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Abstract
In this paper, we are interested in studying a generalized block space (denoted as
Bp,r

ϕ ) on a space of homogeneous type. We show that this space is the predual of
certain generalized Morrey–Lorentz space. By duality, we obtain the Bp,r

ϕ -bound of
operators of Calderón–Zygmund type. In addition, we prove a weak Hardy factor-
ization in terms of commutators of integral operator of Calderón–Zygmund type in
block spaces. Thanks to the Hardy factorization result, we obtain a characterization
of functions in BMO via the boundedness of commutators of homogeneous linear
Calderón–Zygmund operators in the generalized block space (resp. the generalized
Morrey–Lorentz space). Finally, we study a compactness characterization of commu-
tators of Calderón–Zygmund type in generalized Morrey–Lorentz spaces.
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1 Introduction andMain Results

The theory of Calderón–Zygmund operators is a central part of modern harmonic
analysis. Many applications to partial differential equations are among themotivations
to study Calderón–Zygmund operators on spaces which are beyond the Lebesgue
spaces L p of theEuclidean spaces. This research direction has been studied extensively
and lead to a successful theory of function spaces including Hardy spaces, BMO
spaces, Campanato spaces, Morrey–Lorentz spaces on the Euclidean space R

n or
more general, on a space of homogeneous type X (see for example [7]) in the last fifty
years.

In this paper, we study certain aspects of operators of Calderón–Zygmund type on
various function spaces. The aim of this paper is threefold.

(i) Firstly, we study generalized block space Bp,r
ϕ (X) on space of homogeneous

type, where we assume that p ∈ (1,∞), r ∈ [1,∞], and function ϕ(t) satisfies (1.5)

below. Then, we prove that Bp′,r ′
ϕ (X) is the predual of certain generalized Morrey–

Lorentz space Mp,r
ϕ (X).

(ii) Secondly, we investigate the Mp,r
ϕ -bound (resp. Bp′,r ′

ϕ -bound) of operators of
Calderón–Zygmund type, and prove a weak Hardy factorization in terms of commu-

tators of Calderón–Zygmund type in Bp′,r ′
ϕ (X) and Mp,r

ϕ (X). As a result, we obtain

a characterization of functions in BMO(X) via theMp,r
ϕ (X) (resp. Bp′,r ′

ϕ (X)) bound-
edness of commutators of Calderón–Zygmund type.

(iii) Thirdly, we prove a compactness characterization of commutators of Calderón–
Zygmund type inMp,r

ϕ (X).

Notation: In this paper, we denote by C∞
0 (X) and D′(X), the space of infinitely dif-

ferentiable functions with compact support and the space of distributions respectively.
For any q ∈ [1,∞], we denote q ′ the conjugate exponent, 1

q + 1
q ′ = 1. Moreover, we

denote Bt by a ball in X with radius t > 0.
As usual, we denote a constant by C , which may depend on p, r , n and may change

at different lines. We also denote A � B if there exists a constant C > 0 such that
A ≤ C B. Finally, we denote A ≈ B if A � B and B � A.

Let us recall the definition of a space of homogeneous type, introduced by Coifman
and Weiss [7]. Then (X , d, μ) is a space of homogeneous type if d is a quasi-metric
on X and μ is a nonzero measure satisfying the doubling condition. A quasi-metric d
on a set X is a function d : X × X → [0,∞) satisfying

(i) d(x, y) = d(y, x) for all x, y ∈ X ;
(ii) d(x, y) = 0 if and only if x = y; and
(iii) the quasi-triangle inequality: there is a constant A0 ∈ [1,∞) such that for all

x, y, z ∈ X ,
d(x, y) ≤ A0 (d(x, z) + d(z, y)) . (1.1)

We say that a nonzero measure μ satisfies the doubling condition if there is a
constant Cμ only depending on μ, such that for all x ∈ X and t > 0,

μ(B(x, 2t)) ≤ Cμ μ(B(x, t)) < ∞ , (1.2)
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where B(x, t) is the quasi-metric ball by B(x, t) = {y ∈ X : d(x, y) < t} for x ∈ X
and t > 0.We note that the doubling condition (1.2) implies that there exists a positive
constant n (the upper dimension of μ) such that for all x ∈ X , λ ≥ 1, and t > 0,

μ (B(x, λt)) ≤ A1λ
nμ (B(x, t)) , (1.3)

for some constant A1 > 0.
We emphasize that the ball B(x, t) may not be an open set. However, Macías–

Segovia, [30] constructed a quasi-metric d ′, which is equivalent to d in the sense
that

A−1
2 d(x, y) ≤ d ′(x, y) ≤ A2d(x, y)

for some constant A2 > 0 and for all x, y ∈ X . In addition, d ′ satisfies a regularity
estimate of the type

|d ′(x, z) − d ′(y, z)| ≤ A3d ′(x, y)θ [d ′(x, z) + d ′(y, z)]1−θ (1.4)

for some constant A3 > 0, and for some θ ∈ (0, 1]. Then, the balls associated to d ′ are
open sets. This fact allows us to work on the quasi-metric d having the same topology
with d ′.

Throughout this paper, we assume that μ(X) = ∞ and that μ({x0}) = 0 for every
x0 ∈ X . In addition, we also assume that the functionϕ(t) : (0,∞) → (0,∞) satisfies
the following conditions:

⎧
⎨

⎩

i) ϕ(t) is nonincreasing,
i i) μ (Bt ) ϕ p(t) is nondecreasing, for any ball Bt ⊂ X ,

i i i) ϕ(2t) ≤ Dϕ(t), ∀t > 0,
(1.5)

for some constant 0 < D < 1. Note that the last condition implies that ϕ(t) cannot be
a constant function.

Now, we define the generalized Morrey–Lorentz space. A real-valued function f
is said to belong to the generalized Morrey–Lorentz space Mp,r

ϕ (X) provided the
following norm is finite:

‖ f ‖Mp,r
ϕ

= sup
B(x,t)

‖ f ‖L p,r (B(x,t))

μ (B(x, t))
1
p ϕ(t)

, (1.6)

where the supremum is taken over all the balls B(x, t) in X , and ‖ f ‖L p,r ((B(x,t))

denotes the Lorentz norm of f on B(x, t) (see e.g. [11] for more details of Lorentz
spaces).

Remark 1.1 When r = p, we denote Mp,r
ϕ (X) as Mp

ϕ (X).
A canonical example is the following case: X = R

n equipped with the Lebesgue
measure, and ϕ(t) = t−α , α ∈ (0, n

p ]. In this case, Mp
ϕ (Rn) is the classical Morrey

space.

123



209 Page 4 of 38 T. T. Dung et al.

It is known that Morrey spaces are generalizations of L p-spaces, and they play
a crucial role in studying the calculus of variations and the theory of elliptic PDE’s
(see e.g. [1, 5, 6, 12, 14–16, 31–36], and the references therein). Later, Campanato
[5] extended the classical Morrey spaces by using the modified mean oscillation. As
a matter of fact, this family of spaces includes the Morrey spaces, BMO spaces (the
spaces of functions with bounded mean oscillation), and the Lipschitz spaces.

In [42], Zorko studied the generalized Campanato spaces Lp
ϕ(X). We say that

f ∈ Lp
ϕ(X) if there is a constant C0 > 0 such that for every ball B(x, t) in X , we have

inf
P∈Pk

(
1

μ (B(x, t)) ϕ p(t)

∫

B(x,t)
| f (y) − P(y)|p dμ(y)

)1/p

≤ C0 , (1.7)

where Pk is the class of polynomials of degree ≤ k.
If ϕ satisfies condition 1.5, then the author showed that the spaceLp

ϕ(X) is indepen-
dent of k. Furthermore, Lp

ϕ(Rn) and Mp
ϕ (Rn) describe the same space, and Mp

ϕ (Rn)

is the dual of certain atomic space Hp
ϕ (Rn) for p ∈ (1,∞). We note that a celebrated

result by Fefferman–Stein [20] is that the dual ofH1(Rn) (the classical Hardy space) is
BMO(Rn). Thus, theMorrey space exhibits some similarity to BMO(Rn), concerning
duality.

For convenience, we recall here the definition of BMO(X).

Definition 1.2 A function b ∈ L1
loc(X) belongs to BMO(X) if

‖b‖BMO := sup
B

1

μ(B)

∫

B
|b(x) − bB | dμ(x) < ∞,

where

bB = 1

μ(B)

∫

B
b(x) dμ(x),

and the supremum is taken over all balls B ⊂ X .

Note that Alvarez, [2] defined Hp
ϕ (Rn) in terms of suitable molecules, and used

this result to prove the Hp
ϕ -bound of linear Calderón–Zygmund operators satisfying

the cancellation condition. By duality, he also obtained the boundedness of linear
Calderón–Zygmundoperators onMp

ϕ (Rn) space. It is known that such a linear operator
of Calderón–Zygmund type does not map atoms into atoms, but it maps molecules
into molecules. That is a reason why the author introduced the suitable molecules. We
emphasize that his proof relies on the cancellation condition, so it cannot be applied to
a general linear Calderón–Zygmund operators, such as the Cauchy integrals associated
to the Lipschitz curves (see [12, 29, 38]). Then, one of the main purposes in this paper
is to extend the boundedness result by Alvarez, [2] to the linear Calderón–Zygmund
operators on Mp,r

ϕ (X) (see Theorem 1.11).
For convenience, let us recall the definition of linear Calderón–Zygmund operators.
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Definition 1.3 We say that T is a Calderón–Zygmund operator on (X , d, μ) if T is
bounded on L2(X) and has the associated kernel K (x, y) such that

T ( f )(x) = p.v.

∫

X
K (x, y) f (y) dμ(y),

for any x /∈ supp( f ), and K (x, y) satisfies the following estimates: for all x �= y,

|K (x, y)| ≤ C

V (x, y)
,

and for d(x, z) ≤ (2A0)
−1d(x, y),

|K (x, y) − K (z, y)| + |K (y, x) − K (y, z)| ≤ C

V (x, y)

(
d(x, z)

d(x, y)

)η

, (1.8)

for some η > 0, where V (x, y) = μ (B(x, d(x, y))).
Note that by the doubling condition we have that V (x, y) ≈ V (y, x).

Definition 1.4 We say that T is homogeneous if for any ball B(y, t) in X , T satisfies

∣
∣T

(
1B(y,t)

)
(x)

∣
∣ ≥ μ (B(y, t))

μ (B(x, Mt))
, (1.9)

for all d(x, y) = Mt , M > 10A0.

A typical example of such operator is either the Riesz transforms, or the Cauchy
integral operators associated with Lipschitz curves.

Next, we define a generalized block space Bp,r
ϕ (X).

Definition 1.5 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) : (0,∞) → (0,∞). A
function b(x) is called a (p, r , ϕ)-block, if there exists a ball Bt in X such that

(i) supp(b) ⊂ Bt ,

(i i) ‖b‖L p,r (Bt ) ≤ 1

μ (Bt )
1
p′ ϕ(t)

.

Next, we define space Bp,r
ϕ (X) via (p, r , ϕ)-block.

Definition 1.6 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). We denote,

by Bp′,r ′
ϕ (X), the family of distributions f that, in the sense of distributions, can be

written as

f =
∞∑

k=1

λkbk,

where bk is a (p, r , ϕ)-block and {λk}k≥1 ∈ l1.
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It is clear that Bp′,r ′
ϕ (X) is a vector space. In addition, we denote

‖ f ‖
Bp′,r ′

ϕ
= inf

∞∑

k=1

|λk |

where infimum is taken over all possible decompositions of f as above.

