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Abstract
We consider invariant covariant derivatives on reductive homogeneous spaces corre-
sponding to the well-known invariant affine connections. These invariant covariant
derivatives are expressed in terms of horizontally lifted vector fields on the Lie group.
This point of view allows for a characterization of parallel vector fields along curves.
Moreover, metric invariant covariant derivatives on a reductive homogeneous space
equipped with an invariant pseudo-Riemannian metric are characterized. As a by-
product, a new proof for the existence of invariant covariant derivatives on reductive
homogeneous spaces and their the one-to-one correspondence to certain bilinear maps
is obtained.

Keywords Geodesic equation · Horizontal lifts · Invariant covariant derivatives ·
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1 Introduction

Reductive homogeneous spaces play a role in a wide range of applications frommath-
ematical physics to an engineering context. Without going into details, geodesics and
parallel transport are certainly of interest. These notions can be defined with respect
to invariant covariant derivatives which correspond to the well-known invariant affine
connections from the literature. In fact, the existence of invariant affine connections on
a reductive homogeneous spaceG/H with a fixed reductive decomposition g = h⊕m
and their one-to-one-correspondence to Ad(H)-invariant bilinear maps m × m → m
were proven in [1].
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The initial motivation for this text was to derive a characterization of parallel vector
fields along curves generalizing [2, Lem. 1] to an arbitrary reductive homogeneous
space equipped with some invariant covariant derivative. In order to obtain such a
characterization, given in Corollary 4.27 below, we express an arbitrary invariant
covariant derivative on G/H associated to an Ad(H)-invariant bilinear map m ×
m → m in terms of horizontally lifted vector fields on G. This expression generalizes
formulas for the Levi-Civita covariant derivative on G/H in terms of horizontally
lifted vector fields from the literature, where G is equipped with a bi-invariant metric
and G/H is endowed with a pseudo-Riemannian metric such that G → G/H is a
pseudo-Riemannian submersion. Indeed, in the proof of [2, Lem. 1], a formula for the
Levi-Civita covariant derivative on a pseudo-Riemannian symmetric space in terms of
horizontally lifted vector fields is obtained. Moreover, a formula for the Levi-Civita
covariant derivative in terms of horizontal vector fields is derived in [3, Sec. 4.2] for
certain homogeneous spaces of compactLie groups equippedwith bi-invariantmetrics.
Here we also mention the recent work [4], where similar questions are independently
discussed in the context of spray geometry.

We now give an overview of this text. We start with introducing some notations
in Sect. 2. Moreover, in Sect. 3, we recall some facts on reductive homogeneous
spaces and discuss the principal connections defined by reductive decompositions.
After this preparation, we come to Sect. 4, where invariant covariant derivatives are
investigated in detail. In Sect. 4.1, we show that an invariant covariant derivative is
uniquely determined by evaluating it on certain fundamental vector fields of the left
action G × G/H � (g, g′ · H) �→ (gg′) · H ∈ G/H . Afterwards, we express an
invariant covariant derivative ∇α corresponding to an Ad(H)-invariant bilinear map
α : m × m → m in terms of horizontally lifted vector fields on G as follows. For two
vector fields X and Y onG/H whose horizontal lifts are the vector fields onG denoted
by X and Y , respectively, we express the horizontal lift∇α

XY of∇α
XY in terms of X and

Y . The exact expression for∇α
XY is obtained in Theorem 4.15. As a by-product, a new

proof for the existence of invariant covariant derivatives associated toAd(H)-invariant
bilinear maps m × m → m is obtained. Moreover, the formula from Theorem 4.15 is
used to derive the curvature of ∇α in Sect. 4.2 In addition, we characterize invariant
metric covariant derivatives if G/H is equipped with an invariant pseudo-Riemannian
metric. In Sect. 4.4, we turn our attention to vector fields along curves. In particular,
the expression of ∇α in terms of horizontally lifted vector fields from Theorem 4.15
allows for characterizing parallel vector fields along curves on G/H in terms of an
ODE onm. In addition, we obtain a geodesic equation for the reductive homogeneous
space G/H equipped with an invariant covariant derivative. If this geodesic equation
is specialized to a Lie group endowed with some left-invariant metric, the well-known
geodesic equation from [5, Ap. 2] is obtained. Finally, we discuss the canonical invari-
ant covariant derivatives of first and second kind which correspond to the canonical
affine connections of first and second kind from [1, Sec. 10].
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2 Notations and Terminology

We start with introducing the notation and terminology that is used throughout this
text.

Notation 2.1 We follow the convention in [6, Chap. 2]. A scalar product is defined as
a non-degenerated symmetric bilinear form. An inner product is a positive definite
symmetric bilinear form.

Next we introduce some notations concerning differential geometry. Let M be
a smooth (finite-dimensional) manifold. We denote by T M and T ∗M the tangent
and cotangent bundle of M , respectively. For a smooth map f : M → N between
manifolds M and N , the tangent map of f is denoted by T f : T M → T N . We write
C∞(M) for the algebra of smooth real-valued functions on M .

Let E → M be a vector bundle over M with typical fiber V . The smooth sections
of E are denoted by �∞(E). We write End(E) ∼= E∗ ⊗ E for the endomorphism
bundle of E . Moreover, we denote by E⊗k , Sk E and �k E the k-th tensor power, the
k-th symmetrized tensor power and the k-th anti-symmetrized tensor power of E . If
T ∈ �∞(

(T ∗M)⊗k ⊗ (T M)⊗�
)
is a tensor field on M and X ∈ �∞(T M) is a vector

field on, we write LXT for the Lie derivative. The pull-back of a smooth function
x : N → R by the smooth map f : M → N is denoted by f ∗x = x ◦ f : M → R.
More generally, if ω ∈ �∞(

�k(T ∗N )
) ⊗ V is a differential form taking values in a

finite dimensional R-vector space V , its pull-back by f is denoted by f ∗ω.
Concerning the regularity of curves onmanifolds, we use the following convention.

Notation 2.2 Whenever c : I → M denotes a curve in a manifold M defined on an
interval I ⊆ R, we assume for simplicity that c is smooth if not indicated otherwise.
If I is not open, we assume that c can be extended to smooth curve defined on an open
interval J ⊆ R containing I . Moreover, we implicitly assume that 0 is contained in I
if we write 0 ∈ I .

Notation 2.3 If not indicated otherwise, we use Einstein summation convention.

3 Background on Reductive Homogeneous Spaces

In this section, we introduce some more notations and recall some well-known facts
concerning Lie groups and reductive homogeneous spaces. Moreover, the principal
connection on the H -principal fiber bundleG → G/H obtained by a reductive decom-
position is discussed in detail.

3.1 Lie Groups

We start with introducing some notations and well-known facts concerning Lie groups
and Lie algebras. Let G be a Lie group and denote its Lie algebra by g. The identity
of G is usually denoted by e. We write

�g : G → G, h �→ �g(h) = gh (3.1)
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for the left translation by g ∈ G and the right translation by g ∈ G is denoted by

rg : G → G, h �→ rg(h) = hg. (3.2)

The conjugation by an element g ∈ G is given by

Conjg : G → G, h �→ Conjg(h) = (�g ◦ rg−1)(h) = (rg−1 ◦ �g)(h) = ghg−1(3.3)

and the adjoint representation of G is defined as

Ad : G → GL(g), g �→ Adg = (
ξ �→ Adg(ξ) = TeConjgξ

)
. (3.4)

Moreover, we denote the adjoint representation of g by

ad : g → gl(g), ξ �→ (
η �→ adξ (η) = [ξ, η]). (3.5)

Next we recall [7, Def. 19.7]. A vector field X ∈ �∞(TG) is called left-invariant or
right-invariant if for all g, k ∈ G

Tk�g X(k) = X(�g(k)) or Tkrg X(k) = X(rg(k)), (3.6)

respectively, holds. For ξ ∈ g, we denote by ξ L ∈ �∞(TG) and ξ R ∈ �∞(TG) the
corresponding left and right-invariant vector fields, respectively, which are given by

ξ L(g) = Te�gξ and ξ R(g) = Tergξ, g ∈ G. (3.7)

We write

exp : g → G. (3.8)

for the exponential map of G.

3.2 Reductive Homogeneous Spaces

Nextwe recall somewell-known facts on reductive homogeneous spaces and introduce
the notation that is used throughout this text. We refer to [7, Sec. 23.4] or [6, Chap.
11] for details.

Let G be a Lie group and let g be its Lie algebra. Moreover, let H ⊆ G a closed
subgroup whose Lie algebra is denoted by h ⊆ g. We consider the homogeneous space
G/H . Then

τ : G × G/H → G/H , (g, g′ · H) �→ (gg′) · H (3.9)

is a smooth action of G on G/H from the left, where g · H ∈ G/H denotes the coset
defined by g ∈ G. Borrowing the notation from [7, p. 676], for fixed g ∈ G, the
associated diffeomorphism is denote by
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τg : G/H → G/H , g′ · H �→ τg(g
′ · H) = (gg′) · H . (3.10)

In addition, we write

pr : G → G/H , g �→ pr(g) = g · H (3.11)

for the canonical projection.
Since reductive homogeneous spaces play a central role in this text, we recall their

definition from [7, Def. 23.8], see also [1, Sec. 7] or [6, Def. 21, Chap. 11].

Definition 3.1 Let G be a Lie group and g be its Lie algebra. Moreover, let H ⊆ G
be a closed subgroup and denote its Lie algebra by h ⊆ g. Then the homogeneous
space G/H is called reductive if there exists a subspace m ⊆ g such that g = h ⊕ m
is fulfilled and

Adh(m) ⊆ m (3.12)

holds for all h ∈ H .

Following [7, Prop. 23.22], we recall a well-known property of the isotropy repre-
sentation of a reductive homogeneous space. This is the next lemma.

Lemma 3.2 The isotropy representation of a reductive homogeneous space G/H with
reductive decomposition g = h ⊕ m

H � h �→ Tpr(e)τh ∈ GL
(
Tpr(e)G/H

)
(3.13)

is equivalent to the representation

H → GL(m), h �→ Adh
∣∣
m

= (
X �→ Adh(X)

)
, (3.14)

i.e.

Tpr(e)τh ◦ Tepr
∣∣
m

= Tepr ◦ Adh
∣∣
m

(3.15)

is fulfilled for all h ∈ H.

