X be such that d(xx, yx) = MRy, M > 10A¢, and put

By = B(y, Re), Bri= {y € By :b(y) < mb(ék)} ,

Bio = [y € By :b(y) > mb(ék)} ;
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and

By = {x € Beib() zmp(Bo). Bra={x € Bt <my(Bo;

also
k—1 k—1
Fii=Bui\|JBj. Fia=B2\ B
j=1 j=1

Note that Fy 1 N F; 1 = ¥ whenever j # k. Moreover, we have from the definition of
the median value that

k—1 k—1
~ - 1 ~ -
w(Fr1) = n(By,1) — ZM(Bj) > EH(Bk) - ZM(B/') 2 (By) . (5.23)
Jj=1 j=I1
Similarly, we also obtain
w(Fr2) 2 1(By) . (5.24)

Furthermore, we have from the definition of the median value
[b) = mp(Bo)| = 1600 = b, ¥(x, ¥) € Bij x By, for j=1,2. (525)

Next, it follows from (5.21) and the triangle inequality that

1
u(Bk) Jp,

2 ~ ~
= </ |b(x) —mp(Bi)| dp(x) + [ |b(x) — mp(Bi) du(x)) .
Bk,l Bio

€0

IA

1 ~
|b(x) — b ldpu(x) <2 3 f |b(x) — mp(Bi)| du(x)
k) By

u(

1(Br)
(5.26)

This implies that there exists a subsequence with respect to k such that either

1 ~ ()]
(Bo) s, 1bGx) —mp (Bl dp(x) = . (5.27)

or

1 ~ co
b(x) — Biy)|d —,
(B Bk.2| (x) = mp(B)|dp(x) > >

for any k > 1. Thus, one can assume without loss of generality that (5.27) occurs.
For any k > 1, applying Lemma 5.3 and (5.23) yields

(5.28)

o< PBO w (Fi,1)
~ w(MBy) ™ (M By)

ST (k) @)

, Vx e By.
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In addition, T (17, ) (x) is a constant sign in Bi. Then, it follows from (5.25), (5.27),
and Lemma 5.3 that

< u (By) < w (Bi) 1
™ w(MBy) ~ w(MBy) 1(Bi) Jpy,
1

M—n

b(x) = my(B| dp(x)

S By By b(x)"”HBk)\ 1T (15,) )] dp(x)
1 ~
~ B Js,, / . (b(x)_mb(Bk))K(xvy)le,|(Y)dM(y)'d,u(x)
1
= / (b(x) =b(y) K(x, y)du(y)| du(x)
M(Bk) By |V Fra
1
= b, T](1 d
w(By) Bk,1|[ 1(15,) (0| di(x)
1
= 6. T1(%e) ()] dpn(x) . (5.29)

w(Br)p(Ri) Jp,
where ¢ (x) = (R 1, (x), fork > 1.
Applying Holder’s inequality in (5.29) yields

1 €
< - DT P N
M s L Boe(RD) Wb, T1 (i)l Loy 1 (Bi) 7 < IITb, T1 (i) vz

Since [b, T] maps M, (X) — M} (X) continuously, then we deduce from the last
inequality that
M7 S I ellypr, Ve= 1. (5.30)

Next, thanks to (2.5) and the definition of Fj 1, we get

el = oRo) 1], S 1 Vh= 1 (5.31)
Combining (5.30) and (5.31) yields
I Bxllygpr ~ 1. (5.32)

Thanks to the compactness of [b, T] on Mf,f’r(X ), there exists a subsequence of
{[b, T1(¢r)}k>1 (still denoted as {[b, T](¢x)}r>1) such that

[b, T (¢pr) — @ in Mg'r(X), (5.33)

as k — oo.
By (5.32), we also obtain
||<I>||M5,r ~ 1. (5.34)
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Next, for any ¢ € (p, 00), since b € BMO(X), and T is a linear of Calderén—
Zygmund type, then [b, T] maps LY(X) — L4(X) continuously for g € (1, 00).
As a result, we obtain

Ib. TH)lILa S lIblBmolldklie < lIblBMO@ (Re) |18, 4

1
= lIbllBMow (RO (Bt ~ [[bllemoe(ROR;? .
(5.35)

Since Ry — oo, then we have 270 < Ry < 27®+! with y (k) = [log, Ri], and [/]
denotes by the integer part of a real number /. Thanks to (1.5) and the monotonicity
of ¢, we achieve

9(Rr) < 92"®) < DY®y(1).

By inserting this fact into (5.35), we obtain

n o \y(Kk)
116, TI@0 Lo S IblImpo DY D120 ©F070 < blgyo (20 D). (5.36)

To this end, we only take g large enough such that 20D < 1. Then, the right hand
side of (5.36) tends to 0 as k — oo since (1.15),.

This implies that [|[b, T1(¢x)|l; ¢ — 0. Thus, ® = 0 a.e. in X. This contradicts
(5.32).

Similarly, we also obtain a contradiction if (5.28) holds true. In summary, b cannot
violate ().

Case 2. Assume that b violates (ii). The proof of this case is similar to the one of
Case 1. Thus, we leave its detail to the reader.

Case 3. The proof of this case is most like that of Case 1 by considering & in place
of Ry, with §; — 0. Since we want to repeat the above proof for §; in place of Ry,
then it is necessary to make some changes as follows:

Since 8y — O, then for every C > 10, there is a subsequence of {§x}r>1 (still
denoted as {8 }k=1) such that 841 < £&.

Furthermore, we need to redefine Fy | (resp. Fx2):

o0 oo
Fii = B\ U Bj, Fio=Bia\ U B;.
j=k+1 j=k+1

By the definition of the median value, it is not difficult to verify that ;(Fi 1) = M(Bk),
and u(Fy2) ~ w(By) for k > 1. This enable us to repeat the proof of Case 1 in order
to get (5.33) and (5.34).

Next, for g € (1, p) we repeat the proof of (5.35) to obtain

I, T1@ e S ||b||BMO(ﬂ(5k)M(Bk)$ . (5.37)
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1
Since ¢ (t)u(B;)? is nondecreasing and §y — 0, then we observe that

PGORBOT = (pG(BY ) (BT T — 0

as k — oo.

Again, we get that [b, T](¢x) — 0 in L9(X), when k — oo. This contradicts
(5.34). Therefore, b must satisfy (iii).

From the above cases, we conclude that b € CMO(X). Hence, we complete the
proof of Theorem 1.17. O
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