Then,

(

Bp′,r ′
ϕ (X), ‖ · ‖

Bp′,r ′
ϕ

)

becomes a norm space.

For short, we denote Bp,p
ϕ (X) by Bp

ϕ(X) if r = p.

Remark 1.7 In Bp′,r ′
ϕ (X), the series

∑∞
k=1 λkbk is convergent in L1 (Bt ) for any ball

Bt in X , see Lemma 2.1.

This space was introduced by Blasco et al., [4] when X = R
n , r = p, and ϕ(t) =

t−α , α ∈ (0, n
p ] in order to prove a non-interpolation result. Moreover, the authors

also showed that Bp′
ϕ (Rn) is a predual of Mp

ϕ (Rn) for p ∈ (1,∞).

Our first result is the duality between Mp,r
ϕ (X) and Bp′,r ′

ϕ (X).

Theorem 1.8 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Then, we have

(
Bp′,r ′

ϕ (X)
)′ = Mp,r

ϕ (X), (1.10)

and
Bp′,r ′

ϕ (X) = Mp,r
ϕ (X)′ . (1.11)

Remark 1.9 As a consequence of Theorem 1.8, we observe thatBp′,r ′
ϕ (X) is a reflexive

Banach space. Moreover,Mp,r
ϕ (X) is a Banach space. This fact will be used to deduce

a compactness criterion inMp,r
ϕ (X) under certain assumptions on X , see Lemma 5.1.

Next, we define a commutator of linear operator of Calderón–Zygmund type.

Definition 1.10 Let T be a linear Calderón–Zygmund operator. Suppose that b ∈
L1
loc(X). Then, the commutator [b, T ] is defined by

[b, T ] f (x) := b(x)T ( f )(x) − T (b f )(x)

for suitable functions f .

It is known that the theory of commutators has been generalized to other contexts,
and it has many important applications to some nonlinear partial differential equations
(see e.g. [8, 16, 23] and the references therein).When T is a linear Calderón–Zygmund
operator, the L p boundedness of [b, T ]was first proved by Coifman–Rochberg–Weiss
[9]. After that this result has been developed by many authors in [3, 12, 13, 15,
17–19, 24, 26, 29, 38, 40] and the references therein. In [40], Uchiyama obtained
the compactness of operators of Hankel type. Furthermore, Beatrous–Li [3] proved

123



Commutators on Spaces of Homogeneous Page 7 of 38 209

a boundedness and compactness characterization for [b, T ] on L p(X), where X is
a space of homogeneous type, and some applications to Hankel type operators on
Bergman spaces were given by the authors in [10–12, 26].

When T is the Cauchy integral operator associated with the Lipschitz curves, the
L p boundedness and compactness characterization of [b, T ] was obtained in [29].
Moreover, Tao et al. [38] extended this result to Morrey spaces (see also [13] for the
Lorentz boundedness and compactness characterization of [b, T ]). It is obvious that
such an operatormentioned above is associatedwith a kernel K ofCalderón–Zygmund
type satisfying the homogeneity, i.e:

There exist positive constants c0 and C̃ such that for every x ∈ X and r > 0, there
exists y ∈ B(x, C̃r)\B(x, r) satisfying

|K (x, y)| ≥ c0
μ (B(x, r))

. (1.12)

In this case, Duong et al. [19] established the two weight commutator theorem of
Calderón–Zygmund operators in the sense of Coifman–Weiss on spaces of homoge-
neous type. As applications, they can obtain a two weight commutator theorem for
the following Calderón–Zygmund operators: Cauchy integral operator onR, Cauchy–
Szegö projection operator on Heisenberg groups, Szegö projection operators on a
family of unbounded weakly pseudoconvex domains, the Riesz transform associated
with the sub-Laplacian on stratified Lie groups, as well as the Bessel Riesz transforms.

Next, we discuss the Hardy factorization in terms of the commutators. A famous
result of Coifman–Rochberg–Weiss [9] is that every f ∈ H1(Rn) can be written as

f =
∞∑

k=1

n∑

j=1

(
hk, jR j (gk, j ) + gk, jR j (hk, j )

)

with

∞∑

k=1

n∑

j=1

∥
∥gk, j

∥
∥

L2(Rn)

∥
∥hk, j

∥
∥

L2(Rn)
≤ ‖ f ‖H1(Rn),

where R j are the Riesz transform for j = 1, . . . , n.
As a consequence, the authors obtained a characterization of functions b in

BMO(Rn) through the L2 boundedness of [b,R j ], j = 1, . . . , n. This theory has
been studied by many authors in [13, 14, 18, 25, 28, 41], and the references cited
therein. For instance, Uchiyama [41] extended the Hardy factorization to Hp on the
space of homogeneous type. In addition, Komori–Mizuhara [25] proved the weak H1

factorization in terms of the commutators of Calderoón–Zygmund type in general-
ized Morrey spaces. We do not forget to mention that a weak Hardy factorization for
the Bessel operators was obtained by the authors in [18]. Recently, the first author
and Wick [14] proved a weak Hardy factorization in terms of multi-linear operator in
Morrey spaces.
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Inspired by the above results, wewould like to generalize the theory of commutators
to the generalized Morrey–Lorentz spaces, and the Block spaces. Concerning the
Mp,r

ϕ (X) boundedness of commutators in Definition 1.10, we have the following
theorem.

Theorem 1.11 Assume the same hypotheses as in Theorem 1.8. If b ∈ BMO(X), and T
is a linear Calderón–Zygmund operator in Definition 1.3, then [b, T ] maps Mp,r

ϕ (X)

into itself continuously. Moreover, we have

‖[b, T ]( f )‖Mp,r
ϕ

� ‖b‖BMO‖ f ‖Mp,r
ϕ

, ∀ f ∈ Mp,r
ϕ (X).

Remark 1.12 By duality in Theorem 1.8, we have that [b, T ] also maps Bp′,r ′
ϕ (X) →

Bp′,r ′
ϕ (X) continuously.

Our next result is theweakHardy factorization in terms of commutators inBp′,r ′
ϕ (X)

and Mp,r
ϕ (X).

Theorem 1.13 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Suppose that
T is a homogeneous operator of Calderón–Zygmund type. Then, for every function
f ∈ H1(X), there exist sequences {λk, j } ∈ l1 and functions {gk, j }, {hk, j } ⊂ L∞

c (X)

(the space of bounded functions with compact support), such that

f =
∞∑

k=1

∞∑

j=1

λk, j
(
hk, j T

∗(gk, j ) − gk, j T (hk, j )
)

(1.13)

in the sense of H1(X). In addition, we have that

‖ f ‖H1 ≈ inf

⎧
⎨

⎩

∞∑

k=1

∞∑

j=1

|λk, j |
∥
∥gk, j

∥
∥
Bp′,r ′

ϕ

∥
∥hk, j

∥
∥
Mp,r

ϕ

⎫
⎬

⎭
,

where the infimum above is taken over all possible representations of f that satisfy
(1.13).

We prove this result in Sect. 4.

Remark 1.14 Note that our assumption on the homogeneity of operator T in Theo-
rem 1.13 is weaker than (1.12) used in [19, 25].

As a consequence of Theorem 1.13, we obtain a characterization of functions

in BMO(X) via the Mp,r
ϕ (resp. Bp′,r ′

ϕ ) boundedness of commutators of Calderón–
Zygmund types.

Corollary 1.15 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Suppose that T
is a linear Calderón–Zygmund operator. If b ∈ BMO(X), then the commutator [b, T ]
maps Mp,r

ϕ (X) into Mp,r
ϕ (X) continuously. Moreover, it holds true that

‖[b, T ]‖Mp,r
ϕ →Mp,r

ϕ
≤ C‖b‖BMO.
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Conversely, for b ∈ L1
loc(X), if T is homogeneous, and [b, T ] maps Mp,r

ϕ (X) →
Mp,r

ϕ (X) continuously, then b ∈ BMO(X), and

‖b‖BMO ≤ C ‖[b, T ]‖Mp,r
ϕ →Mp,r

ϕ
.

Remark 1.16 By duality, the result of Corollary 1.15 also holds for Bp′,r ′
ϕ (X) in place

of Mp,r
ϕ (X).

The last result is a Mp,r
ϕ -compactness characterization in terms of [b, T ]. Since

our assumptions on the homogeneous space (X , d, μ) are quite general, then we have
to make some additional assumptions to (X , d, μ). Concerning the compactness, we
suppose that the homogeneous space (X , d, μ) is a vector space, and is a locally
compact space such that

d(x + z, y) ≈ d(z, y − x), for all x, y, z ∈ X , (1.14)

and
μ (B(x, t)) ≈ tn, ∀x ∈ X . (1.15)

A typical example of such space is the Euclidean space, equippedwith the Lebesgue
measure. In addition, we also note that any Ahlfors n-regular metric measure space
(X , d, μ) satisfies (1.15).

Then, we have the following theorem.

Theorem 1.17 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Assume that
(X , d, μ) is a locally compact space such that (1.14) and (1.15) hold. Then the fol-
lowing statements hold true.

If b ∈ CMO(X), and T is a linear Calderón–Zygmund operator, then [b, T ] is
compact on Mp,r

ϕ (X).
Conversely, for b ∈ L1

loc(X), if T is homogeneous, and [b, T ] is a compact operator
on Mp,r

ϕ (X), then b ∈ CMO(X).

To end this section, we list some operators of Calderón–Zygmund type that our
results are applicable to: the Cauchy integral operators, the Cauchy-Szegö projection
operator on the Heisenberg group H

n , the Szegö projection operator on a family of
unboundedweakly pseudo-convex domains, the Riesz transforms associated with sub-
Laplacian on stratified nilpotent Lie groups, the Riesz transform associated with the
Bessel operator onR+, the Riesz transforms associatedwithBessel operators onRn+1+ .
We refer to [19] for the details of these operators.

Finally, we emphasize that our results extend the boundedness and compactness
characterization of linear Calderón–Zygmund operators to the generalized Morrey–
Lorentz spaces, and Block spaces.

2 GeneraliedMorrey–Lorentz Space as Dual of Block Space

In this part, we study some properties of the Morrey–Lorentz spaces and the block
spaces.
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Lemma 2.1 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Then, we have

Bp′,r ′
ϕ (X) ↪→ L1

loc(X).

Proof of Lemma 2.1 It suffices to show that for any ball B(x, t) ⊂ X , we have

‖ f ‖L1(B(x,t)) ≤ C‖ f ‖
Bp′,r ′

ϕ
, ∀ f ∈ Bp′,r ′

ϕ (X) , (2.1)

where constant C > 0 is independent of f .
Indeed, let b be a (p′, r ′, ϕ)-block. Suppose that supp(b) ⊂ B(z, τ ), for some ball

B(z, τ ) in X . Then, applying Hölder’s inequality in Lorentz spaces yields

‖b‖L1(B(x,t)) � ‖b‖L p′,r ′ μ (B(z, τ ) ∩ B(x, t))
1
p ≤ μ (B(z, τ ) ∩ B(x, t))

1
p

μ(B(z, τ ))
1
p ϕ(τ)

. (2.2)

If τ ≥ t , then since μ(B(z, τ ))
1
p ϕ(τ) is nondecreasing, then we deduce from (2.2)

that

‖b‖L1(B(x,t)) � μ (B(z, τ ) ∩ B(x, t))
1
p

μ(B(z, t))
1
p ϕ(t)

≤ 1

ϕ(t)
.