Notation 3.3 Let g = h ⊕ m be a reductive decomposition of g. Then the projection
onto m whose kernel is given by h is denoted by prm : g → m. We write prh : g → h
for the projection whose kernel is given by m. Moreover, we write for ξ ∈ g

ξm = prm(ξ) and ξh = prh(ξ). (3.16)

A scalar product 〈·, ·〉 : m × m → R is called Ad(H)-invariant if

〈
Adh(X),Adh(Y )

〉 = 〈
X ,Y

〉
(3.17)
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holds for all h ∈ H and X ,Y ∈ m, see e.g [6, p. 301] or [7, Sec. 23.4] for the positive
definite case. Reformulating and adapting [7, Def. 23.5], we call a pseudo-Riemannian
metric 〈〈·, ·〉〉 ∈ �∞(

S2T ∗(G/H)
)
invariant if

〈〈vp, wp〉〉p = 〈〈Tpτgvp, Tpτgwp〉〉τg(p), p ∈ G/H , vp, wp ∈ Tp(G/H) (3.18)

holds for all g ∈ G. In the next lemma which is taken from [6, Chap. 11, Prop. 22], see
also [7, Prop. 23.22] for the Riemannian case, invariant metrics on G/H are related
to Ad(H)-invariant scalar products on m.

Lemma 3.4 By requiring the linear isomorphism Tepr
∣∣
m : m → Tpr(e)(G/H) to be

an isometry, there is a one-to-one correspondence between Ad(H)-invariant scalar
products on m and invariant pseudo-Riemannian metrics on G/H.

Naturally reductive homogeneous spaces are special reductive homogeneous
spaces. We recall their definition from [6, Chap. 11, Def. 23].

Definition 3.5 Let G/H be a reductive homogeneous space equipped with an invari-
ant pseudo-Riemannian metric corresponding to the Ad(H)-invariant scalar product
〈·, ·〉 : m×m → R. Then G/H is called a naturally reductive homogeneous space if

〈[X ,Y ]m, Z
〉 = 〈

X , [Y , Z ]m
〉

(3.19)

holds for all X ,Y , Z ∈ m.

The following lemma can be considered as a generalization of [7, Prop. 23.29
(1)-(2)] to pseudo-Riemannian metrics and Lie groups which are not necessarily con-
nected.

Lemma 3.6 Let G be a Lie group and denote by g its Lie algebra. Moreover, let G be
equipped with a bi-invariant metric and let 〈·, ·〉 : g × g → R be the corresponding
Ad(G)-invariant scalar product. Moreover, let H ⊆ G be a closed subgroup such that
its Lie algebra h ⊆ g is non-degenerated with respect to 〈·, ·〉. Then G/H is a reductive
homogeneous space with reductive decomposition g = h ⊕ m, where m = h⊥ is the
orthogonal complement of h with respect to 〈·, ·〉. Moreover, if G/H is equipped with
the invariant metric corresponding to the scalar product on m that is obtained by
restricting 〈·, ·〉 to m, the reductive homogeneous space G/H is naturally reductive.

Proof The claim can be proven analogously to the proof of [7, Prop. 23.29 (1)-(2)] by
taking the assumption h ⊕ h⊥ = h ⊕ m = g into account. ��
Remark 3.7 Inspired by the terminology in [7, Sec. 23.6, p. 710], we refer to the nat-
urally reductive homogeneous spaces from Lemma 3.6 as normal naturally reductive
homogeneous spaces.

We end this subsection with considering another special class of reductive homo-
geneous spaces. To this end, we state the following definition which can be found in
[8, p. 209].
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Definition 3.8 Let G be a connected Lie group and let H be a closed subgroup. Then
(G, H) is called a symmetric pair if there exists a smooth involutive automorphism
σ : G → G, i.e. an automorphism of Lie groups fulfilling σ 2 = σ , such that (Hσ )0 ⊆
H ⊆ Hσ holds. Here Hσ denotes the set of fixed points of σ and (Hσ )0 denotes the
connected component of Hσ containing the identity e ∈ G.

Inspired by the terminology used in [7, Def. 23.13], we refer to the triple (G, H , σ )

as symmetric pair, as well, where (G, H) is a symmetric pair with respect to the involu-
tive automorphism σ : G → G. These symmetric pairs lead to reductive homogeneous
spaceswhich are called symmetric homogeneous spaces if a certain “canonical” reduc-
tive decomposition is chosen, see e.g. [1, Sec. 14]. Note that the definition in [1, Sec.
14] does not require an invariant pseudo-Riemannian metric on G/H .

The next lemma, see e.g. [1, Sec. 14], shows that a symmetric homogeneous space
is a reductive homogeneous space with respect to the so-called canonical reductive
decomposition. Here we also refer to [7, Prop. 23.33] for a proof.

Lemma 3.9 Let (G, H , σ ) be a symmetric pair and define the subspaces of g by

h = {X ∈ g | Teσ X = X} ⊆ g and m = {X ∈ g | Teσ X = −X} ⊆ g. (3.20)

Then g = h ⊕ m is a reductive decomposition of g turning G/H into a reductive
homogeneous space. Moreover, the inclusion

[m,m] ⊆ h (3.21)

is fulfilled.

Next we define symmetric homogeneous spaces and canonical reductive decompo-
sitions following [1, Sec. 14].

Definition 3.10 Let (G, H , σ ) be a symmetric pair. Then the reductive decomposition
g = h ⊕ m from Lemma 3.9 is called canonical reductive decomposition. Moreover,
the reductive homogeneous space G/H with the reductive decomposition g = h⊕m
is called symmetric homogeneous space.

For pseudo-Riemannian symmetric spaces we state the next remark following [6,
Chap. 11, p. 317], see also [7, Sec. 23.8] for the Riemannian case.

Remark 3.11 Let (G, H , σ ) be symmetric pair and letG/H be the associated symmet-
ric homogeneous space with canonical reductive decomposition g = h⊕m. Let G/H
be equipped with an invariant pseudo-Riemannian metric and let 〈·, ·〉 : m × m → R

be the associated Ad(H)-invariant scalar product. Then G/H is a naturally reduc-
tive homogeneous space since [m,m] ⊆ h implies that the condition on the scalar
product 〈·, ·〉 from Definition 3.5 is always satisfied. In the sequel, we refer to sym-
metric homogeneous spaces equipped with an invariant pseudo-Riemannian metric as
pseudo-Riemannian symmetric homogeneous space or pseudo-Riemannian symmet-
ric spaces, for short.
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3.3 Reductive Decompositions and Principal Connections

In this section, we consider G as a H -principal fiber bundle over G/H and discuss
certain principal connections on pr : G → G/H . For general properties of principal
fiber bundles and connections, we refer to [9, Sec. 18–19] and [10, Sec. 1.1–1.3].

Let G be a Lie group and H ⊆ G be a closed subgroup. It is well-known that
pr : G → G/H is a H -principle fiber bundle, see e.g. [9, Sec. 18.15], where the base
is the homogeneous space G/H . The H -principal action on G is denoted by

�: G × H → G, (g, h) �→ g � h = rh(g) = �g(h) = gh, (3.22)

if not indicated otherwise.Wenowassume thatG/H is a reductive homogeneous space
and the reductive decomposition g = h ⊕ m is fixed. This reductive decomposition
can be used to obtain a principal connection on pr : G → G/H , see [11, Thm. 11.1].
Although this fact is well-known, we provide a detailed proof in order to keep this text
more self-contained. To this end, we recall a well-known fiber-wise expression for the
vertical bundle of pr : G → G/H which follows for example from [9, Sec. 18.18].
We have for fixed g ∈ G by [10, Lem. 1.3.1], see also [9, Sec. 18.8]

Ver(G)g = { d
dt

(
g � exp(tη)

)∣∣
t=0 | η ∈ h

} = (Te�g)h. (3.23)

The next proposition provides explicit formulas for the principal connection and the
associated principal connection one-form on G → G/H defined by a reductive
decomposition.

Proposition 3.12 Consider pr : G → G/H as a H-principal fiber bundle, whereG/H
is a reductive homogeneous space with a fixed reductive decomposition g = h ⊕ m
and define Hor(G) ⊆ TG fiber-wise by

Hor(G)g = (Te�g)m, g ∈ G. (3.24)

Then Hor(G) is a subbundle of TG defining a horizontal bundle on TG, i.e. a com-
plement of the vertical bundle Ver(G) = ker(T pr) ⊆ TG which yields a principal
connection on pr : G → G/H. This principal connection P ∈ �∞(

End(TG)
)
corre-

sponding to Hor(G) is given by

P∣
∣
g(vg) = Te�g ◦ prh ◦ (Te�g)

−1vg, g ∈ G, vg ∈ TgG. (3.25)

The corresponding connection one-form ω ∈ �∞(T ∗G) ⊗ h reads

ω
∣∣
g(vg) = prh ◦ (Te�g)

−1vg (3.26)

for g ∈ G and vg ∈ TgG.

Proof Although, this statement is well-known, see e.g. [11, Thm. 11.1], we provide a
proof, nevertheless. Indeed, Hor(G) is a complement of the vertical bundle Ver(G) =
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ker(T pr) ⊆ TG due to g = h ⊕ m implying TG = Ver(G) ⊕ Hor(G) as desired.
Moreover,P defined by (3.25) is clearly a smooth endomorphism of the vector bundle
TG → G, i.e. P ∈ �∞(

End(TG)
)
. In addition, P2 = P is obviously fulfilled.

Moreover, one has im(P) = ker(T pr) = Ver(G) and ker(P) = Hor(G) showing that
P is the connection corresponding to the horizontal bundle Hor(G).

We now show that ω is the connection one-form corresponding to P by using the
correspondence from [9, Sec. 19.1]. Let η ∈ h and denote by ηG the corresponding
fundamental vector field, i.e. we have for g ∈ G

ηG(g) = d
dt

(
g � exp(tη)

)∣∣
t=0 = d

dt �g
(
exp(tη)

)∣∣
t=0 = Te�gη.

By this notation, one obtains for vg ∈ TgG

(
ω

∣
∣
g(vg)

)
G(g) = Te�g

(
ω

∣
∣
g(vg)

) = Te�g
(
prh ◦ (Te�g)

−1(vg)
) = P∣

∣
g(vg).

Moreover, we have

ω
∣∣
g

(
ηG(g)

) = (
prh ◦ (Te�g)

−1)Te�gη = prh(η) = η

for all η ∈ h proving thatω ∈ �∞(T ∗G)⊗h is the connection one-from corresponding
to P ∈ �∞(

End(TG)
)
.

It remains to show thatP is a principal connection.By [9, Sec. 19.1] this is equivalent
to showing that ω has the equivariance property

(
(· � h)∗ω

)∣∣
g(vg) = Adh−1

(
ω

∣∣
g(vg)

)

for all h ∈ H , g ∈ G and vg ∈ TgG, where (· � h)∗ω denotes the pull-back of ω by
(· � h) : P � p �→ p � h ∈ P . Since g = h ⊕ m is a reductive decomposition, we
obtain for h ∈ H and ξ ∈ g

(prh ◦ Adh)(ξ) = prh
(
Adh(ξh) + Adh(ξm)

) = Adh(ξh) = (Adh ◦ prh)(ξ).(3.27)

Using (3.27) and the chain-rule, we compute for h ∈ H , g ∈ G and vg ∈ TgG

(
(· � h)∗ω

)∣∣
g(vg) = ω

∣∣
g�h

(
Tg(· � h)vg

)

= ω
∣∣
gh

(
Tgrhvg

)

= (
prh ◦ (Te�gh)

−1)Tgrhvg
= prh ◦ Tgh�h−1g−1 ◦ Tgrhvg

= prh ◦ Tg(�
−1
h ◦ �−1

g ◦ rh)vg
= prh ◦ Tg(�h−1 ◦ rh ◦ �g−1)vg

= prh ◦ Te(�h−1 ◦ rh) ◦ Tg�g−1vg

= prh ◦ TeConjh−1 ◦ (Te�g)
−1vg
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= prh ◦ Adh−1 ◦ (Te�g)
−1vg

= Adh−1 ◦ prh ◦ (Te�g)
−1vg

= Adh−1
(
ω

∣∣
g(vg)

)
.