Otherwise, we have ϕ(τ) ≥ ϕ(t). Therefore

‖b‖L1(B(x,t)) � μ (B(z, τ ) ∩ B(x, t))
1
p

μ(B(z, τ ))
1
p ϕ(t)

≤ 1

ϕ(t)
.

As a result, we obtain from (2.2) that

‖b‖L1(B(x,t)) � 1

ϕ(t)
. (2.3)

Now, for any f ∈ Bp′,r ′
ϕ (X), we can write

f =
∑

k≥1

λkbk,

where {bk}k≥1 is a sequence of (p′, r ′, ϕ)-blocks, and
∑

k≥1 |λk | < ∞.
Thanks to (2.3), we get

‖ f ‖L1(B(x,t)) ≤
∑

k≥1

|λk |‖bk‖L1(B(x,t)) �
∑

k≥1

|λk | 1

ϕ(t)
≤

‖ f ‖
Bp′,r ′

ϕ

ϕ(t)
.

This yields (2.1).
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Hence, we obtain Lemma 2.1. ��
Remark 2.2 As a consequence of Lemma 2.1, for every ball B(x, t) ⊂ X the series∑∞

j=1 λ j b j is convergent in L1(B(x, t)) whenever
∑∞

j=1 |λ j | < ∞, and {b j } j≥1 is a
sequence of (p′, r ′, ϕ)-blocks.

Proposition 2.3 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Then, for every
ball B(z, t) in X we have

∥
∥1B(z,t) f

∥
∥
Bp′,r ′

ϕ
≤ μ(B(z, t))

1
p ϕ(t)

∥
∥1B(z,t) f

∥
∥

L p′,r ′ (2.4)

for f ∈ L p′,r ′
loc (X).

In addition, we have
∥
∥1B(z,t)

∥
∥
Mp,r

ϕ
≈ 1

ϕ(t)
, (2.5)

and ∥
∥1B(z,t)

∥
∥
Bp′,r ′

ϕ
≈ μ (B(z, t)) ϕ(t) . (2.6)

Proof of Proposition 2.3 The proof of (2.4) is done by letting

b(x) = 1B(z,t) f (x)

μ(B(z, t))
1
p ϕ(t)

∥
∥1B(z,t) f

∥
∥

L p′,r ′
.

Next, we prove (2.5). By (1.6), we can mimic the proof of a) in Lemma 2.1 in order
to obtain

∥
∥1B(z,t)

∥
∥
Mp,r

ϕ
= sup

B(x,τ )⊂X

‖1B(z,t)‖L p,r (B(x,τ ))

μ (B(x, τ ))
1
p ϕ(τ)

� 1

ϕ(t)
.

On the other hand, it is obvious that

sup
B(x,τ )⊂X

‖1B(z,t)‖L p,r (B(x,τ ))

μ (B(x, τ ))
1
p ϕ(τ)

� 1

ϕ(t)
.

Thus, we obtain the desired result.
Concerning (2.6), it follows from duality and (2.5) that

∥
∥1B(z,t)

∥
∥
Bp′,r ′

ϕ
= sup

‖g‖Mp,r
ϕ

≤1

∣
∣
∣
∣

∫

X
1B(z,t)g(x) dμ(x)

∣
∣
∣
∣

≥
∣
∣
∣
∣

∫

B(z,t)
g0(x) dμ(x)

∣
∣
∣
∣ ≈ μ (B(z, t)) ϕ(t) ,

with g0 = c01B(z,t)ϕ(t), and c0 is a normalized constant such that ‖g‖Mp,r
ϕ

= 1.
With the last inequality noted, and by applying (2.4) with f ≡ 1, we obtain (2.6).

��
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209 Page 12 of 38 T. T. Dung et al.

The next result is a dual inequality.

Proposition 2.4 Same hypotheses as in Proposition 2.3. If f ∈ Mp,r
ϕ (X), and g ∈

Bp′,r ′
ϕ (X), then

∣
∣
∣
∣

∫

X
f (x)g(x) dμ(x)

∣
∣
∣
∣ ≤ ‖ f ‖Mp,r

ϕ
‖g‖

Bp′,r ′
ϕ

.

Proof of Proposition 2.4 Since g ∈ Bp′,r ′
ϕ (X), then we can write

g(x) =
∞∑

j=1

λ j b j (x),

where {λ j } j≥1 ∈ l1, and {b j } j≥1 are (p′, r ′, ϕ)-blocks.
Assume that supp(b j ) ⊂ B j with its radius R j , j ≥ 1. Then, applying Hölder’s

inequality yields

∣
∣
∣
∣

∫

X
f (x)g(x) dμ(x)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

j=1

λ j

∫

B j

f (x)b j (x) dμ(x)

∣
∣
∣
∣
∣
∣

�
∞∑

j=1

|λ j | ‖ f ‖L p,r (B j )‖b j‖L p′,r ′
(B j )

=
∞∑

j=1

|λ j |
‖ f ‖L p,r (B j )

μ
(
B j

)1/p
ϕ(R j )

[
‖b j‖L p′,r ′

(B j )
μ(B j )

1/pϕ(R j )
]

≤
⎛

⎝
∞∑

j=1

|λ j |
⎞

⎠ ‖ f ‖Mp,r
ϕ

.

This yields the proof of Proposition 2.4. ��

Next, we study the Fatou property of block spaces Bp′,r ′
ϕ (X). Such a result was

obtained by the authors, [37] for Bp′
ϕ (X), ϕ(t) = t−n+α , α ∈ (0, n

p ).

Lemma 2.5 Let 1 < p < ∞, r ∈ [1,∞], and let ϕ satisfy (1.5). Suppose that f and
fk , k ≥ 1, are nonnegative, ‖ fk‖Bp′,r ′

ϕ
≤ 1, and fk(x) ↑ f (x) for a.e. x ∈ X. Then

f ∈ Bp′,r ′
ϕ (X) and ‖ f ‖

Bp′,r ′
ϕ

≤ 1.

Proof Note that the dyadic cubes were constructed by the authors, [22]. Thus, the
proof of Lemma 2.5 follows by using the same argument as in the proof of Theorem
1.2, [37] in that one can replace the L p-norm by the L p,r -norm. ��

Now we have the tools to prove Theorem 1.8.
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Proof of Theorem 1.8 We first show that

Mp,r
ϕ (X) ↪→ Bp′,r ′

ϕ (X)′ . (2.7)

In fact, thanks to Proposition 2.4, we observe that operator T f : Bp′,r ′
ϕ (X) → R

defined by

T f (g) =
∫

X
f (x)g(x) dx

is linear and continuous.
Now, we define T ( f ) = T f for f ∈ Mp,r

ϕ (X). It is obvious that T : Mp,r
ϕ (X) →

Bp′,r ′
ϕ (X)′ is a linear operator. We claim that T is injective.
To obtain the result, it suffices to show that if T ( f ) = 0, then f (x) = 0 for a.e

x ∈ X . We argue with a contradiction that there is R0 > 0 such that f (x) �= 0 for a.e.
x ∈ BR0 = B(0, R0).

Since f ∈ Mp,r
ϕ (X), thenwe have f ∈ L p,r (BR0). By duality, there exits a function

ḡ ∈ L p′,r ′
(BR0), ḡ �= 0 such that

0 < ‖ f ‖L p′,r ′
(BR0 )

=
∣
∣
∣
∣
∣

∫

BR0

f (x)ḡ(x) dx

∣
∣
∣
∣
∣
. (2.8)

Put

g(x) = ḡ(x)1BR0

μ(BR0)
1
p ϕ(R0)

‖ḡ‖L p′,r ′
(BR0 )

.

It is clear that g is a (p′, r ′, ϕ)-block. By this fact and (2.8), we obtain

|T ( f )(g)| =
∣
∣
∣
∣
∣

∫

BR0

f (x)g(x) dx

∣
∣
∣
∣
∣
> 0,

which contradict to T ( f ) = 0 in Bp′,r ′
ϕ (X)′.

Thus, we conclude that linear operator T : Mp,r
ϕ (X) → Bp′,r ′

ϕ (X)′ is injective. As
a result, (2.7) follows.

Therefore, it remains to prove that

(
Bp′,r ′

ϕ (X)
)′

↪→ Mp,r
ϕ (X) . (2.9)
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209 Page 14 of 38 T. T. Dung et al.

Indeed, let F ∈
(
Bp′,r ′

ϕ (X)
)′
, and let B be a ball in X . By Proposition 2.3, we have

F1B ∈ L p′,r ′
(X). Thus, by the duality, there exists fB ∈ L p,r (X) such that

〈F1B, g〉L p′,r ′
,L p,r =

∫

X
fB(x)g(x) dμ(x), ∀g ∈ L p′,r ′

(X) . (2.10)

Let X = ⋃
k≥1 Bk , with Bk � Bk+1 for all k ≥ 1. Then, we define f (x) = fBk if

x ∈ Bk , which makes sense by (2.10). This implies that fBk (x) = fBk+1(x) for a.e.
x ∈ Bk .

Thus, it suffices to prove that f ∈ Mp,r
ϕ (X). Indeed, for any ball Bt ⊂ X , there

exists k0 ≥ 1 such that Bt ⊂ Bk0 ; and by the duality argument we have

‖ f ‖L p,r (Bt )

μ (Bt )
1/p ϕ(t)

= 1

μ (Bt )
1/p ϕ(t)

sup
‖g‖

L p′,r ′
(Bt )

=1

∣
∣
∣
∣

∫

Bt

f (x)g(x) dμ(x)

∣
∣
∣
∣

= sup
‖g‖

L p′,r ′
(Bt )

=1

∫

Bk0

fBk0

g1Bt

μ (Bt )
1/p ϕ(t)

dμ(x) .

Obviously,
g1Bt

μ(Bt )
1/pϕ(t)

is a (p′, r ′, ϕ)-block. Thus, it follows from the last inequality

that

‖ f ‖L p,r (Bt )

μ (Bt )
1/p ϕ(t)

≤ ‖F‖
(Bp′,r ′

ϕ )′

∥
∥
∥
∥

g1Bt

μ (Bt )
1/p ϕ(t)

∥
∥
∥
∥
Bp′,r ′

ϕ

≤ ‖F‖
(Bp′,r ′

ϕ )′ .

Therefore,

‖ f ‖Mp,r
ϕ

≤ ‖F‖
(Bp′,r ′

ϕ )′ .

This implies that Mp,r
ϕ (X) = Bp′,r ′

ϕ (X)′.
Next, we prove (1.11).

It follows from (1.10) thatBp′,r ′
ϕ (X) ↪→ Mp,r

ϕ (X)′ = Bp′,r ′
ϕ (X)′′. Thus, it is enough

to show that
Mp,r

ϕ (X)′ ↪→ Bp′,r ′
ϕ (X) . (2.11)

To obtain (2.11), we mimic the proof of Theorem 4.1, [37]. Assume that a measurable
function f on X satisfies

sup

{∣
∣
∣
∣

∫

X
f (x)g(x) dx

∣
∣
∣
∣ : ‖g‖Mp,r

ϕ
≤ 1

}

≤ 1 . (2.12)

It is obvious that | f (x)| < ∞ for a.e. x ∈ X . Assume without loss of generality
that f ≥ 0 in X , if not we write f = f+ − f−, with f+ = max{ f , 0}, and f− =
max{− f , 0}; and we treat each of them.