Hence ω is the connection one-form corresponding to the principal P . ��
By [7, Prop. 23.23], adapted to the pseudo-Riemannian case, we obtain the follow-

ing remark concerning pseudo-Riemannian reductive homogeneous spaces.

Remark 3.13 Let G/H be a reductive homogeneous space with reductive decomposi-
tion g = h⊕m endowed with an invariant pseudo-Riemannian metric corresponding
to the Ad(H)-invariant scalar product 〈·, ·〉 : m×m → R. By [7, Prop. 23.23], which
clearly extends to the pseudo-Riemannian case, the scalar product 〈·, ·〉 on m can
be extended to a scalar product 〈·, ·〉g on g such that m = h⊥ is fulfilled. Then
pr : G → G/H becomes a pseudo-Riemannian submersion by [7, Prop. 23.23], where
G is equipped with the left-invariant metric defined by 〈·, ·〉g. Obviously, the horizon-
tal bundle defined by Hor(G) = Ver(G)⊥ yields the connection onG which coincides
with the principal connection from Proposition 3.12 defined by the reductive decom-
position g = h ⊕ m.

4 Invariant Covariant Derivatives

In this section, we consider the invariant covariant derivatives on a reductive homoge-
noeus space G/H that correspond to the invariant affine connections investigated in
[1]. These invariant covariant derivatives are expressed in terms of horizontally lifted
vector fields yielding another proof for their existence. In particular, this expression
is used to characterize parallel vector fields along curves in terms of an ODE on m.

Throughout this subsection, we use the following notation.

Notation 4.1 If not indicated otherwise, we denote by G/H a reductive homogeneous
space with a fixed reductive decomposition g = h ⊕ m.

4.1 Invariant Covariant Derivatives

We start with introducing the notion of an invariant covariant derivative on a reductive
homogeneous space. In view of the one-to-one correspondence of covariant derivatives
and affine connections, see Remark 4.3 below, the next definition can be seen as a
reformulation of [1, Eq. (2.3) and Sec. 8, p. 43].

Definition 4.2 Let G/H be a homogeneous space. Then a covariant derivative

∇ : �∞(
T (G/H)

) × �∞(
T (G/H)

) → �∞(
T (G/H)

)
(4.1)

on G/H is called G-invariant, or invariant for short, if

∇XY = (τg−1)∗
(∇(τg)∗X (τg)∗Y

)
(4.2)
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holds for all g ∈ G and X ,Y ∈ �∞(
T (G/H)

)
, where (τg)∗X denotes the well-known

push-forward of X by the diffeomorphism τg : G/H → G/H given by (τg)∗X =
T τg ◦ X ◦ τg−1 .

Obviously, for a fixed g ∈ G the push-forward (τg)∗X = T τg ◦ X ◦τg−1 of a vector
field X ∈ �∞(

T (G/H)
)
by τg : G/H → G/H is point-wise given by

(
(τg)∗X

)
(pr(k)) = Tτg−1(pr(k))

τg X
(
τg−1(pr(k))

)
, pr(k) ∈ G/H . (4.3)

In the next remark, we relate the notion of affine connections from [1] to covariant
derivatives.

Remark 4.3 Let M be a manifold and denote by EndC∞(M)

(
�∞(T M)

)
the endomor-

phisms of the C∞(M)-module �∞(T M). An affine connection is defined in [1] as a
map

t : �∞(T M) � X �→ t(X) ∈ EndC∞(M)

(
�∞(T M)

)
(4.4)

such that

t(X1 + X1) = t(X1) + t(X2) and t( f X)(Y ) = f t(X)(Y ) + (LX f )t(X)(Y )

(4.5)

holds for all X1, X2, X ,Y ∈ �∞(T M). As pointed out in [12, Sec. 4.5], an affine
connection t : �∞(T M) → EndC∞(M)

(
�∞(T M)

)
defines a covariant derivative

∇ : �∞(T M) × �∞(T M) → �∞(T M) on T M by

∇XY = t(Y )(X), X ,Y ∈ �∞(T M). (4.6)

Obviously, the converse is also true. Given a covariant derivative ∇ on T M , Equa-
tion (4.6) yields an affine connection.

In the sequel, we discuss the invariant covariant derivatives on G/H corresponding
to the invariant affine connections on G/H from [1, Thm. 8.1]. This correspondence
is made precise in Proposition 4.18, below.

We first recall the notion of an Ad(H)-invariant bilinear map from [1, Sec. 8].

Definition 4.4 Let G/H be a reductive homogeneous space with reductive decompo-
sition g = h ⊕ m. Then the bilinear map α : m × m → m is called Ad(H)-invariant
if

Adh
(
α(X ,Y )

) = α
(
Adh(X),Adh(Y )

)
(4.7)

holds for all X ,Y ∈ m and h ∈ H . More generally, for � ∈ N, we call a �-linear map
α : m� → m Ad(H)-invariant if

Adh
(
α(X1, . . . , X�)

) = α
(
Adh(X1), . . . ,Adh(X�)

)
(4.8)
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holds for all X1, . . . , X� ∈ m and h ∈ H .

Remark 4.5 As we have already pointed out in the introduction, the one-to-one corre-
spondence between invariant affine connections and Ad(H)-invariant bilinear maps
m×m → m is well-known by [1, Thm. 8.1]. Nevertheless, the discussion in this text
differs from the discussion in [1]. Inspired by [7, Sec. 23.6], we consider invari-
ant covariant derivatives evaluated at the fundamental vector fields of the action
τ : G × G/H → G/H at the point pr(e) which already determines them uniquely.
Moreover, we express invariant covariant derivatives on G/H in terms of horizontally
lifted vector fields onG. Beside yielding another proof for the existence of an invariant
covariant derivative associated with an Ad(H)-invariant bilinear map m × m → m,
this point of view allows in particular for an easy characterization of parallel vector
fields, see Sect. 4.4.

4.1.1 Invariant Covariant Derivatives Evaluated on Fundamental Vector Fields

Before we continue with considering invariant covariant derivatives, we take a
closer look on the fundamental vector fields on G/H associated with the action
τ : G × G/H → G/H from (3.9). Let X ∈ g. The fundamental vector field
XG/H ∈ �∞(

T (G/H)
)
associated with X is defined by

XG/H (pr(g)) = d
dt τexp(t X)(pr(g))

∣∣
t=0 (4.9)

for pr(g) ∈ G/H with g ∈ G. In the next lemma, we state some properties of XG/H .
Note that its third claim is well-known.

Lemma 4.6 Let G/H bea reductive homogeneous spacewith reductive decomposition
g = h ⊕ m. Moreover, let X ∈ m, let {A1, . . . , AN } ⊆ m be a basis of m and
let {A1, . . . , AN } ⊆ m∗ be its dual basis. Let AL

i ∈ �∞(
Hor(G)

)
denote the left-

invariant vector field on G defined by Ai for i ∈ {1, . . . , N }. Then the following
assertions are fulfilled:

1. The horizontal lift of XG/H is given by

XG/H (g) = Ai (Adg−1(X)
)
AL
i (g) (4.10)

for all g ∈ G.
2. Let Y ∈ m and define the smooth functions y j : G � g �→ y j (g) =

A j
(
Adg−1(Y )

) ∈ R, where j ∈ {1, . . . , N }. Then one has

(
LXG/H

y j )(e)AL
j (e) = −[X ,Y ]m. (4.11)

3. One has

(τg)∗XG/H (pr(k)) = (
Adg(X)

)
G/H (pr(k)) (4.12)

for all g ∈ G and pr(k) ∈ G/H.
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Proof We first show Claim 1. To this end, we compute for g ∈ G

XG/H (pr(g)) = d
dt (τexp(t X) ◦ pr)(g)

∣∣
t=0

= d
dt (pr ◦ �exp(t X))(g)

∣∣
t=0

= d
dt pr ◦ rg(exp(t X))

∣∣
t=0

= Tgpr ◦ Terg X

= Tgpr ◦ X R(g)

(4.13)

showing that XG/H is pr-related to the right-invariant vector field X R . Next we express
X R in terms of left-invariant vector fields. Let g ∈ G. We now compute

X R(g) = (
Te�g ◦ (Te�g)

−1)Terg X

= Te�g ◦ Tg�g−1 ◦ Terg X

= Te�g ◦ Te(�g−1 ◦ rg)X
= Te�g ◦ TeConjg−1X

= Te�gAdg−1(X)

= (
Adg−1(X)

)L
(g).

(4.14)

Let P be the principal connection from Proposition 3.12. Then the horizontal lift of
XG/H is given by XG/H = (idTG − P) ◦ X R because of XG/H ◦ pr = T pr ◦ X R

according to (4.13). Using (4.14) and prm(Y ) = Ai
(
prm(Y )

)
Ai = Ai (Y )Ai for all

Y ∈ g, we have for g ∈ G

XG/H (g) = (
idTG − P) ◦ X R(g)

= (idTG − P)
(
Adg−1(X)

)L
(g)

= (
Te�g ◦ prm ◦ (Te�g)

−1)Te�gAdg−1(X)

= Te�g
(
Ai (Adg−1(X))Ai

)

= Ai (Adg−1(X)
)
AL
i (g).

Next we show Claim 2. The curve γ : R � t �→ exp(t X) ∈ G fulfills γ (0) = e and
γ̇ (0) = X . Therefore we compute, again by prm(Y ) = Ai (Y )Ai for all Y ∈ g

(
LXG/H

y j )(e)AL
j (e) = ( d

dt y
j (γ (t))

∣∣
t=0

)
A j

= ( d
dt A

j (Adexp(t X)−1(Y )
)∣∣
t=0

)
A j

= (
A j ( d

dtAdexp(−t X)(Y )
∣∣
t=0

))
A j

= A j ( − [X ,Y ])A j

= −[X ,Y ]m
as desired.
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Although a proof of Claim 3 can be found for example in [7, Prop. 23.20], following
this reference, we repeat it here for the reader’s convenience.We compute for g, k ∈ G

(
(τg)∗XG/H

)
(pr(k)) = (

Tτg−1 (pr(k))τg
)
XG/H

(
τ−1
g (pr(k))

)

= (
Tτg−1 (pr(k))τg

) d
dt τexp(t X)

(
τg−1(pr(k))

)∣∣
t=0

= d
dt τg exp(t X)g−1(pr(k))

∣∣
t=0

= d
dt τexp(tAdg(X))(pr(k))

∣∣
t=0

= (
Adg(X)

)
G/H (pr(k)),

where (4.3) is used in the first equality and we also exploited Conjg ◦exp = exp ◦Adg .
This yields the desired result. ��

It iswell-known that there is a one-to-one correspondencebetweenAd(H)-invariant
tensors on m and invariant tensor fields on G/H , see e.g. [6, Chap. 11, p. 312]. In
the sequel, we need the following lemma which can be regarded as a special case of
this assertion. In order to keep this text as self-contained as possible, we include proof
which is inspired by the proof of [7, Prop. 23.23] and [6, Chap. 11, Prop. 22].

Lemma 4.7 Let G/H bea reductive homogeneous spacewith reductive decomposition
g = h⊕m. There is a one-to-one-correspondence between Ad(H)-invariant �-linear
maps d : m� → m with � ∈ N and tensor fields D ∈ �∞(

T ∗(G/H)⊗� ⊗ T (G/H)
)

on G/H fulfilling

(τg)∗
(
D(X1, . . . , X�)

) = D
(
(τg)∗X1, . . . , (τg)∗X�

)
(4.15)

for all X1, . . . , X� ∈ �∞(T M) and g ∈ G by requiring

D
∣∣
pr(e)

(
TeprX1, . . . , TeprX�

) = Tepr
(
d(X1, . . . , X�)

)
(4.16)

for all X1, . . . , X� ∈ m.

Proof We use ideas that can be found in [7, Prop. 23.23], see also [6, Chap. 11, Prop.
22]. In this proof, we write o = pr(e) = e · H ∈ G/H for the coset defined by
e ∈ G. Let D ∈ �∞(

T ∗(G/H)⊗� ⊗ T (G/H)
)
be a tensor field satisfying (4.15).

Using Lemma 3.2, i.e. Tpr(e)τh ◦ Tepr
∣
∣
m

= Toτh ◦ Tepr
∣
∣
m

= Tepr ◦ Adh
∣
∣
m

for all
h ∈ H , and Lemma 4.6, Claim 3, i.e. (τh)∗XG/H = (

Adh(X)
)
G/H for all X ∈ m as

well as TeprX = XG/H (o) we compute for X1, . . . , X� ∈ m and h ∈ H

(Tepr ◦ Adh)d(X1, . . . , X�)
)

= (Toτh ◦ Tepr)d(X1, . . . , X�)

= (Toτh)
(
D

∣
∣
o

(
TeprX1, . . . TeprX�

))

= (Toτh)D
∣∣
o

(
(X1)G/H (o), . . . , (X�)G/H (o)

)

= (Tτh−1 (o)τh)
(
D

(
(X1)G/H , . . . , (X�)G/H

)
(τh−1(o))
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= (τh)∗
(
D

(
(X1)G/H , . . . , (X�)G/H )

)∣∣
o

= D
(
(τh)∗(X1)G/H , . . . , (τh)∗(X�)G/H

)∣∣
o

= D
∣∣
o

(
(Adh(X1))G/H (o), . . . , (Adh(X�))G/H (o)

)

= Tepr
(
d
(
Adh(X1), . . . ,Adh(X�)

))
, (4.17)

where we exploited τh(o) = o for all h ∈ H . Thus the tensor field D fulfilling (4.15)
yields an Ad(H)-invariant �-linear map d via (4.16) since Tepr

∣∣
m

: m → Tpr(e)(G/H)

is a linear isomorphism. Conversely, assume that d : m� → m is anAd(H)-invariant �-
linear map. Then (4.16) defines a unique invariant tensor field onG/H fulfilling (4.15)
by setting for v1,o, . . . v�,o ∈ To(G/H)

D
∣
∣
o(v1,o, . . . , v�,o) = Tepr

(
d
((
Tepr

∣
∣
m

)−1
v1,o, . . . ,

(
Tepr

∣
∣
m

)−1
v�,o

))
(4.18)

anddefining for g ∈ Gwith p = pr(g) = τg(o) ∈ G/H forv1p, . . . , v�p ∈ Tp(G/H)

D
∣∣
p(v1p, . . . , v�p) = Toτg

(
D

∣∣
o

(
Tpτg−1v1p, . . . , (Tpτg−1v�p)

))
. (4.19)

We first show that this yields a well-defined expression. Let k ∈ G be another element
with pr(g) = p = pr(k), i.e. there exists a h ∈ H with g = kh and therefore
k−1 = hg−1 as well as k = gh−1 is fulfilled. Using the definition of D in (4.18)
and (4.19), we compute

D
∣∣
p

(
v1p, . . . , v�p

) = D
∣∣
pr(k)

(
v1p, . . . , v�p

)

= Toτk
(
D

∣∣
o

(
Tpτk−1v1p, . . . , Tpτk−1v�p

))

= (Toτg ◦ Toτh−1)
(
D

∣∣
o

(
(Toτh ◦ Tpτg−1)v1p, . . . ,

(Toτh ◦ Tpτg−1)v�p
))

= (Toτg ◦ Toτh−1)
(
Toτh

(
D

∣∣
o

(
Tpτg−1v1p, . . . , (Tpτg−1v�p)

)))

= D
∣∣
pr(g)

(
v1p, . . . , v�p

)
,

where the fourth equality follows by a calculation similar to (4.17) exploiting the
Ad(H)-invariance of d : m� → m. It remains to proof that D has the desired invariance
property. To this end, let X1, . . . , X� ∈ �∞(

T (G/H)
)
be vector fields and let g ∈ G.

Suppressing the “foot points” of the tangent maps, we compute by the definition of D
for q = pr(k) ∈ G/H represented by some k ∈ G

(
(τg)∗D(X1, . . . , X�)

)
(q)

= T τg ◦ D(X1, . . . , X�) ◦ τg−1(q)

= T τg
(
D

∣∣
τg−1 (q)

(
X(τg−1(q)), . . . , X�(τg−1(q))

))

= T τg
(
T τg−1k D

∣∣
o

(
T τ(g−1k)−1X1(τg−1(q)), . . . , T τ(g−1k)−1X�(τg−1(q))

)

= T τk D
∣∣
o

(
T τk−1 ◦ T τg ◦ X1 ◦ τg−1(q), . . . , T τk−1 ◦ T τg ◦ X� ◦ τg−1(q)

)
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= T τk D
∣∣
o

(
T τk−1

(
(τg)∗X1

)
(q), . . . , T τk−1

(
(τg)∗X�

)
(q)

)

= D
∣∣
q

(
(τg)∗X1(q), . . . , (τg)∗X�(q)

)

= (
D

(
(τg)∗X1, . . . , (τg)∗X�

))
(q).

Thus (τg)∗D(X1, . . . , X�) = D
(
(τg)∗X1, . . . , (τg)∗X�

)
is shown for all g ∈ G and

X1, . . . , X� ∈ �∞(
T (G/H)

)
as desired. ��

In the remainder part of this subsection, we investigate invariant covariant deriva-
tives and their relation to Ad(H)-invariant bilinear maps m×m → m. We first show
that an invariant covariant derivative on G/H yields an Ad(H)-invariant bilinear map
by evaluating it on fundamental vector fields and considering its value at pr(e) ∈ G/H .
This is motivated by the discussion in [7, Sec. 23.6].

Before we proceed, we point out that the right-hand side of (4.20) in the next lemma
is chosen such that it coincides with the expression from Definition 4.16, below.

Lemma 4.8 Let G/H bea reductive homogeneous spacewith reductive decomposition
g = h ⊕ m. Moreover, let ∇ : �∞(

T (G/H)
) × �∞(

T (G/H)
) → �∞(

T (G/H)
)
be

an invariant covariant derivative. Then the following assertions are fulfilled:

1. Let X ,Y ∈ m. Then

∇XG/H YG/H
∣
∣
pr(e) = Tepr

( − [X ,Y ]m + α(X ,Y )
)

(4.20)

defines an Ad(H)-invariant bilinear map α : m × m → m.
2. Let ∇1 and ∇2 be both invariant covariant derivatives on G/H. Then ∇1

XG/H

YG/H
∣∣
pr(e) = ∇2

XG/H
YG/H

∣∣
pr(e) for all X ,Y ∈ m implies ∇1 = ∇2.

Proof We first show Claim 1. Obviously, the map m × m � (X ,Y ) �→ [X ,Y ]m ∈
m is bilinear and Ad(H)-invariant. Moreover, by exploiting that Tepr

∣∣
m

: m →
Tpr(e)(G/H) is a linear isomorphism, Claim 1 is equivalent to the assertion that

β : m × m → m, (X ,Y ) �→ (
Tepr

∣∣
m

)−1
(
∇XG/H YG/H

∣∣
pr(e)

)

is anAd(H)-invariant bilinearmap. Themapβ is bilinear since the covariant derivative
∇ : �∞(

T (G/H)
)×�∞(

T (G/H)
) → �∞(

T (G/H)
)
isR-bilinear. Next, let h ∈ H .

Using ideas of [1, Sec. 8], we obtain by Lemma 4.6, Claim 3 for X ,Y ∈ m

β
(
Adh(X),Adh(Y )

) = (
Tepr

∣∣
m

)−1
(
∇(

Adh(X)
)
G/H

(
Adh(Y )

)
G/H

∣∣
pr(e)

)

= (
Tepr

∣∣
m

)−1
(
∇(τh)∗XG/H (τh)∗YG/H

∣∣
pr(e)

)
.

(4.21)

Moreover, using Lemma 3.2, i.e. Tpr(e)τh ◦ Tepr
∣∣
m

= Tepr ◦ Adh
∣∣
m
, and exploiting

that Tepr
∣∣
m

: m → Tpr(e)(G/H) is a linear isomorphism, we obtain by the invariance
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of ∇
Tepr

(
Adh

(
β(X ,Y )

)) = Tpr(e)τh ◦ Teprβ(X ,Y )

= Tpr(e)τh
(∇XG/H YG/H

∣∣
pr(e)

)

= T
τ−1
h (pr(e))τh

((∇XG/H YG/H
)
(τh−1(pr(e)))

)

= (
(τh)∗∇XG/H YG/H

)
(pr(e))

= ∇(τh)∗XG/H ((τh)∗YG/H )
∣∣
pr(e)

= Tepr
(
β(Adh(X),Adh(Y ))

)
,

(4.22)

where the last equality holds by (4.21). Obviously, (4.22) is equivalent to

β
(
Adh(X),Adh(Y )

) = Adh
(
β(X ,Y )

)

for all h ∈ H and X ,Y ∈ m. Hence Claim 1 is proven.
We now show Claim 2. Let ∇1,∇2 : �∞(

T (G/H)
) × �∞(

T (G/H)
) →

�∞(
T (G/H)

)
be two invariant covariant derivatives. Then their difference

D(X ,Y ) = ∇1
XY − ∇2

XY , X ,Y ∈ �∞(T (G/H))

defines a tensor field D ∈ �∞(
T ∗(G/H)⊗2 ⊗ T (G/H)

)
on G/H according to [13,

Prop. 4.13]. Moreover, this tensor field corresponds to an Ad(H)-invariant bilinear
map d : m × m → m via D

∣∣
pr(e)

(
TeprX , TeprY

) = Tepr
(
d(X ,Y )

)
for all X ,Y ∈ m

by Lemma 4.7 because of

(τg)∗
(
D(X ,Y )

) = (τg)∗
(∇1

XY − ∇2
XY

)

= ∇1
(τg)∗X (τg)∗Y − ∇2

(τg)∗X (τg)∗Y

= D
(
(τg)∗X , (τg)∗Y

)

for all X ,Y ∈ �∞(
T (G/H)

)
. By ∇1

XG/H
YG/H

∣∣
pr(e) = ∇2

XG/H
YG/H

∣∣
pr(e) for all

X ,Y ∈ m, we obtain

0 = ∇1
XG/H

YG/H
∣
∣
pr(e) − ∇2

XG/H
YG/H

∣
∣
pr(e) = D(XG/H (e), YG/H (e)) = Tepr

(
d(X , Y )

)
.