For every k ≥ 1, let us set Bk = B(z0, k) for some z0 ∈ X , and let fk(x) :=
min{ f (x), k}1Bk (x). Note that fk(x) ↑ f (x) for a.e. x ∈ X . Since fk ∈ L∞

c (X)
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(the space of bounded functions with compact support in X ), then it is clear that

fk ∈ Bp′,r ′
ϕ (X).

Since Mp,r
ϕ (X) = Bp′,r ′

ϕ (X)′, and by (2.12), we apply the Hahn–Banach theorem
to obtain

‖ fk‖Bp′,r ′
ϕ

= sup
‖g‖Mp,r

ϕ
≤1

∣
∣
∣
∣

∫

X
fk(x)g(x) dx

∣
∣
∣
∣ ≤ sup

‖g‖Mp,r
ϕ

≤1

∣
∣
∣
∣

∫

X
f (x)g(x) dx

∣
∣
∣
∣ ≤ 1 .

Thanks to Lemma 2.5, we deduce ‖ f ‖
Bp′,r ′

ϕ
≤ 1.

By duality and (2.12), we obtain ‖ f ‖(Mp,r
ϕ )′ ≥ ‖ f ‖

Bp′,r ′
ϕ

, which yields (2.11).

Hence, we have completed the proof of Theorem 1.8. ��

3 Several Lemmas

This part is devoted to the study of the Mp,r
ϕ (X)-bounds, and the Bp,r

ϕ (X)-bounds of
themaximal function, the sharp function, and the linear Calderón–Zygmund operators.

Let us first recall the definition of the Hardy–Littlewood maximal function.
For any q > 0, we define

Mq f (x) = sup
x∈B

{
1

|B| 1q
‖ f ‖Lq (B)

}

,

for any x ∈ X , where the supremum is taken over all balls B containing x .
In brief, we denote M = M1.

Lemma 3.1 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Then, for any
0 < q < p there is a positive constant C = C(q, p, r) such that

∥
∥Mq( f )

∥
∥
Mp,r

ϕ
≤ C‖ f ‖Mp,r

ϕ
. (3.1)

Proof of Lemma 3.1 Let Bt = B(x, t) be a ball in X , and we write

f = f 1Bt + f 1Bc
t

:= f1 + f2.

So,

Mq( f )(x) ≤ Mq( f1)(x) + Mq( f2)(x), ∀x ∈ X .

We first estimate Mq( f1). Since Mq maps L p,r (X) → L p,r (X) (see e.g. [11]),
then we get
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209 Page 16 of 38 T. T. Dung et al.

1

μ(Bt )
1
p ϕ(t)

‖Mq( f1)‖L p,r (Bt ) � 1

μ(Bt )
1
p ϕ(t)

‖ f1‖L p,r = 1

μ(Bt )
1
p ϕ(t)

‖ f ‖L p,r (Bt )

≤ ‖ f ‖Mp,r
ϕ

,

which yields
‖Mq( f1)‖Mp,r

ϕ
� ‖ f ‖Mp,r

ϕ
. (3.2)

Next, since f2 = 0 in Bt , then we observe that for any z ∈ Bt/2,

Mq( f2)(z) ≤ sup
z∈Bδ,δ>t/8

(
1

μ (Bδ)

∫

Bδ

| f (y)|q dμ(y)

)1/q

.

Applying Hölder’s inequality in Lorentz spaces yields

Mq( f2)(z) � sup
z∈Bδ,δ>t/8

{
μ (Bδ)

−1/q ‖ f ‖L p,r (Bδ) μ (Bδ)
1/q−1/p

}

� sup
z∈Bδ,δ>t/8

{
μ (Bδ)

−1/p ‖ f ‖L p,r (Bδ)

}

� sup
z∈Bδ,δ>t/8

{
ϕ(δ) ‖ f ‖Mp,r

ϕ

}
≤ ϕ(t/8) ‖ f ‖Mp,r

ϕ
.

Note that the last inequality follows from the monotonicity of ϕ(t).
Then, we obtain

∥
∥Mq( f2)

∥
∥

L p,r (Bt/8)
� μ

(
Bt/8

) 1
p ϕ(t/8) ‖ f ‖Mp,r

ϕ
.

This implies that ∥
∥Mq( f2)

∥
∥
Mp,r

ϕ
� ‖ f ‖Mp,r

ϕ
. (3.3)

By combining (3.2) and (3.3), we obtain Lemma 3.1. ��
As a consequence of Lemma 3.1, and duality, we obtain the Bp′,r ′

ϕ -bound for M.

Corollary 3.2 Assume hypotheses as in Lemma 3.1. Then, Mq maps Bp′,r ′
ϕ (X) →

Bp′,r ′
ϕ (X) continuously.

Proof of Corollary 3.2 For any f ∈ Bp′,r ′
ϕ (X), we can assume that f ≥ 0.

Thanks to Lemma 3.1, applying the Fefferman–Stein inequality (see [21]), and
Hölder’s inequality yields

∫

X
Mq( f )(x)g(x) dμ(x) �

∫

X
f (x)Mq(g)(x) dμ(x)

� ‖ f ‖
Bp′,r ′

ϕ
‖Mq(g)‖Mp,r

ϕ

� ‖ f ‖
Bp′,r ′

ϕ
‖g‖Mp,r

ϕ
.
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By duality, we obtain from the last inequality that

∥
∥Mq( f )

∥
∥
Bp′,r ′

ϕ
= sup

‖g‖Mp,r
ϕ

≤1

∫

X
Mq( f )(x)g(x) dμ(x)

� sup
‖g‖Mp,r

ϕ
≤1

‖ f ‖
Bp′,r ′

ϕ
‖g‖Mp,r

ϕ
= ‖ f ‖

Bp′,r ′
ϕ

.

Hence, we get the conclusion. ��
Next we prove the Mp,r

ϕ -bound for the sharp maximal function, introduced by
Fefferman–Stein, [21]

M
( f )(x) = sup
x∈B

1

μ(B)

∫

B
| f (y) − fB | dμ(y),

where the supremum is taken over all balls B containing x .

Lemma 3.3 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Then, for any
f ∈ Mp,r

ϕ (X), we have that

‖ f ‖Mp,r
ϕ

� ‖M
( f )‖Mp,r
ϕ

. (3.4)

Proof of Lemma 3.3 The conclusion will follow by way of the Fefferman–Stein
inequality and duality. Indeed, there is a constant C = C(X) > 0 such that, for
every f ∈ Mp,r

ϕ (X), and every function g ∈ L1
loc(X), we have (see e.g. [27])

∫

X
| f (x)g(x)| dμ(x) ≤ C

∫

X
M
( f )(x)M(g)(x) dμ(x) .

Thanks to duality and Corollary 3.2, we obtain

‖ f ‖Mp,r
ϕ

= sup
‖g‖

Bp′,r ′
ϕ

=1

∣
∣
∣
∣

∫

f (x)g(x) dμ(x)

∣
∣
∣
∣ ≤ sup

‖g‖
Bp′,r ′

ϕ

=1
C

∫

M
( f )(x)M(g)(x) dμ(x)

� sup
‖g‖

Bp′,r ′
ϕ

=1

∥
∥M
( f )

∥
∥
Mp,r

ϕ
‖M(g)‖

Bp′,r ′
ϕ

� sup
‖g‖

Bp′,r ′
ϕ

=1

∥
∥M
( f )

∥
∥
Mp,r

ϕ
‖g‖

Bp′,r ′
ϕ

= ∥
∥M
( f )

∥
∥
Mp,r

ϕ
.

Then, we obtain Lemma 3.3. ��
Remark 3.4 Byduality, andFefferman–Stein’s inequality, the conclusionofLemma3.3
also holds for Bp,r

ϕ (X) in place of Mp,r
ϕ (X).

Thanks to Lemmas 3.1 and 3.3, we prove the Mp,r
ϕ -bound for linear Calderón–

Zygmund operators as follows.
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Lemma 3.5 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Let T be a linear
Calderón–Zygmund operator. Then, T maps Mp,r

ϕ (X) → Mp,r
ϕ (X). Furthermore, we

have
‖T ( f )‖Mp,r

ϕ
� ‖ f ‖Mp,r

ϕ
. (3.5)

Proof of Lemma 3.5 Let us recall the following pointwise estimate (see e.g. [15]).
For any q > 1, there exists a constant C > 0 such that

M
 (T ( f )) (x) ≤ CMq( f )(x), for x ∈ X . (3.6)

Thanks to Lemma 3.3, for any q ∈ (1, p) we obtain

‖T ( f )‖Mp,r
ϕ

�
∥
∥M
 (T ( f ))

∥
∥
Mp,r

ϕ
�

∥
∥Mq( f )

∥
∥
Mp,r

ϕ
� ‖ f ‖Mp,r

ϕ
.

This yields the proof of Lemma 3.5. ��
Remark 3.6 By duality, (3.5) also holds for Bp′,r ′

ϕ (X) in place of Mp,r
ϕ (X).

Our next result is an inequality of Minkowski type inMp,r
ϕ (X), used several times

in the following.

Lemma 3.7 Same hypotheses as in Lemma 3.5. Then, we have

∥
∥
∥
∥

∫

f ( · , y) dμ(y)

∥
∥
∥
∥
Mp,r

ϕ

≤
∫

‖ f ( · , y)‖Mp,r
ϕ

dμ(y) . (3.7)

Proof of Lemma 3.7 Applying Theorem 1.8 and Proposition 2.4 yields

∥
∥
∥
∥

∫

f (., y) dμ(y)

∥
∥
∥
∥
Mp,r

ϕ

= sup
‖g‖

Bp′,r ′
ϕ

≤1

∣
∣
∣
∣

∫ (∫

f (x, y) dμ(y)

)

g(x) dμ(x)

∣
∣
∣
∣

= sup
‖g‖

Bp′,r ′
ϕ

≤1

∫ ∫

| f (x, y)g(x)| dμ(x) dμ(y)

≤ sup
‖g‖

Bp′,r ′
ϕ

≤1

∫

‖g‖
Bp′,r ′

ϕ
‖ f (., y)‖Mp,r

ϕ
dμ(y)

=
∫

‖ f (., y)‖Mp,r
ϕ

dμ(y) .

Hence, we get Lemma 3.7. ��

4 Hardy Factorization in Morrey–Lorentz Spaces

Proof of Theorem 1.13 The proof follows by way of the following lemmas.
The first lemma is a fundamental result of H1(X) (see e.g. [25, Lemma 4.3]).
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Lemma 4.1 Let x0, y0 ∈ X be such that d(x0, y0) = Mt, for some t > 0, and
M > 10A0. If

∫

X
F(x) dμ(x) = 0, and |F(x)| ≤ 1

μ (B(x0, t))

(
1B(x0,t)(x) + 1B(y0,t)(x)

)
, ∀x ∈ R

n,

then there is a positive constant C independent of x0, y0, t, M, such that

‖F‖H1(X) ≤ C log M .

Next, we have the following result.