Hence d(X ,Y ) = 0 is fulfilled for all X ,Y ∈ m. This implies D = 0 as desired. ��

4.1.2 Invariant Covariant Derivatives in Terms Horizontal Lifts

Lemma 4.8, Claim 1 shows that an invariant covariant derivative∇ onG/H defines an
Ad(H)-invariant bilinear map α : m×m → m by (4.20). Moreover, it shows that∇ is
uniquely determined by an Ad(H)-invariant bilinear map α : m × m → m by (4.20).

However, it does not show that such an invariant covariant derivative ∇ on G/H
exists. In the sequel, we obtain another proof for the existence of an invariant covariant
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derivative ∇α on G/H for a given Ad(H)-invariant bilinear map α : m × m → m by
expressing ∇α in terms of horizontally lifted vector fields on G. To this end, we state
some lemmas as preparation.

Lemma 4.9 Let g ∈ G. Then the following assertions are fulfilled:

1. Let X ∈ �∞(
Hor(G)

)
and g ∈ G. Then the push-forward of X by �g : G → G

is a horizontal vector field on G, i.e. (�g)∗X = T �g ◦ X ◦ �g−1 ∈ �∞(
Hor(G)

)

holds.
2. Let f : G → R be smooth and let X ∈ m. Moreover, let g ∈ G. Denoting

by (�g)∗XL = T �g ◦ XL ◦ �g−1 the push-forward of X L ∈ �∞(
Hor(G)

)
by

�g : G → G, one has

(�g)∗( f X L) = (
(�g−1)∗ f

)
XL . (4.23)

Proof The first claim is obvious. It remains to prove the second claim. To this end, we
compute for g, k ∈ G

(
(�g)∗( f X L)

)
(k) = Tg−1k�g ◦ (

f X L) ◦ �g−1(k)

= Tg−1k�g
(
f (g−1k)XL(g−1k)

)

= f
(
�g−1(k)

)(
Tg−1k�g ◦ XL ◦ �g−1(k)

)

= (
(�g−1)∗ f

)
(k)XL(k),

where exploited that XL ∈ �∞(
Hor(G)

)
is a left-invariant vector field. This yields

the desired result. ��
Lemma 4.10 Let G/H be a reductive homogeneous space with reductive decom-
position g = m ⊕ h and let Hor(G) ⊆ TG be the horizontal bundle from
Proposition 3.12. Moreover, let α : m×m → m be anAd(H)-invariant billinear map.
Let {A1, . . . , AN } ⊆ m be a basis of m and denote by AL

1 , . . . , AL
N ∈ �∞(

Hor(G)
)

the corresponding left-invariant frame. Let X ,Y ∈ �∞(Hor(G)) be horizontal vec-
tor fields on G and expand them in the frame AL

1 , . . . AL
N , i.e. X = xi AL

i and
Y = y j AL

j , with some uniquely determined smooth functions xi , y j : G → R, where
i, j ∈ {1, . . . , N }. Using this notation and Einstein summation convention, as usual,
we set

∇Hor,α
X

Y = (
LX y

j )AL
j + xi y j (α(Ai , A j )

)L
. (4.24)

Then (4.24) defines a map ∇Hor,α : �∞(
Hor(G)

) × �∞(
Hor(G)

) → �∞(
Hor(G)

)

fulfilling

∇Hor,α
f X

Y = f ∇Hor,α
X

Y and ∇Hor,α
X

( f Y ) = (
LX f

)
Y + f ∇Hor,α

X
Y (4.25)

for all f ∈ C∞(G) and X ,Y ∈ �∞(
Hor(G)

)
. Moreover, ∇Hor,α has the following

properties:
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1. For each g ∈ G, the map ∇Hor,α is invariant under �g : G → G in the sense that

∇Hor,α
X

Y = (
�g−1

)
∗
(∇Hor,α

(�g)∗X
(
(�g)∗Y

))
, X ,Y ∈ �∞(

Hor(G)
)
. (4.26)

holds.
2. The map ∇Hor,α : �∞(

Hor(G)
) × �∞(

Hor(G)
) → �∞(

Hor(G)
)
fulfills

∇Hor,α
XL Y L

∣∣
e = (

α(X ,Y )
)L

(e) = α(X ,Y ) X ,Y ∈ m. (4.27)

Proof We first show that ∇Hor,α is well-defined. Let {B1, . . . , BN } ⊆ m be another
basis ofm. Then one has Ai = aki Bk and therefore AL

i = aki (B
L
k ), where

(
aki

) ∈ R
N×N

is some invertible matrix. Writing X = xi AL
i and Y = y j AL

j yields X = (xiaki )B
L
k

as well as Y = (y ja�
j )B

L
� . Using the R-linearity of Lie derivatives and the bilinearity

of α : m × m → m we compute

∇Hor,α
X

Y = (
LX (y ja�

j )
)
BL

� + (xiaki )(y
ja�

j )
(
α(Bk, B�)

)L

= (
LX y

j )a�
j B

L
� + xi y j (α(aki Bk, a

�
j B�)

)L

= (
LX y

j )AL
j + xi y j (α(Ai , A j )

)L
.

Thus ∇Hor,α : �∞(
Hor(G)

) × �∞(
Hor(G)

) → �∞(
Hor(G)

)
is well-defined. By a

straightforward computation, one verifies that ∇Hor,α fulfills (4.25).
Next we show Claim 1. By Lemma 4.9, we obtain

(�g)∗X = (�g)∗
(
xi AL

i

) = (
(�g−1)∗xi

)
AL
i (4.28)

for all g ∈ G and analogously (�g)∗Y = (
(�g−1)∗y j

)
AL
j . By (4.28) and using �∗

g A
L
i =

AL
i due the left-invariance of AL

i , we compute

∇Hor,α
((�g)∗X)

((�g)∗Y )

=
(
L((�g−1 )∗xi )AL

i

(
(�g−1)∗y j )

)
AL
j + (

(�g−1)∗xi
)(

(�g−1)∗y j )(α(Ai , A j )
)L

=
((

(�g−1)∗xi
)
L(�g−1 )∗AL

i

(
(�g−1)∗y j )

)
AL
j + (

(�g−1)∗(xi y j )
)(

α(Ai , A j )
)L

= (
(�g−1)∗xi

)(
(�g−1)∗

(
LAL

i
y j )

)
AL
j + (

(�g−1)∗(xi y j )
)(

α(Ai , A j )
)L

= (
(�g−1)∗

(
Lxi AL

i
y j ))AL

j + (
(�g−1)∗(xi y j )

)(
α(Ai , A j )

)L

= (�g)∗
(∇Hor,α

X
Y

)
,

where we used L(�g−1 )∗AL
i

(
(�g−1)∗y j

) = (�g−1)∗(LAL
i
y j ), see e.g. [13, Prop. 8.16]

and the last equality follows by Lemma 4.9, Claim 2. Thus Claim 1 is shown.
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It remains to prove Claim 2. To this end, let X ,Y ∈ m. Then we can write

XL = xi AL
i and Y L = y j AL

j ,

where the functions xi , y j : G → R are clearly constant. By this notation, we compute
by exploiting that LXL y j = 0 since y j : G → R is constant for all j ∈ {1, . . . , N }

∇Hor,α
XL Y L = (

LXL y j )AL
j + xi y j (α(Ai , A j ))

L = xi y j (α(Ai , A j ))
L = (

α(X ,Y )
)L

.

For g = e, the equation above yields

∇Hor,α
XL Y L

∣
∣
e = (

α(X ,Y )
)L

(e) = α(X ,Y ) (4.29)

as desired. ��
Remark 4.11 The map ∇Hor,α : �∞(

Hor(G)
) × �∞(

Hor(G)
) → �∞(

Hor(G)
)
in

Lemma 4.10 has properties that are similar to those of a covariant derivative on
Hor(G) → G although its first argument is only definedon�∞(

Hor(G)
)

� �∞(TG).

Horizontal lifts are compatible with push-forwards in the following sense.

Lemma 4.12 Let X ∈ �∞(
T (G/H)

)
and let X ∈ �∞(

Hor(G)
)
be its horizontal lift.

Then

(τg)∗X = (�g)∗X (4.30)

holds for g ∈ G, where (τg)∗X denotes the horizontal lift of (τg)∗X ∈ �∞(
T (G/H)

)
.

Proof Let g ∈ G. We have pr ◦ �g = τg ◦ pr implying T pr ◦ T �g = T τg ◦ T pr. Using
this equality as well as T pr ◦ X = X ◦ pr we compute

T pr ◦ (
(�g)∗X

) = T pr ◦ (
T �g ◦ X ◦ �g−1

)

= T τg ◦ (
T pr ◦ X

) ◦ �g−1

= T τg ◦ (
X ◦ pr

) ◦ �g−1

= T τg ◦ X ◦ τg−1 ◦ pr

= (
(τg)∗X

) ◦ pr.

(4.31)

Since (�g)∗X ∈ �∞(
Hor(G)

)
is horizontal and T pr◦(

(�g)∗X
) = (

(τg)∗X
)◦pr holds

by (4.31), we obtain (τg)∗X = (�g)∗X as desired. ��
Lemma 4.13 Let G/H be a reductive homogeneous space with reductive split g =
h ⊕ m. Moreover, let {A1, . . . , AM } ⊆ m be some vectors, not necessarily forming a
basis of m, and let xi : G → R for i ∈ {1, . . . , M} be smooth. Define the horizontal
vector field X ∈ �∞(

Hor(G)
)
by

X(g) = xi (g)AL
i (g), g ∈ G. (4.32)

123



Covariant Derivatives on Homogeneous Spaces Page 21 of 43 150

Then X is the horizontal lift of X ∈ �∞(
T (G/H)

)
given by

T pr ◦ X = X ◦ pr (4.33)

iff

xi (g)AL(g) = xi (gh)
(
Adh(Ai )

)L
(g) ⇐⇒ xi (g)Ai = xi (gh)Adh(Ai )

(4.34)

holds for all g ∈ G and h ∈ H.

Proof We first assume that X = xi AL
i is the horizontal lift of the vector field X ∈

�∞(
T (G/H)

)
. Then (4.33) holds. Using pr(gh) = pr(g) for all g ∈ G and h ∈ H ,

we can rewrite (4.33) equivalently as

Tgpr
(
xi (g)AL

i (g)
) = (Tgpr)X(g)

= X ◦ pr(g)

= X ◦ pr(gh)

= (
T pr ◦ X

)
(gh)

= Tghpr
(
xi (gh)AL

i (gh)
)

= xi (gh)
(
(Tghpr ◦ Te�gh)Ai

)

= xi (gh)
(
Te(pr ◦ �gh)Ai

)

= xi (gh)
(
(Tpr(e)τgh ◦ Tepr)Ai

)

= xi (gh)
(
Tpr(e)(τg ◦ τh) ◦ TeprAi

)

= xi (gh)
(
Tpr(e)τg ◦ (Tpr(e)τh ◦ Tepr)Ai

)

= xi (gh)
(
Tpr(e)τg ◦ (Tepr ◦ Adh)Ai

)

= xi (gh)
(
Te(τg ◦ pr)(Adh(Ai ))

)

= xi (gh)
(
Te(pr ◦ �g)(Adh(Ai ))

)

= xi (gh)
(
(Tgpr ◦ Te�g)Adh(Ai )

)

= xi (gh)
(
Tgpr

(
Adh(Ai )

)L
(g)

)
,

(4.35)

where we exploited Lemma 3.2, i.e. Tpr(e)τh ◦ Tepr
∣∣
m

= Tepr ◦Adh
∣∣
m
for all h ∈ H .

Since Tgpr : Hor(G)g → Tpr(g)(G/H) is a linear isomorphism for each g ∈ G, Equa-
tion (4.35) is equivalent to the left-hand side of (4.34).Applying the linear isomorphism
(Te�g)−1 : Hor(G)g → m to both sides of this equality shows the equivalence to right-
hand side of (4.34).

Conversely, assuming that the functions xi : G → R in the definition of X ∈
�∞(

Hor(G)
)
in (4.32) fulfill (4.34) for all i ∈ {1, . . . , M}, we define the map

X : G/H → T (G/H), pr(g) = g · H �→ (Tgpr) ◦ X(g),
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where the coset pr(g) = g ·H ∈ G/H is represented by g ∈ G. Then the computation
in (4.35) shows that X : G/H → T (G/H) is well-defined, i.e. we have for all g ∈ G
and h ∈ H

X(pr(g)) = Tgpr ◦ X(g) = Tghpr ◦ X(gh) = X(pr(gh)). (4.36)

Then X ◦ pr = T pr ◦ X holds by construction. Since pr : G → G/H is a surjective
submersion and T pr ◦ X : G → T (G/H) is smooth, the map X : G/H → T (G/H)

is smooth by [13, Thm. 4.29]. Clearly, for pr(g) ∈ G/H , one has X(pr(g)) ∈
Tpr(g)(G/H). Hence X ∈ �∞(

T (G/H)
)
is a smooth vector field on G/H . Obvi-

ously, its horizontal lift is given by X . ��

Lemma 4.14 Let X ,Y ∈ �∞(
Hor(G)

)
be thehorizontal lifts of X ,Y ∈ �∞(

T (G/H)
)
,

respectively, and let {A1, . . . , AN } ⊆ m be a basis of m. Denote by AL
1 , . . . , AL

N the
corresponding left-invariant frame of �∞(Hor(G)). Moreover, expand X = xi AL

i
and Y = y j AL

j , where x
i , y j : G → R are smooth. Then

(LX y
j )(g)AL

j (g) = (LX y
j )(gh)

(
Adh(A j )

)L
(g) (4.37)

holds. In particular,
(
LX y

j
)
AL
j ∈ �∞(

Hor(G)
)
is the horizontal lift of the vector

field X ∈ �∞(
T (G/H)

)
given by X ◦ pr = T pr ◦ (

(LX y
j )AL

j

)
.

Proof Let {A1, . . . AN } ⊆ m∗ be the dual basis of {A1, . . . , AN }, i.e. Ai (A j ) = δij

for all i, j ∈ {1, . . . , N } with δij denoting Kronecker deltas. Since Y = y j AL
j is the

horizontal lift of Y , one has

y j (g)A j = y j (gh)Adh(A j ) (4.38)

for all g ∈ G and h ∈ H by Lemma 4.13. Let j ∈ {1, . . . , N }. Applying A j ∈ m∗
to (4.38) yields by A j (Ak) = δ

j
k

y j (g) = A j (yk(g)Ak
) = A j (yk(gh)Adh(Ak)

) = yk(gh)A j (Adh(Ak)
)
(4.39)

for all g ∈ G and h ∈ H . Next we define the curves c1 : R � t �→ g exp
(
t xi (g)Ai

) ∈
G and c2 : R � t �→ gh exp

(
t xi (gh)Ai

) ∈ G. Then

ċ1(0) = d
dt

(
g exp

(
t xi (g)Ai

))∣∣
t=0 = Te�g

(
xi (g)Ai

) = xi (g)AL
i (g) = X(g)

holds and analogously one obtains

ċ2(0) = d
dt

(
gh exp

(
t xi (gh)Ai

))∣∣
t=0 = Te�gh

(
xi (gh)Ai

) = xi (gh)AL
i (gh) = X(gh).
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Expressing y j : G → R by (4.39) and using the definition of c1 and c2, we compute
for g ∈ G and h ∈ H by Conjh ◦ exp = exp ◦Adh

(
LX y

j )AL
j (g) =

(
d
dt

(
y j (c1(t)

)∣∣
t=0

))
AL
j (g)

=
(

d
dt

(
yk

(
c1(t)h

)
A j (Adh(Ak)

))∣
∣
t=0

)
AL
j (g)

=
(

d
dt y

k
(
g exp(t xi (g)Ai )h

)∣∣
t=0

)(
A j (Adh(Ak)

)
AL
j (g)

)

=
(

d
dt y

k
(
g exp

(
t xi (gh)Adh(Ai )

)
h
)∣∣

t=0

)(
Adh(Ak)

)L
(g)

=
(

d
dt y

k
(
g exp

(
tAdh

(
xi (gh)Ai

))
h
)∣∣

t=0

)(
Adh(A j )

)L
(g)

=
(

d
dt y

k
(
gConjh

(
exp

(
t xi (gh)Ak

))
h
)∣∣

t=0

)(
Adh(A j )

)L
(g)

=
(

d
dt y

k
(
gh exp

(
t xi (gh)Ak

))∣∣
t=0

)(
Adh(A j )

)L
(g)

=
(

d
dt y

k(c2(t)
)∣∣
t=0

)(
Adh(A j )

)L
(g)

= (
LX y

k)(gh)
(
Adh(A j )

)L
(g)

showing (4.37). Thus
(
LX y

j
)
AL
j is the horizontal lift of the vector field X on G/H

given by X ◦ pr = T pr ◦ (
LX y

j
)
AL
j according to Lemma 4.13. ��

After this preparation, we are in the position to prove the existence of an invariant
covariant derivative on G/H associated with an Ad(H)-invariant bilinear map by
expressing it in terms of horizontally lifted vector fields.

Theorem 4.15 Let X ,Y ∈ �∞(
T (G/H)

)
and let X ,Y ∈ �∞(

Hor(G)
)
denote their

horizontal lifts. Let {A1, . . . , AN } ⊆ m be a basis and let AL
1 , . . . AL

N denote the
corresponding left-invariant vector fields. Moreover, expand X = xi AL

i and Y =
y j AL

j with smooth functions x
i , y j : G → R for i, j ∈ {1, . . . , N }. Letα : m×m → m

be an Ad(H)-invariant bilinear map. Then

(∇α
XY ) ◦ pr = T pr

(
(LX y

j )AL
j + xi y j (α(Ai , A j )

)L)
(4.40)

defines an invariant covariant derivative ∇α : �∞(
T (G/H)

) × �∞(
T (G/H)

) →
�∞(

T (G/H)
)
and

∇α
XY = (

LX y
j )AL

j + xi y j (α(Ai , A j )
)L (4.41)

holds, where ∇α
XY denotes the horizontal lift of ∇α

XY . Moreover, for all X ,Y ∈ m

∇α
XG/H

YG/H
∣∣
pr(e) = Tepr

( − [X ,Y ]m + α(X ,Y )
)

(4.42)

is fulfilled. In addition, ∇α is the unique invariant covariant derivative on G/H sat-
isfying (4.42).
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Proof We define the covariant derivative ∇α on G/H by

(∇α
XY

) ◦ pr = T pr ◦
(
∇Hor,α
X

Y
)
, (4.43)

where ∇Hor,α is given by Lemma 4.10. We first show that this definition yields a
well-defined expression, i.e.

(∇α
XY ) ◦ pr(g) = (∇α

XY
) ◦ pr(gh) holds for g ∈ G and

h ∈ H . To this end, we calculate by exploiting Lemmas 4.13 and 4.14 as well as the
Ad(H)-invariance of α : m × m → m

∇Hor,α
X

Y
∣
∣
g = (

LX y
j )(g)AL

j (g) + xi (g)y j (g)
(
α(Ai , A j )

)L
(g)

= (
LX y

j )(g)AL
j (g) + (

α
(
xi (g)Ai , y

j (g)A j
))L

(g)

= (
LX y

j )(gh)
(
Adh(A j )

)L
(g) + (

α
(
xi (gh)Adh(Ai ), y

j (gh)Adh(A j )
)L

(g)

= (
LX y

j )(gh)
(
Adh(A j )

)L
(g) + xi (gh)y j (gh)

(
α
(
Adh(Ai ),Adh(A j )

)L
(g)

= (
LX y

j )(gh)
(
Adh(A j )

)L
(g) + xi (gh)y j (gh)

(
Adh

(
α(Ai , A j )

))L
(g).