Lemma 4.2 If f ∈ H1(X) can be written as

f =
∑

k≥1

λkak

then, there exist {gk}k≥1, {hk}k≥1 ⊂ L∞
c (X) such that

∥
∥ak − [

gk T ∗(hk) − hk T (gk)
]∥
∥
H1 ≤ C

log M

Mη
, (4.1)

and ∑

k≥1

|λk | ‖gk‖Bp′,r ′
ϕ

‖hk‖Mp,r
ϕ

≤ C Mn‖ f ‖H1 , (4.2)

where M > 0 is sufficiently large.
Furthermore, we have

∥
∥
∥
∥
∥
∥

f −
∑

k≥1

|λk |
[
gk T ∗(hk) − hk T (gk)

]

∥
∥
∥
∥
∥
∥
H1

≤ 1

2
‖ f ‖H1 . (4.3)

Proof of Lemma 4.2 Let a be an atom, supported in B(x0, t) ⊂ X , such that

‖a‖L∞ ≤ 1

μ (B(x0, t))
, and

∫

X
a(x) dμ(x) = 0.

Let M ≥ 10 be a real number, which will be determined later, and let y0 ∈ X be such
that d(x0, y0) = Mt .

Now, we set

g(x) = 1B(y0,t)(x), and h(x) = − a(x)

T (g)(x0)
.

It is clear that these functions are in L∞
c (X). In addition, since T is homogeneous,

then we have

|T (g)(x0)| ≥ μ (B(y0, t))

μ (B(x0, Mt))
.

123



209 Page 20 of 38 T. T. Dung et al.

Thanks to Proposition 2.3, we obtain

‖g‖
Bp′,r ′

ϕ
≈ μ (B(y0, t)) ϕ(t) , (4.4)

and

‖h‖Mp,r
ϕ

=
‖a‖Mp,r

ϕ

|T (g)(x0)| ≤ μ (B(x0, Mt))

μ (B(y0, t))
‖a‖L∞‖1B(x0,t)‖Mp,r

ϕ

� μ (B(x0, Mt))

μ (B(y0, t))

1

μ (B(x0, t))

1

ϕ(t)
. (4.5)

Combining (1.3), (4.4), and (4.5) yields

‖g‖
Bp′,r ′

ϕ
‖h‖Mp,r

ϕ
≤ C

μ (B(x0, Mt))

μ (B(x0, t))
≤ C Mn , (4.6)

where C > 0 only depends on p.
Next, we show that

∥
∥a − [

gT ∗(h) − hT (g)
]∥
∥
H1 ≤ C

log M

Mη
. (4.7)

Put

F = a − [
gT ∗(h) − hT (g)

]
.

Then, we have

|F(x)| ≤ |a(x) + hT (g)| + ∣
∣gT ∗(h)

∣
∣

=
∣
∣
∣
∣
a(x) [T (g)(x0) − T (g)(x)]

T (g)(x0)

∣
∣
∣
∣ + ∣

∣gT ∗(h)
∣
∣ := J1(x) + J2(x) . (4.8)

We first consider J1(x). Since supp(a) ⊂ B(x0, t), then J1(x) = 0 if x /∈ B(x0, t).
And, for any x ∈ B(x0, t) we use the smoothness of K in (1.8) and the homogeneity
of T in order to obtain

|J1(x)| ≤ μ (B(x0, Mt))

μ (B(y0, t))
‖a‖L∞

∫

B(y0,t)
|K (x0, y) − K (x, y)| dμ(y)

≤ C
μ (B(x0, Mt))

μ (B(y0, t))

1

μ (B(x0, t))

∫

B(y0,t)

1

V (x0, y)

(
d(x0, x)

d(x0, y)

)η

dμ(y)

≤ C
μ (B(x0, Mt))

μ (B(y0, t))

1

μ (B(x0, t))

μ (B(y0, t))

μ (B(x0, d(x0, y0)))
M−η
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≤ C M−η μ (B(x0, Mt))

μ
(
B(x0,

1
2 Mt)

)
1

μ (B(x0, t))

≤ C M−η 1

μ (B(x0, t))
. (4.9)

Note that the last inequality follows from the doubling property in (1.2).
For J2(x), by using the cancellation of a(x), and the fact supp(a) ⊂ B(x0, t), we

get that

|J2| ≤ 1B(y0,t)(x)

∣
∣
∣
∣

∫

B(x0,t)
K (z, x)

( −a(z)

T (g)(x0)

)

dμ(z)

∣
∣
∣
∣

= 1B(y0,t)(x)

∣
∣
∣
∣

∫

B(x0,t)
[K (x0, x) − K (z, x)]

(
a(z)

T (g)(x0)

)

dμ(z)

∣
∣
∣
∣ .

Analogously to the proof of J1, we also obtain

|J2(x)| ≤ C M−η

μ (B(x0, t))
1B(y0,t) . (4.10)

Combining (4.8), (4.9), and (4.10) yields

|F(x)| ≤ C M−η

μ (B(x0, t))

(
1B(x0,t)(x) + 1B(y0,t)(x)

)
. (4.11)

Thus, we obtain (4.7) by applying Lemma 4.1 to F(x).
Next, we apply (4.7) to a = ak , for k ≥ 1. Then, there exist functions

{gk}k≥1, {hk}k≥1 ⊂ L∞
c (X), such that

∥
∥ak − [

gk T ∗(hk) − hk T (gk)
]∥
∥
H1 ≤ C

log M

Mη
.

With this inequality noted, we get

∥
∥
∥
∥
∥
∥

f −
∑

k≥1

λk
[
gk T ∗(hk) − hk T (gk)

]

∥
∥
∥
∥
∥
∥
H1

≤
∑

k≥1

|λk |
∥
∥ak − [

gk T ∗(hk) − hk T (gk)
]∥
∥
H1

≤ C
log M

Mη

∑

k≥1

|λk | ≤ 1

2
‖ f ‖H1 , (4.12)

provided that M is large enough.
This yields the proof of Lemma 4.2. ��
Now we can suppose that f ∈ H1(X) can be written

f =
∑

k≥1

λk,1ak,1,
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with {λk,1}k≥1 ∈ l1, and {ak,1}k≥1 are atoms.
Thanks to Lemma 4.2 and (4.6), there exist functions {gk,1}, {hk,1} ⊂ L∞

c (X) such
that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

k≥1

∣
∣λk,1

∣
∣
∥
∥gk,1

∥
∥
Bp′,r ′

ϕ

∥
∥hk,1

∥
∥
Mp,r

ϕ
≤ C Mn‖ f ‖H1 ,

∥
∥
∥
∥
∥
∥

f −
∑

k≥1

λk,1
[
gk,1T ∗(hk,1) − hk,1T (gk,1)

]

∥
∥
∥
∥
∥
∥
H1

≤ 1

2
‖ f ‖H1 .

(4.13)

Put

f1 = f −
∑

k≥1

λk,1
[
gk,1T ∗(hk,1) − hk,1T (gk,1)

]
.

Since f1 ∈ H1(X), then we can decompose

f1 =
∑

k≥1

λk,2ak,2,

where {λk,2}k≥1 ∈ l1, and {ak,2}k≥1 are atoms.
By (4.13), and by applying Lemma 4.2 to f1, there exist {gk,2}k≥1, {hk,2}k≥1 ⊂

L∞
c (X), such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

k≥1

∣
∣λk,2

∣
∣
∥
∥gk,2

∥
∥
Bp′,r ′

ϕ

∥
∥hk,2

∥
∥
Mp,r

ϕ
≤ C Mn‖ f1‖H1 ≤ C Mn 1

2
‖ f ‖H1

∥
∥
∥
∥
∥
∥

f1 −
∑

k≥1

λk,2
[
gk,2T ∗(hk,2) − hk,2T (gk,2)

]

∥
∥
∥
∥
∥
∥
H1

≤ 1

2
‖ f1‖H1 ≤ 1

22
‖ f ‖H1 .

Similarly, we can apply the above argument to

f2 = f1 −
∑

k≥1

λk,2
[
gk,2T ∗(hk,2) − hk,2T (gk,2)

]

= f −
∑

k≥1

λk,1
[
gk,1T ∗(hk,1) − hk,1T (gk,1)

] −
∑

k≥1

λk,2
[
gk,2T ∗(hk,2) − hk,2T (gk,2)

]
.

By induction, we can construct sequence {λk, j } ∈ l1, and functions {gk, j }, {hk, j } ⊂
L∞

c (X), such that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f =
N∑

j=1

∑

k≥1

λk, j
[
gk, j T

∗(hk, j ) − hk, j T (gk, j )
] + fN ,

N∑

j=1

∑

k≥1

∣
∣λk, j

∣
∣
∥
∥gk, j

∥
∥
Bp′,r ′

ϕ

∥
∥hk, j

∥
∥
Mp,r

ϕ
≤ C Mn

N∑

j=1

1

2 j−1 ‖ f ‖H1 ,

‖ fN ‖H1 ≤ 1
2N ‖ f ‖H1 ,

which yields the desired result when N → ∞.
Thus, we complete the proof of Theorem 1.13. ��

Proof of Corollary 1.15 To obtain the upper bound of [b, T ], we recall the following
result (see e.g. [15, Lemma 1]).

Lemma 4.3 Let b ∈ BMO(X). Then, for any 1 < q < p, there exists a positive
constant C such that

M
 ([b, T ]( f )) (x) ≤ C‖b‖BMO
(
Mq( f )(x) + Mq (T ( f )) (x)

)
, for x ∈ X .

(4.14)

By Lemmas 3.1, 3.3, 3.5, and 4.3, we obtain

‖[b, T ]( f )‖Mp,r
ϕ

�
∥
∥M
 ([b, T ]( f ))

∥
∥
Mp,r

ϕ
� ‖b‖BMO

∥
∥Mq( f ) + Mq (T ( f ))

∥
∥
Mp,r

ϕ

� ‖b‖BMO

(∥
∥Mq( f )

∥
∥
Mp,r

ϕ
+ ∥

∥Mq (T ( f ))
∥
∥
Mp,r

ϕ

)

� ‖b‖BMO

(
‖ f ‖Mp,r

ϕ
+ ‖T ( f )‖Mp,r

ϕ

)
� ‖b‖BMO ‖ f ‖Mp,r

ϕ
.

(4.15)

Hence, we get the desired result.
Now, we prove the lower bound of [b, T ]. To obtain the result, we utilize the Hardy

factorization in Theorem 1.13, and the duality between BMO(X) and H1(X).
As a matter of fact, H1(X) ∩ L∞

c (X) is dense in H1(X).
Next, for every L > 0, let us put

bL(x) = b(x)1B(x0,L)(x).

For every f ∈ H1(X) ∩ L∞
c (X), it follows from Theorem 1.13 that there exist

sequences {λk, j } ∈ l1 and functions gk, j , hk, j ∈ L∞
c (X), such that

f =
∞∑

k=1

∞∑

j=1

λk, j
(
gk, j T

∗(hk, j ) − hk, j T (gk, j )
)

.

Furthermore, we have

‖ f ‖H1 ≈
∞∑

k=1

∞∑

j=1

∣
∣λk, j

∣
∣
∥
∥gk, j

∥
∥
Bp′,r ′

ϕ

∥
∥hk, j

∥
∥
Mp,r

ϕ
.
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Now, since bL → b in L1
loc(X) as L → ∞, and f ∈ H1(X) ∩ L∞

c (X), then we
have

lim
L→∞〈bL , f 〉 = 〈b, f 〉,

where we denote 〈 f , g〉 = ∫
f (x)g(x) dμ(x).