Hence (4.43) yields a well-defined vector field on G/H by Lemma 4.13.
Next we show that∇α yields a covariant derivative on G/H . Let f : G/H → R be

smooth. By f X = pr∗( f )X and the properties of ∇Hor,α from (4.25) in Lemma 4.10,
we obtain

∇α
X ( f Y ) ◦ pr = T pr ◦ (∇Hor

X
(pr∗( f )Y )

)

= T pr ◦ (
(LX (pr∗ f ))Y + pr∗( f )∇Hor

X
Y

)

= T pr ◦ (
pr∗(LX f )Y

) + T pr ◦ (
pr∗( f )∇Hor

X
Y

)

= (
(LX f )Y + f ∇α

XY
) ◦ pr

due to LX (pr∗ f ) = pr∗(LX f ) by [13, Prop. 8.16] since X and X are pr-related.
Moreover, we have

∇α
f XY ◦ pr = T pr ◦ (∇Hor,α

pr∗( f )XY
)

= T pr ◦ (
pr∗( f )∇Hor,α

X
Y

)

= (pr∗ f )
(
T pr

(∇Hor,α
X

Y
))

= (
f ∇α

XY
) ◦ pr

byLemma 4.10. Hence∇α is indeed a covariant derivative. In addition,∇α is invariant.
Indeed, by Lemma 4.10, Claim 1 and Lemma 4.12, one has

(∇α
(τg)∗X (τg)∗Y

) ◦ pr = T pr ◦ (∇Hor,α
(�g)∗X

(�g)∗Y
)

= T pr ◦ (
(�g)∗∇Hor,α

X
Y

)

= (
(τg)∗∇α

XY
) ◦ pr.
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Next let X ,Y ∈ m and let {A1, . . . , AN } ⊆ m∗ be the dual basis of {A1, . . . , AN }.
By Lemma 4.6, Claim 1, we have YG/H = y j AL

j with y j : G � g �→ y j (g) =
A j (Adg−1(Y )) ∈ R for j ∈ {1, . . . , N }. Thus we obtain by Lemma 4.6, Claim 2

∇Hor,α
XG/H

YG/H

∣∣∣
e

= −[X ,Y ]m + Ai (Ade(X))A j (Ade(Y ))α(Ai , A j )
L(e)

= −[X ,Y ]m + α(X ,Y ),

(4.44)

where we used that XG/H (e) = Ai
(
Ade−1(X)

)
AL
i (e) = X is fulfilled for all X ∈ m

by Lemma 4.6, Claim 1. Equation (4.44) is equivalent to (4.42) because of

∇α
XG/H

YG/H
∣∣
pr(e) = Tepr

(
∇α
XG/H

YG/H (e)
)

= Tepr
(
∇Hor,α
XG/H

YG/H

∣∣∣
e

)
. (4.45)

Moreover, ∇α is uniquely determined by (4.42) according to Lemma 4.8, Claim 2.
This yields the desired result. ��

The next definition makes sense due to Theorem 4.15.

Definition 4.16 Let α : m × m → m be an Ad(H)-invariant bilinear map. Then the
invariant covariant derivative∇α : �∞(

T (G/H)
)×�∞(

T (G/H)
) → �∞(

T (G/H)
)

which is uniquely determined by

∇α
XG/H

YG/H
∣
∣
pr(e) = Tepr

( − [X ,Y ]m + α(X ,Y )
)
, X ,Y ∈ m, (4.46)

is called the invariant covariant derivative associated with α or corresponding to α.

Remark 4.17 The right hand side of (4.46) in Definition 4.16 is chosen such that the
invariant covariant derivative ∇α corresponds to the invariant affine connection from
[1, Thm. 8.1] associatedwith theAd(H)-invariant bilinearmapα, see Proposition 4.18
below.

As already mentioned above, the one-to-one correspondence between invariant
affine connections onG/H and Ad(H)-invariant bilinear mapsm×m → m is proven
in [1, Thm. 8.1]. Clearly, an invariant covariant derivative on G/H yields an invariant
affine connection on G/H and vice versa by Remark 4.3. In addition, Theorem 4.15
provides another proof for the existence and uniqueness of an invariant covariant
derivative onG/H corresponding to anAd(H)-invariant bilinear map α : m×m → m
via (4.46) from Definition 4.2. The next proposition shows that ∇α associated to the
Ad(H)-invariant bilinear map α : m×m → m corresponds indeed the invariant affine
connection associated with α from [1, Thm. 8.1].

Proposition 4.18 Let G/H be a reductive homogeneous space with fixed reductive
decomposition g = h⊕m and letα : m×m → m be anAd(H)-invariant bilinearmap.
Moreover, let tα : �∞(

T (G/H)
) → EndC∞(G/H)

(
�∞(

T (G/H)
))

denote the invari-
ant affine connection corresponding to α from [1, Thm. 8.1]. Then ∇α

XY = tα(Y )(X)

holds for all X ,Y ∈ �∞(
T (G/H)

)
, i.e. tα is the affine connection corresponding to

∇α by Remark 4.3.

123



150 Page 26 of 43 M. Schlarb

Proof Obviously, an invariant affine connection corresponds to an invariant covariant
derivative and vice versa by Remark 4.3. We now briefly recall some parts of the
construction of the invariant affine connections from [1, Sec. 7–8], where we adapt
some notations. Let N = dim(m) and n = dim(g). Let (V , x) be a chart of G, where
V ⊆ G is an open neighborhood of e ∈ G such that V is diffeomorphic to M × K ,
where M and K are the submanifolds of V defined by

M = {
g ∈ V | xN+1(g) = · · · = xn(g) = 0

}
,

K = {
g ∈ V | x1(g) = · · · = xN (g) = 0

}
,

where M is denoted by N in [1, Sec. 7]. Moreover, it is assumed that V is chosen such
that the restriction of the canonical projection pr

∣∣
M : M → G/H is a diffeomorphism

onto its image denoted by M∗ = pr(M). It is pointed out in [1, Sec. 7] that the
existence of such a chart is well-known referring to [14, Chap. IV, §V]. In addition
to the assumptions from [1, Sec. 7], we assume that TeM = m holds. Clearly, a chart
(V , x) of G centered at e ∈ G with the properties listed above can be constructed by
exploiting that the map

g → G, X �→ exp(Xm) exp(Xh) (4.47)

restricted to a suitable open neighborhood of 0 ∈ g is a diffeomorphism onto its image
which is an open neighborhood of e ∈ G, see e.g. [15, p. 76]. Obviously, M∗ is an
open submanifold of G/H . Following [1, Eq. (7.1)], we now define for X ∈ m the
vector field X∗ ∈ �∞(

T M∗) by

X∗(pr(g)) = X∗(τg(pr(e))) = (
Tpr(e)τg

)
(TeprX), pr(g) ∈ M∗, g ∈ M,(4.48)

where we exploit that pr
∣∣
M : M → M∗ is a diffeomorphism. We now relate ∇α to tα

which is uniquely determined by

tα(Y ∗)(X∗)
∣∣
pr(e) = Tepr

(
α(X ,Y )

)
, X ,Y ∈ m (4.49)

according to [1, Thm. 8.1], see in particular [1, Eq. (8.1)]. To this end, we rewrite (4.48)
as

X∗(pr(g)) = (
Tpr(e)τg

) ◦ (TeprX)

= Te(τg ◦ pr)X

= Te(pr ◦ �g)X

= Tgpr ◦ Te�g X

= Tgpr ◦ XL(g)

(4.50)

for all g ∈ M , where we used τg ◦ pr = pr ◦ �g and τg(pr(e)) = pr(g). Thus the
horizontal lift X∗ ∈ �∞(

T pr−1(M∗)
)
of X∗ restricted toM ⊆ pr−1(M∗) ⊆ G fulfills

X∗∣∣
M = XL

∣∣
M due to (4.50) since XL is horizontal. Next let {A1, . . . , AN } ⊆ m be
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a basis of m and expand X∗ = xi AL
i with uniquely determined smooth functions

xi : pr−1(M∗) → R. Analogously, one defines for Y ∈ m the vector field Y ∗ on M∗
whose horizontal lift Y ∗ ∈ �∞(

T pr−1(M∗)
)
is expanded as Y ∗ = y j AL

j . Clearly, the

unique smooth functions y j : pr−1(M∗) → R restricted to M , i.e. y j
∣
∣
M : M → R,

are constant for all j ∈ {1, . . . , N }. We now compute ∇α
X∗Y ∗∣∣

pr(e) which makes sense
since Y ∗ is defined on the open neighborhood M∗ of pr(e) ∈ G/H . Moreover, by the
assumption TeM = m, there exists a smooth curve c : (−ε, ε) → M for some ε > 0
with c(0) = e and ċ(0) = X ∈ m. Since the functions y j

∣∣
M : M → R are constant

for all j ∈ {1, . . . , N }, Theorem 4.15 yields for X ,Y ∈ m

∇α
X∗Y ∗∣∣

pr(e) = Tepr
((
LX∗ y j )AL

j (e) + xi (e)y j (e)α(Ai , A j )
L(e)

)

= Tepr
(( d

dt y
j (c(t))

∣∣
t=0

)
Ai + α(X ,Y )

)

= Tepr
(
α(X ,Y )

)

= tα(Y ∗)(X∗)
∣∣
pr(e),

(4.51)

where we used (4.49) in the last equality. Moreover, ∇α is the unique invariant covari-
ant derivative on G/H satisfying (4.51). Indeed, let ∇β be the invariant covariant
derivative associated with the Ad(H)-invariant bilinear map β : m × m → m fulfill-
ing ∇β

X∗Y ∗∣∣
pr(e) = tα(Y ∗)(X∗)

∣∣
pr(e) for all X ,Y ∈ m. Then

∇β
X∗Y ∗∣∣

pr(e) = Tepr
(
β(X ,Y )

) = tα(Y ∗)(X∗)
∣∣
pr(e) = Tepr

(
α(X ,Y )

) = ∇α
X∗Y ∗∣∣

pr(e)

yields β = α implying ∇α = ∇β . In addition, tα is uniquely determined by (4.49).
Hence∇α and tα are both uniquely determined by (4.51). Thus (4.51) implies∇α

XY =
tα(Y )(X) for all X , Y ∈ �∞(

T (G/H)
)
as desired. ��

4.2 Torsion and Curvature

Next we consider the torsion of an invariant covariant derivative. This is the next
lemma whose result coincides with [1, Eq. (9.2)].

Lemma 4.19 Let ∇α be the invariant covariant derivative on G/H associated to the
Ad(H)-invariant bilinear map α : m×m → m. The torsion of ∇α is the G-invariant
tensor field Torα ∈ �∞(

�2(T ∗(G/H)) ⊗ T (G/H)
)
defined by

Torα
(
XG/H ,YG/H

)∣∣
pr(e) = Tepr

(
α(X ,Y ) − α(Y , X) − [X ,Y ]m

)
(4.52)

for all X ,Y ∈ m

Proof We first note that (τg)∗[XG/H ,YG/H ] = [(τg)∗XG/H , (τg)∗YG/H ] holds all
for g ∈ G, see e.g. [13, Cor. 8.31]. This identity and the invariance of ∇α yields
that Torα is G-invariant. Thus Torα corresponds to an Ad(H)-invariant bilinear map
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m×m → m by Lemma 4.7. In order to determine this bilinear map, writing pr(e) = o,
we compute

Torα
(
XG/H , YG/H

)∣∣
o = ∇α

XG/H
YG/H

∣
∣
o − ∇α

YG/H
XG/H

∣
∣
o − [XG/H , YG/H ]∣∣o

= ∇α
XG/H

YG/H
∣
∣
o − ∇α

YG/H
XG/H

∣
∣
o + [X , Y ]G/H (o)

= Tepr
( − [X , Y ]m + α(X , Y ) − (

α(Y , X) − [Y , X ]m
) + [X ,Y ]m

)

= Tepr
(
α(X , Y ) − α(Y , X) − [X , Y ]m

)

for all X ,Y ∈ m, where we exploited that g � X �→ XG/H ∈ �∞(
T (G/H)

)
is an

anti-morphism of Lie algebras, see e.g. [9, Sec. 6.2]. ��
Moreover, one can compute the curvature of ∇α given by

Rα(X ,Y )Z = ∇α
X∇α

Y Z − ∇α
Y∇α

X Z − ∇α[X ,Y ]Z , X ,Y , Z ∈ �∞(
T (G/H)

)
(4.53)

by using the expression for∇α from Theorem 4.15. This is the next proposition which
yields an alternative derivation for the curvature obtained in [1, Eq. (9.6)].