Thanks to the facts gk, j T ∗(hk, j )−hk, j T (gk, j ) ∈ H1(X) and supp(gk, j T ∗(hk, j )−
hk, j T (gk, j )) � X , then we get

〈b, f 〉 = lim
L→∞〈bL , f 〉 = lim

L→∞

〈

bL ,

∞∑

k=1

∞∑

j=1

λk, j
(
gk, j T

∗(hk, j ) − hk, j T (gk, j )
)
〉

=
∞∑

k=1

∞∑

j=1

λk, j lim
L→∞

〈
bL , gk, j T

∗(hk, j ) − hk, j T (gk, j )
〉

=
∞∑

k=1

∞∑

j=1

λk, j
〈
b, gk, j T

∗(hk, j ) − hk, j T (gk, j )
〉

=
∞∑

k=1

∞∑

j=1

λk, j
〈[b, T ](gk, j ), hk, j

〉
. (4.16)

By Proposition 2.4, since [b, T ] maps Bp′,r ′
ϕ (X) → Bp′,r ′

ϕ (X) (see Corollary 3.2),
then we obtain

|〈b, f 〉| ≤
∞∑

k=1

∞∑

j=1

∣
∣λk, j

∣
∣
∥
∥[b, T ](gk, j )

∥
∥
Bp′,r ′

ϕ

∥
∥hk, j

∥
∥
Mp,r

ϕ

� ‖[b, T ]‖
Bp′,r ′

ϕ →Bp′,r ′
ϕ

∞∑

k=1

∞∑

j=1

∣
∣λk, j

∣
∣
∥
∥gk, j

∥
∥
Bp′,r ′

ϕ

∥
∥hk, j

∥
∥
Mp,r

ϕ

� ‖[b, T ]‖
Bp′,r ′

ϕ →Bp′,r ′
ϕ

‖ f ‖H1 .

Therefore,

‖b‖BMO � ‖[b, T ]‖
Bp′,r ′

ϕ →Bp′,r ′
ϕ

.

This ends the proof of Corollary 1.15. ��

5 Compactness Characterization of [b, T] in Mp,r
' (X)

In the last section, we study the compactness of [b, T ] in Mp,r
ϕ (X). Then, we point

out a compactness criterion inMp,r
ϕ (X).

123



Commutators on Spaces of Homogeneous Page 25 of 38 209

Lemma 5.1 Let p ∈ (1,∞), r ∈ [1,∞], and let ϕ(t) satisfy (1.5). Assume that
(X , d, μ) is a locally compact space such that (1.15) holds, and the set G in Mp,r

ϕ (X)

satisfies the following conditions:

i) sup
f ∈G

‖ f ‖Mp,r
ϕ

< ∞ ,

i i) lim
y→0

‖ f (· + y) − f (·)‖Mp,r
ϕ

= 0 uniformly in f ∈ G,

i i i) lim
R→∞ ‖ f 1Bc

R
‖Mp,r

ϕ
= 0 uniformly in f ∈ G.

Then, G is strongly precompact set in Mp,r
ϕ (X).

Proof of Lemma 5.1 We can assume without loss of generality that 0 ∈ X .
For any τ > 0, let us define

f τ (x) = 1

μ(B(0, τ ))

∫

B(0,τ )

f (x + y) dμ(y).

Fix τ > 0, we first claim that the set { f τ : f ∈ G} is a precompact set in C
(
BR

)
.

Thanks to the Ascoli–Arzelà theorem, it is enough to show that { f τ : f ∈ G} is
bounded and equicontinuous in C

(
BR

)
.

Indeed, we have from Hölder’s inequality that

| f τ (x)| ≤ 1

μ(B(0, τ ))

∫

B(x,τ )

| f (z)| dμ(z)

� 1

μ(B(0, τ ))
‖ f ‖L p,r (B(x,τ ))μ(B(x, τ ))

1
p′

� ϕ(τ)

μ(B(x, τ ))
1
p ϕ(τ)

‖ f ‖L p,r (B(x,τ ))

≤ ϕ(τ)‖ f ‖Mp,r
ϕ

≤ Cϕ(τ) , (5.1)

uniformly in f ∈ G.
Concerning the equicontinuity, we have

| f τ (x1) − f τ (x2)| ≤ 1

μ(B(0, τ ))

∫

B(0,τ )

| f (x1 + y) − f (x2 + y)| dμ(y)

= 1

μ(B(0, τ ))

∫

B(x2,τ )

| f (z + x1 − x2) − f (z)| dμ(z)

� 1

μ(B(0, τ ))
‖ f (x1 − x2 + ·) − f (·)‖L p,r (B(x2,τ ))μ(B(x2, τ ))

1
p′

� 1

μ(B(x2, τ ))
1
p

‖ f (x1 − x2 + ·) − f (·)‖L p,r (B(x2,τ ))

≤ ϕ(τ)‖ f (x1 − x2 + ·) − f (·)‖Mp,r
ϕ

. (5.2)
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By i i), we conclude that { f τ : f ∈ G} is equicontinuous in C
(
BR

)
, so the above

claim follows.
Next, we show that

lim
τ→0

‖ f τ − f ‖Mp,r
ϕ

= 0 , (5.3)

uniformly in f ∈ G.
Indeed, applying Minkowski’s inequality yields

‖ f τ − f ‖L p,r (B(z,t))

μ(B(z, t))
1
p ϕ(t)

≤ 1

μ(B(0, τ ))

∫

B(0,τ )

‖ f (· + y) − f (·)‖L p,r (B(z,t))

μ(B(z, t))
1
p ϕ(t)

dμ(y)

≤ 1

μ(B(0, τ ))

∫

B(0,τ )

‖ f (· + y) − f (·)‖Mp,r
ϕ

dμ(y)

≤ sup
d(y,0)<τ

‖ f (· + y) − f (·)‖Mp,r
ϕ

.

This implies that

‖ f τ − f ‖Mp,r
ϕ

≤ sup
d(y,0)<τ

‖ f (· + y) − f (·)‖Mp,r
ϕ

.

With this inequality noted, (5.3) follows from i i).
Now, we prove that { f τ : f ∈ G} is relatively compact inMp,r

ϕ (X).
By i i i), for any 0 < ε < 1, there exist Rε > 0 such that for every f ∈ G

‖ f 1Bc
Rε

‖Mp,r
ϕ

< ε . (5.4)

Since { fτ : f ∈ G} is strongly precompact in C
(
BR

)
, then for every ε > 0, there

exist f 1, f 2, . . . , f m in G, with m = m(ε) ∈ N such that { f 1τ , f 2τ , . . . , f m
τ } is a finite

εϕ(Rε)-net in { fτ : f ∈ G} with respect to the norm of C
(
BR

)
.

As a result, for any f ∈ G, there exists j ∈ {1, . . . , m} such that
∥
∥
∥
∥ fτ − f j

τ

∥
∥
∥
∥

L∞(BR)

< εϕ(Rε) . (5.5)

Next, we prove that { f 1τ , f 2τ , . . . , f m
τ } is a finite ε-net of { fτ : f ∈ G} with respect

to the norm of Mp,r
ϕ (X). It is equivalent to show that

∥
∥
∥
∥ fτ − f j

τ

∥
∥
∥
∥
Mp,r

ϕ

< ε , (5.6)

where τ > 0 is small enough.
In fact, we write

fτ − f j
τ = ( fτ − f j

τ )1BRε
+ ( fτ − f j

τ )1Bc
Rε

.
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We first estimate ( fτ − f j
τ )1BRε

in theMp,r
ϕ -norm. Then, for any ball B(z, t) in X ,

we have
∥
∥
∥
∥( fτ − f j

τ )1BRε

∥
∥
∥
∥

L p,r (B(z,t))

μ (B(z, t))
1
p ϕ(t)

≤ C

∥
∥
∥
∥ fτ − f j

τ

∥
∥
∥
∥

L∞(B(z,t))
μ

(
B(z, t) ∩ BRε

) 1
p

μ (B(z, t))
1
p ϕ(t)

≤ C
εϕ(Rε) μ

(
B(z, t) ∩ BRε

) 1
p

μ (B(z, t))
1
p ϕ(t)

. (5.7)

If t ≥ Rε then it follows from (5.7) and the monotonicity of μ (B(z, t))
1
p ϕ(t) that

∥
∥
∥
∥( fτ − f j

τ )1BRε

∥
∥
∥
∥

L p,r (B(z,t))

μ (B(z, t))
1
p ϕ(t)

≤ C
εϕ(Rε) μ

(
BRε

) 1
p

μ
(
BRε

) 1
p ϕ(Rε)

≤ Cε.

Otherwise, we use the monotonicity of ϕ(t) to obtain

∥
∥
∥
∥( fτ − f j

τ )1BRε

∥
∥
∥
∥

L p,r (B(z,t))

μ (B(z, t))
1
p ϕ(t)

≤ C
εϕ(Rε) μ (B(z, t))

1
p

μ (B(z, t))
1
p ϕ(Rε)

= Cε.

By combining the two cases, we get

∥
∥
∥
∥( fτ − f j

τ )1BRε

∥
∥
∥
∥
Mp,r

ϕ

≤ Cε . (5.8)

Concerning the term ( fτ − f j
τ )1Bc

Rε
, by (5.3) and (5.4), we get

∥
∥
∥
∥

(

fτ − f j
τ

)

1Bc
Rε

∥
∥
∥
∥
Mp,r

ϕ

≤
∥
∥
∥
(

fτ − f
)
1Bc

Rε

∥
∥
∥
Mp,r

ϕ

+
∥
∥
∥

(
f − f j

)
1Bc

Rε

∥
∥
∥
Mp,r

ϕ

+
∥
∥
∥
∥

(

f j − f j
τ

)

1Bc
Rε

∥
∥
∥
∥
Mp,r

ϕ

≤ 2ε + ‖ f 1Bc
Rε

‖Mp,r
ϕ

+ ‖ f j1Bc
Rε

‖Mp,r
ϕ

≤ 4ε , (5.9)

as τ > 0 is small enough.
Thus, (5.6) follows from (5.8) and (5.9).
As a result, { fτ : f ∈ G} is relatively compact inMp,r

ϕ (X).
It suffices to show that G is relatively compact inMp,r

ϕ (X). Let { f k}k≥1 ⊂ G. Since
{ fτ : f ∈ G} is strongly compact inMp,r

ϕ (X), then there is a subsequence of { f k}k≥1

(still denoted as { f k}k≥1) such that f k
τ converges inMp,r

ϕ (X) as k → ∞.
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Then, it follows from (5.3) that

∥
∥
∥ f k − f k′∥∥

∥
Mp,r

ϕ

≤
∥
∥
∥ f k − f k

τ

∥
∥
∥
Mp,r

ϕ

+
∥
∥
∥ f k

τ − f k′
τ

∥
∥
∥
Mp,r

ϕ

+
∥
∥
∥ f k′

τ − f k′∥∥
∥
Mp,r

ϕ

≤ Cε +
∥
∥
∥ f k

τ − f k′
τ

∥
∥
∥
Mp,r

ϕ

.

Therefore, { f k}k≥1 is a Cauchy sequence in Mp,r
ϕ (X). Since Mp,r

ϕ (X) is complete,
then { f k}k≥1 converges to a function inMp,r

ϕ (X).
This puts an end to the proof of Lemma 5.1. ��

Now, we are ready to prove Theorem 1.17.

Proof of Theorem 1.17 a) Necessity: Assume that b ∈ CMO(X). Let G be a bounded
set inMp,r

ϕ (X). It is enough to show that [b, T ](G) is relatively compact inMp,r
ϕ (X).

Indeed, since b ∈ CMO(X), then for every ε > 0 there exists a function bε ∈
C∞

c (X) such that
‖b − bε‖BMO < ε .

By the triangle inequality and Corollary 1.15, we have for every f ∈ G

‖[b, T ]( f )‖Mp,r
ϕ

≤ ‖[b − bε, T ]( f )‖Mp,r
ϕ

+ ‖[bε, T ]( f )‖Mp,r
ϕ

� ‖b − bε‖BMO‖ f ‖Mp,r
ϕ

+ ‖[bε, T ]( f )‖Mp,r
ϕ

≤ Cε + ‖[bε, T ]( f )‖Mp,r
ϕ

.

With this inequality noted, it suffices to show that [bε, T ](G) is relatively compact
inMp,r

ϕ (X) for a given ε > 0 small enough.
Since G is a bounded set in Mp,r

ϕ (X), and by Theorem 1.13, then it is clear that
[bε, T ](G) satisfies (i).

Next, we show that [bε, T ](G) also satisfies (i i). Indeed, suppose that supp(bε) ⊂
BRε , for some Rε > 10. Then, for any f ∈ G, and for x ∈ Bc

R , with R > 10A0Rε, we
observe that d(x, y) ≈ d(x, 0) for any y ∈ BRε .

Thus, for any x ∈ Bc
R we have

|[bε, T ]( f )(x)| = |T (b f )(x)| ≤ C0‖bε‖L∞
∫

B(y,Rε)

| f (y)|
V (x, y)

dμ(y)

� ‖bε‖L∞

μ (B(x, R − Rε))

∫

B(y,Rε)

| f (y)| dμ(y)

≤ ‖bε‖L∞

μ
(
B(x, 1

2 R)
)

∫

B(x,Rε)

| f (x − w)| dμ(w) .

(5.10)

123



Commutators on Spaces of Homogeneous Page 29 of 38 209

For every ball Bt = B(x0, t) in X , by (5.10) and Minkowski’s inequality, we obtain

∥
∥
∥[bε, T ]( f )1Bc

R

∥
∥
∥

L p,r (Bt )

μ(Bt )
1
p ϕ(t)

� ‖bε‖L∞

μ(Bt )
1
p ϕ(t)

1

μ
(
B(x, 1

2 R)
)

∫

B(x,Rε)

‖ f (· − w)‖L p,r (Bt ) dμ(w)

� ‖bε‖L∞

μ
(
B(x, 1

2 R)
)

∫

B(x,Rε)

‖ f ‖L p,r (B(x0−w,t))

μ (B(x0 − w, t))
1
p ϕ(t)

dμ(w)

� ‖bε‖L∞

μ
(
B(x, 1

2 R)
)

∫

B(x,Rε)

‖ f ‖Mp,r
ϕ

dμ(w)

� ‖bε‖L∞
μ (B(x, Rε))

μ
(
B(x, 1

2 R)
)‖ f ‖Mp,r

ϕ
� ‖bε‖L∞

μ (B(x, Rε))

μ
(
B(x, 1

2 R)
) ,

uniformly in f ∈ G.
This implies that

∥
∥
∥[bε, T ]( f )1Bc

R

∥
∥
∥
Mp,r

ϕ

� ‖bε‖L∞
μ (B(x, Rε))

μ
(
B(x, 1

2 R)
) , ∀ f ∈ G.

Thus,
∥
∥
∥[bε, T ]( f )1Bc

R

∥
∥
∥
Mp,r

ϕ

→ 0 when R → ∞ uniformly in f ∈ G. In other words,
[bε, T ](G) verifies (i i i).

It remains to prove the equicontinuity of [bε, T ]. In fact, we show that for every
δ > 0, if d(z, 0) is sufficiently small (merely depending on δ), then

‖[bε, T ]( f )(· + z) − [bε, T ]( f )(·)‖Mp,r
ϕ

≤ Cδη , (5.11)

uniformly in f ∈ G, where the constant C > 0 is independent of f , δ, d(z, 0).
To obtain the desired result, we recall the maximal operator of T , defined by

T ( f )(x) = sup
τ>0

|Tτ ( f )(x)| , (5.12)

where Tτ , the truncated operator of T , is

Tτ ( f )(x) =
∫

{d(x,y)>τ }
K (x, y) f (y) dμ(y) . (5.13)

For convenience, we recall here Cotlar’s inequality (see [39, Lemma 6.1]). That is
for all l > 0,

T ( f )(x) ≤ C [Ml (T ( f )) (x) + M( f )(x)] . (5.14)
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Now, for any x ∈ X we express

[bε, T ]( f )(x + z) − [bε, T ]( f )(x) =
∫

X
(bε(y) − bε(x + z)) K (x + z, y) f (y) dμ(y)

−
∫

X
(bε(y) − bε(x)) K (x, y) f (y) dμ(y)

=
∫

d(x,y)>δ−1d(z,0)
(bε(x) − bε(x + z)) K (x, y) f (y) dμ(y)

+
∫

d(x,y)>δ−1d(z,0)
(bε(y) − bε(x + z)) [K (x + z, y) − K (x, y)] f (y) dμ(y)

+
∫

d(x,y)≤δ−1d(z,0)
(bε(x) − bε(y)) K (x, y) f (y) dμ(y)

+
∫

d(x,y)≤δ−1d(z,0)
(bε(y) − bε(x + z)) K (x + z, y) f (y) dμ(y)

:= I1 + I2 + I3 + I4.

We first estimate I1.

|I1| ≤ |bε(x + z) − bε(x)|
∣
∣
∣
∣

∫

d(x,y)>δ−1d(z,0)
K (x, y) f (y) dμ(y)

∣
∣
∣
∣

≤ |bε(x + z) − bε(x)| T ( f )(x) .

Since bε is uniformly continuous on X , then we deduce from the last inequality that

|I1| ≤ δT ( f )(x),

as d(z, 0) → 0.
Applying Cotlar’s inequality yields

‖I1‖Mp,r
ϕ

≤ δ ‖T ( f )‖Mp,r
ϕ

� δ ‖ f ‖Mp,r
ϕ

. (5.15)

For I2, we use the smoothness of kernel K , (1.14), and the doubling property of μ

in order to get

|I2| � ‖bε‖L∞
∫

d(x,y)>δ−1d(z,0)

1

V (x, y)

(
d(x + z, x)

d(x, y)

)η

| f (y)| dμ(y)

= d(x + z, x)η‖bε‖L∞
∫

d(x,y)>δ−1d(z,0)

1

μ (B(x, d(x, y))) d(x, y)η
| f (y)| dμ(y)

≤ d(x + z, x)η‖bε‖L∞
∑

k≥0

2−kδηd(z, 0)−η

∫

Dk+1\Dk

1

μ (Dk)
| f (y)| dμ(y)

≤ d(x + z, x)η

d(z, 0)η
‖bε‖L∞

∑

k≥0

2−kδη μ (Dk+1)

μ (Dk)

1

μ (Dk+1)

∫

Dk+1

| f (y)| dμ(y)
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� ‖bε‖L∞
∑

k≥0

2−kδηCμ M( f )(x)

� δη‖bε‖L∞M( f )(x) ,

where Dk = B
(
x, 2kδ−1d(z, 0)

)
, k ≥ 0.

Then, we get from the last inequality that

‖I2‖Mp,r
ϕ

� δη‖bε‖L∞‖M( f )‖Mp,r
ϕ

� δη‖bε‖L∞‖ f ‖Mp,r
ϕ

. (5.16)

Next, we estimate I3. For any k ≥ 0, let us set Bk = B
(
x, δ−12−kd(z, 0)

)
. Then,

it follows from the size condition of K that

|I3| ≤ C‖∇bε‖L∞
∫

d(x,y)≤δ−1d(z,0)

d(x, y)

μ (B(x, d(x, y)))
| f (y)| dμ(y)

� ‖∇bε‖L∞
∑

k≥0

2−kδ−1d(z, 0)

μ (Bk+1)

∫

Bk\Bk+1

| f (y)| dμ(y)

≤ δ−1d(z, 0)‖∇bε‖L∞
∑

k≥0

2−k μ (Bk)

μ (Bk+1)

1

μ (Bk)

∫

Bk

| f (y)| dμ(y)

≤ δ−1d(z, 0)‖∇bε‖L∞
∑

k≥0

Cμ2
−kM( f )(x)

� δ‖∇bε‖L∞M( f )(x) ,

provided that d(z, 0) < δ2.
With the last inequality noted, it follows from theMp,r

ϕ -bound of operatorM that

‖I3‖Mp,r
ϕ

� δ‖∇bε‖L∞‖M( f )‖Mp,r
ϕ

� δ‖∇bε‖L∞‖ f ‖Mp,r
ϕ

. (5.17)

Finally, we treat I4. Since supp(bε) ⊂ B(0, Rε), then it is sufficient to consider
x ∈ B(0, 2Rε) when z → 0.

Thanks to the quasi-triangle inequality (1.1), we get

d(x + z, y) ≤ A0 (d(x + z, x) + d(x, y))) ≤ 2δ,

when z → 0, for all d(x, y) < δ.
Then,

|I4| ≤ C‖∇bε‖L∞
∫

d(x,y)<δ−1d(z,0)

d(x + z, y)

μ (B(x + z, d(x + z, y)))
| f (y)| dμ(y)

≤ C‖∇bε‖L∞
∫

{d(x+z,y)<2δ}
d(x + z, x)

μ (B(x + z, d(x + z, y)))
| f (y)| dμ(y) .
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By arguing as in I3, we also obtain

‖I4‖Mp,r
ϕ

� δ‖∇bε‖L∞‖ f ‖Mp,r
ϕ

. (5.18)

Combining (5.15), (5.16), (5.17), and (5.18) yields

‖[bε, T ]( f )(x + z) − [bε, T ]( f )(x)‖Mp,r
ϕ

� δ‖∇bε‖L∞‖ f ‖Mp,r
ϕ

uniformly in f ∈ G. Therefore, [b, T ] satisfies i i).
Thanks to Lemma 5.1, we conclude that [b, T ] is a compact operator onMp,r

ϕ (X).
b) Sufficiency: Suppose that T is homogeneous, and [b, T ] is a compact operator

onMp,r
ϕ (X). Thanks to Corollary 1.15, we have that b ∈ BMO(X).

Next, we show that b ∈ CMO(X). To obtain the result, we need a characterization
of a function in CMO(X) (see, e.g., [40]).

Lemma 5.2 A function b ∈ CMO(X) if and only if b satisfies the following three
conditions.

(i) lim
R→∞ sup

Bl , l>R

1

μ(Bl)

∫

Bl

|b(z) − bBl | dμ(z) = 0,

(i i) lim
R→∞ sup

{Bl ,Bl⊂B(0,R)c}
1

μ(Bl)

∫

Bl

|b(z) − bBl | dμ(z) = 0,

(i i i) lim
δ→0

sup
Bl , l<δ

1

μ(Bl)

∫

Bl

|b(z) − bBl | dμ(z) = 0.

We also need the following result for technical reasons.

Lemma 5.3 There exists a positive constant M ≥ 10A0, such that for any ball
B(x0, t) in X, there is a ball B(y0, t), d(x0, y0) = Mt; and for any x ∈ B(x0, t),
T

(
1B(y0,t)

)
(x) does not change sign and

μ (B(y0, t))

μ (B(x0, Mt))
�

∣
∣T

(
1B(y0,t)

)
(x)

∣
∣ . (5.19)

Proof of Lemma 5.3 Thanks to the smoothness of K , we have

∣
∣T

(
1B(y0,t)

)
(x) − T

(
1B(y0,t)

)
(x0)

∣
∣ ≤

∫

B(y0,t)
|K (x, y) − K (x0, y)| dμ(y)

≤ C
∫

B(y0,t)

1

V (x0, y)

d(x, x0)η

d(x0, y)η
dμ(y)

≤ C
∫

B(y0,t)

1

μ
(
B

(
x0,

Mt
2

))
tη

(Mt)η
dμ(y)

≤ C M−η μ (B(y0, t))

μ
(
B

(
x0,

Mt
2

))

123



Commutators on Spaces of Homogeneous Page 33 of 38 209

= C M−η μ (B(y0, t))

μ (B(x0, Mt))

μ (B(x0, Mt))

μ
(
B

(
x0,

Mt
2

))

≤ CCμ M−η μ (B(y0, t))

μ (B(x0, Mt))
. (5.20)

If T (1B(y0,t))(x0) > 0, then it follows from the homogeneity of T , the triangle
inequality, and (5.20) that

T (1B(y0,t))(x) ≥ T (1B(y0,t))(x0) − CCμM−η μ (B(y0, t))

μ (B(x0, Mt))

≥ μ (B(y0, t))

μ (B(x0, Mt))
− CCμM−η μ (B(y0, t))

μ (B(x0, Mt))

� μ (B(y0, t))

μ (B(x0, Mt))

provided that M is large enough.
By the same argument, we also obtain the conclusion if T (1B(y0,R0))(x0) < 0.
This puts an end to the proof of Lemma 5.3. ��
Now, we demonstrate that b ∈ CMO(X). Seeking a contradiction, we assume that

b /∈ CMO(X). Therefore, b violates (i), (i i), and (i i i) in Lemma 5.2. We consider
these cases orderly.

Case 1. Suppose that b violates (i). Then, there exists a sequence of balls
{Bk = B(xk, Rk)}k≥1 such that Rk → ∞ as k → ∞, and

1

μ(Bk)

∫

Bk

|b(x) − bBk | dμ(x) ≥ c0 > 0, for every k ≥ 1. (5.21)

Since Rk → ∞, we can choose a subsequence of {Rk}k≥1 (still denoted by {Rk}k≥1)
such that

Rk ≤ 1

C
Rk+1, ∀k ≥ 1,

for some constant C > 10.
For technical reason, we denote mb(�), by the median value of function b on a

bounded set � ⊂ R
n (possibly non-unique) such that

{
μ ({x ∈ � : b(x) > mb(�)}) ≤ 1

2μ(�) ,

μ ({x ∈ � : b(x) < mb(�)}) ≤ 1
2μ(�) .

(5.22)

Next, for any k ≥ 1, let yk ∈ X be such that d(xk, yk) = M Rk , M > 10A0, and put

B̃k = B(yk, Rk), B̃k,1 =
{

y ∈ B̃k : b(y) ≤ mb(B̃k)
}

,

B̃k,2 =
{

y ∈ B̃k : b(y) ≥ mb(B̃k)
}

;
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and

Bk,1 =
{

x ∈ Bk : b(x) ≥ mb(B̃k)
}

, Bk,2 =
{

x ∈ Bk : b(x) < mb(B̃k)
}

;

also

Fk,1 = B̃k,1 \
k−1⋃

j=1

B̃ j , Fk,2 = B̃k,2 \
k−1⋃

j=1

B̃ j .

Note that Fk,1 ∩ Fl,1 = ∅ whenever j �= k. Moreover, we have from the definition of
the median value that

μ(Fk,1) ≥ μ(B̃k,1) −
k−1∑

j=1

μ(B̃ j ) ≥ 1

2
μ(B̃k) −

k−1∑

j=1

μ(B̃ j ) � μ(Bk) . (5.23)

Similarly, we also obtain
μ(Fk,2) � μ(Bk) . (5.24)

Furthermore, we have from the definition of the median value

∣
∣
∣b(x) − mb(B̃k)

∣
∣
∣ ≤ |b(x) − b(y)|, ∀(x, y) ∈ Bk, j × B̃k, j , for j = 1, 2 . (5.25)

Next, it follows from (5.21) and the triangle inequality that

c0 ≤ 1

μ(Bk)

∫

Bk

|b(x) − bBk | dμ(x) ≤ 2
1

μ(Bk)

∫

Bk

|b(x) − mb(B̃k)| dμ(x)

= 2

μ(Bk)

(∫

Bk,1

|b(x) − mb(B̃k)| dμ(x) +
∫

Bk,2

|b(x) − mb(B̃k)| dμ(x)

)

.

(5.26)

This implies that there exists a subsequence with respect to k such that either

1

μ(Bk)

∫

Bk,1

|b(x) − mb(B̃k)| dμ(x) ≥ c0
2

, (5.27)

or
1

μ(Bk)

∫

Bk,2

|b(x) − mb(B̃k)| dμ(x) ≥ c0
2

, (5.28)

for any k ≥ 1. Thus, one can assume without loss of generality that (5.27) occurs.
For any k ≥ 1, applying Lemma 5.3 and (5.23) yields

M−n � μ (Bk)

μ (M Bk)
�

μ
(
Fk,1

)

μ (M Bk)
�

∣
∣T

(
1Fk,1

)
(x)

∣
∣ , ∀x ∈ Bk .
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In addition, T
(
1Fk,1

)
(x) is a constant sign in Bk . Then, it follows from (5.25), (5.27),

and Lemma 5.3 that

M−n � μ (Bk)

μ (M Bk)
� μ (Bk)

μ (M Bk)

1

μ(Bk)

∫

Bk,1

∣
∣
∣b(x) − mb(B̃k)

∣
∣
∣ dμ(x)

� 1

μ(Bk)

∫

Bk,1

∣
∣
∣b(x) − mb(B̃k)

∣
∣
∣
∣
∣T

(
1Fk,1

)
(x)

∣
∣ dμ(x)

= 1

μ(Bk)

∫

Bk,1

∣
∣
∣
∣

∫

Rn

(
b(x) − mb(B̃k)

)
K (x, y)1Fk,1(y) dμ(y)

∣
∣
∣
∣ dμ(x)

≤ 1

μ(Bk)

∫

Bk,1

∣
∣
∣
∣
∣

∫

Fk,1

(b(x) − b(y)) K (x, y) dμ(y)

∣
∣
∣
∣
∣

dμ(x)

= 1

μ(Bk)

∫

Bk,1

∣
∣[b, T ] (1Fk,1

)
(x)

∣
∣ dμ(x)

≤ 1

μ(Bk)ϕ(Rk)

∫

Bk

|[b, T ] (φk) (x)| dμ(x) , (5.29)

where φk(x) = ϕ(Rk)1Fk,1(x), for k ≥ 1.
Applying Hölder’s inequality in (5.29) yields

M−n � 1

μ(Bk)ϕ(Rk)
‖[b, T ] (φk)‖L p,r (Bk )

μ (Bk)
1
p′ ≤ ‖[b, T ] (φk)‖Mp,r

ϕ
.

Since [b, T ] maps Mp,r
ϕ (X) → Mp,r

ϕ (X) continuously, then we deduce from the last
inequality that

M−n � ‖φk‖Mp,r
ϕ

, ∀k ≥ 1 . (5.30)

Next, thanks to (2.5) and the definition of Fk,1, we get

‖φk‖Mp,r
ϕ

≤ ϕ(Rk)

∥
∥
∥1B̃k

∥
∥
∥
Mp,r

ϕ

� 1, ∀k ≥ 1. (5.31)

Combining (5.30) and (5.31) yields

‖φk‖Mp,r
ϕ

≈ 1 . (5.32)

Thanks to the compactness of [b, T ] on Mp,r
ϕ (X), there exists a subsequence of

{[b, T ](φk)}k≥1 (still denoted as {[b, T ](φk)}k≥1) such that

[b, T ](φk) → � in Mp,r
ϕ (X) , (5.33)

as k → ∞.
By (5.32), we also obtain

‖�‖Mp,r
ϕ

≈ 1 . (5.34)

123



209 Page 36 of 38 T. T. Dung et al.

Next, for any q ∈ (p,∞), since b ∈ BMO(X), and T is a linear of Calderón–
Zygmund type, then [b, T ] maps Lq(X) → Lq(X) continuously for q ∈ (1,∞).

As a result, we obtain

‖[b, T ](φk)‖Lq � ‖b‖BMO‖φk‖Lq ≤ ‖b‖BMOϕ(Rk)
∥
∥1Bk

∥
∥

Lq

= ‖b‖BMOϕ(Rk)μ (Bk)
1
q ≈ ‖b‖BMOϕ(Rk)Rn/q

k .

(5.35)

Since Rk → ∞, then we have 2γ (k) ≤ Rk < 2γ (k)+1, with γ (k) = [log2 Rk], and [l]
denotes by the integer part of a real number l. Thanks to (1.5) and the monotonicity
of ϕ, we achieve

ϕ(Rk) ≤ ϕ(2γ (k)) ≤ Dγ (k)ϕ(1).

By inserting this fact into (5.35), we obtain

‖[b, T ](φk)‖Lq � ‖b‖BMODγ (k)ϕ(1)2(γ (k)+1)n/q � ‖b‖BMO

(
2

n
q D

)γ (k)

. (5.36)

To this end, we only take q large enough such that 2
n
q D < 1. Then, the right hand

side of (5.36) tends to 0 as k → ∞ since (1.15),.
This implies that ‖[b, T ](φk)‖Lq → 0. Thus, � = 0 a.e. in X . This contradicts

(5.32).
Similarly, we also obtain a contradiction if (5.28) holds true. In summary, b cannot

violate (i).
Case 2. Assume that b violates (i i). The proof of this case is similar to the one of

Case 1. Thus, we leave its detail to the reader.
Case 3. The proof of this case is most like that of Case 1 by considering δk in place

of Rk , with δk → 0. Since we want to repeat the above proof for δk in place of Rk ,
then it is necessary to make some changes as follows:

Since δk → 0, then for every C > 10, there is a subsequence of {δk}k≥1 (still
denoted as {δk}k≥1) such that δk+1 ≤ 1

C δk .
Furthermore, we need to redefine Fk,1 (resp. Fk,2):

Fk,1 = B̃k,1 \
∞⋃

j=k+1

B̃ j , Fk,2 = B̃k,2 \
∞⋃

j=k+1

B̃ j .

By the definition of the median value, it is not difficult to verify thatμ(Fk,1) ≈ μ(B̃k),
and μ(Fk,2) ≈ μ(B̃k) for k ≥ 1. This enable us to repeat the proof of Case 1 in order
to get (5.33) and (5.34).

Next, for q ∈ (1, p) we repeat the proof of (5.35) to obtain

‖[b, T ](φk)‖Lq � ‖b‖BMOϕ(δk)μ(Bk)
1
q . (5.37)
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Since ϕ(t)μ(Bt )
1
p is nondecreasing and δk → 0, then we observe that

ϕ(δk)μ(Bk)
1
q =

(
ϕ(δk)μ(Bk)

1
p

)
μ(Bk)

1
q − 1

p → 0

as k → ∞.
Again, we get that [b, T ](φk) → 0 in Lq(X), when k → ∞. This contradicts

(5.34). Therefore, b must satisfy (i i i).
From the above cases, we conclude that b ∈ CMO(X). Hence, we complete the

proof of Theorem 1.17. ��
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