Proposition 4.20 Let ∇α be the invariant covariant derivative on G/H associated
to the Ad(H)-invariant bilinear map α : m × m → m. The curvature of ∇α is the
G-invariant tensor field Rα ∈ �∞(

(�2(T ∗(G/H)))⊗T ∗(G/H)⊗T (G/H)
))

given
by

Rα(XG/H ,YG/H )ZG/H
∣
∣
pr(e)

= Tepr
(
α
(
X , α(Y , Z)

) − [[X ,Y ]h, Z ] − α
([X ,Y ]m, Z

) − α
(
Y , α(X , Z)

))

(4.54)

for all X ,Y , Z ∈ m.

Proof Obviously, the curvature Rα fulfills

(τg)∗
(
Rα(X ,Y )Z

) = Rα
(
(τg)∗X , (τg)∗Y

)
(τg)∗Z

for all vector fields X ,Y , Z ∈ �∞(
T (G/H)

)
by the invariance of ∇α . Hence Rα

is uniquely determined by an Ad(H)-invariant 3-linear map m3 → m according to
Lemma 4.7. We now determine this 3-linear map. To this end, let X ,Y , Z ∈ m and let
XG/H ,YG/H , ZG/H ∈ �∞(

T (G/H)
)
be the associated fundamental vector fields. In

order to compute the curvature Rα(XG/H ,YG/H )ZG/H defined by (4.53) evaluated
at the point pr(e) = e · H ∈ G/H , we need some computations as preparation. Let
{A1, . . . , AN } ⊆ m be a basis of m and denote by {A1, . . . , AN } ⊆ m∗ its dual basis.
By Lemma 4.6, Claim 1, we have XG/H = xi AL

i and YG/H = y j AL
j as well as

ZG/H = zk AL
k , where the functions x

i , y j , zk : G → R are defined by

xi (g) = Ai (Adg−1(X)
)
, y j (g) = A j (Adg−1(Y )

)
, zk(g) = Ak(Adg−1(Z)

)
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for all g ∈ G and i, j, k ∈ {1, . . . , N }. Using this notation,we obtain byTheorem4.15

∇α
XG/H

ZG/H = (
LYG/H

zk
)
AL
k + y j zk

(
α(A j , Ak)

)L = a�AL
� ,

where the functions a� : G → R for � ∈ {1, . . . , N } are given by

a� = A�
((
LYG/H

zk
)
Ak + y j zk

(
α(A j , Ak)

)) = LYG/H
z� + y j zk A�

(
α(A j , Ak)

)
.

(4.55)

In particular, evaluating a� : G → R at g = e yields by Lemma 4.6, Claim 2

a�(e)A� = (
LYG/H z

�
)
(e)AL

� (e) + y j (e)zk(e)A�
(
α(A j , Ak)

)
A�

= −[Y , Z ]m + α(Y , Z).
(4.56)

Moreover, we obtain by Theorem 4.15 and (4.56)

∇α
XG/H

∇α
YG/H

ZG/H
∣∣
e = (

LXG/H
a�

)
(e)A� + xi (e)a�(e)α(Ai , A�)

= (
LXG/H

a�
)
(e)A� + α

(
X , α(Y , Z)

) − α
(
X , [Y , Z ]m

)
.

(4.57)

In order to obtain a more explicit expression for (4.57), we consider the first summand
on the right-hand side. Recalling that a� is given by (4.55) one obtains by the Leibniz
rule

(
LXG/H

a�
)
A�

= LXG/H

(
LYG/H

z�
)
A� + (

(LXG/H
y j )zk + y j (LXG/H

zk)
)
A�

(
α(A j , Ak)

)
A�.
(4.58)

We now take a closer look at (4.58) evaluated at g = e. We obtain for second summand
of its right-hand side by Lemma 4.6, Claim 2 and A�

(
α(A j , Ak)

)
A� = α(A j , Ak)

(
(LXG/H

y j )zk + y j (LXG/H
zk)

)
(e)α(A j , Ak)

= α
((

(LXG/H
y j )(e)A j , Z

) + α
(
Y , (LXG/H

zk)(e)Ak
)

= −α
([X ,Y ]m, Z

) − α
(
Y , [X , Z ]m

)
.

(4.59)

Next we consider the first summand of the right-hand side of (4.58). As preparation,
we note that for fixed g ∈ G, the curve γY : R → G defined by

γY (t) = g exp
(
t A j (Adg−1(X)

)
A j

)
, t ∈ R
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fulfills γY (0) = g and γ̇Y (0) = Te�g A j (Adg−1(Y ))A j = YG/H (g), where the last
equality follows by Lemma 4.6, Claim 1. Thus we obtain

LYG/H
z�(g) = d

dt z
�
(
γY (t)

)∣∣
t=0

= d
dt A

�
(
Ad(

g exp
(
t A j (Adg−1 (Y )A j )

))−1(Z)
)∣∣
∣
t=0

= d
dt A

�
(
Ad

exp
(
−A j (Adg−1 (Y )A j )

)(Adg−1(Z)
))∣∣

∣
t=0

= −A�
([
A j (Adg−1(Y )

)
A j ,Adg−1(Z)

])
.

(4.60)

Since the curve γX : R � t �→ exp(t X) ∈ G fulfills γX (0) = e and γ̇ (0) = X =
XG/H (e), Equation (4.60) yields

(
LXG/H

(
LYG/H

z�
))

(e)A� = d
dt

(
LYG/H

z�
(
exp(t X)

))∣∣
t=0

= − d
dt A

�
([
A j (Adexp(−t X)(Y ))A j ,Adexp(−t X)(Z)

])
A�

∣∣
t=0

= [[X ,Y ]m, Z ]m + [Y , [X , Z ]]m. (4.61)

Plugging (4.59) and (4.61) into (4.58) yields by (4.57)

∇α
XG/H

∇α
YG/H

ZG/H
∣∣
e

= [[X ,Y ]m, Z ]m + [Y , [X , Z ]]m − α
([X ,Y ]m, Z

) − α
(
Y , [X , Z ]m

)

+ α
(
X , α(Y , Z)

) − α
(
X , [Y , Z ]m

)
.

(4.62)

By exchanging X with Y in (4.62), one obtains

∇α
YG/H

∇α
XG/H

ZG/H
∣∣
e

= [[Y , X ]m, Z ]m + [X , [Y , Z ]]m − α
([Y , X ]m, Z

) − α
(
X , [Y , Z ]m

)

+ α
(
Y , α(X , Z)

) − α
(
Y , [X , Z ]m

)
.

(4.63)

Moreover, we obtain by Theorem 4.15

∇α[XG/H ,YG/H ]ZG/H
∣
∣
e = ∇α−[X ,Y ]G/H

ZG/H

= −((
L[X ,Y ]G/H

zk
)
(e)Ak + Ai ([X ,Y ])zkα(Ai , Ak)

)

= [[X ,Y ]m, Z ]m − α([X ,Y ]m, Z),

(4.64)

where we exploited that g � X �→ XG/H ∈ �∞(T (G/H)) is an anti-morphism of
Lie algebras, see e.g. [9, Sec. 6.2]. Combining (4.62) with (4.63) and (4.64) yields the
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following expression for the curvature

Rα(XG/H ,YG/H )ZG/H (e)

=
(
[[X ,Y ]m, Z ]m + [Y , [X , Z ]]m − α

([X ,Y ]m, Z
) − α

(
Y , [X , Z ]m

)

+ α
(
X , α(Y , Z)

) − α
(
X , [Y , Z ]m

))

−
(
[[Y , X ]m, Z ]m + [X , [Y , Z ]]m − α

([Y , X ]m, Z
) − α

(
X , [Y , Z ]m

)

+ α
(
Y , α(X , Z)

) − α
(
Y , [X , Z ]m

))

−
(
[[X ,Y ]m, Z ]m − α([X ,Y ]m, Z)

)

= [Y , [X , Z ]]m − α
([X ,Y ]m, Z

) + α
(
X , α(Y , Z)

)

− [[Y , X ]m, Z ]m − [X , [Y , Z ]]m − α
(
Y , α(X , Z)

)

= −[[X ,Y ]h, Z ] − α
([X ,Y ]m, Z

) + α
(
X , α(Y , Z)

) − α
(
Y , α(X , Z)

)
,

where the last holds due to

[Y , [X , Z ]]m − [[Y , X ]m, Z ]m − [X , [Y , Z ]]m = ([Y , [X , Z ]]
− [X , [Y , Z ]])

m
− [[Y , X ]m, Z ]m

= −[[X ,Y ]h, Z ]

by the Jacobi identity and [h,m] ⊆ m. This yields the desired result. ��

4.3 Invariant Metric Covariant Derivatives

In this short subsection, we assume that G/H carries an invariant pseudo-Riemannian
metric defined by an Ad(H)-invariant scalar product 〈·, ·〉 : m × m → R. We charac-
terize all Ad(H)-invariant bilinear maps α : m×m → m such that ∇α is an invariant
metric covariant derivative with respect to the invariant pseudo-Riemannian metric
corresponding to 〈·, ·〉. To this end,wefirst recall that a covariant derivative∇ on aman-
ifold M is called compatible with the pseudo-Riemannian metric g ∈ �∞(

S2(T ∗M)
)
,

or metric for short, if

LZ
(
g(X ,Y )

) = g
(∇Z X ,Y

) + g
(
X ,∇ZY

)
, X ,Y , Z ∈ �∞(T M) (4.65)

holds, see e.g. [9, Sec. 22.5].

Notation 4.21 In this subsection, we denote by g and g a pseudo-Riemannian metric
on G and a fiber metric onHor(G), respectively, while in the previous sections as well
as in the sequel, we usually denote by g an element in a Lie group G.

Proposition 4.22 Let α : m × m → m be an Ad(H)-invariant bilinear map defining
the invariant covariant derivative ∇α on G/H. Then ∇α is metric with respect to the
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invariant pseudo-Riemannian metric on G/H defined by the Ad(H)-invariant scalar
product 〈·, ·〉 : m × m → R iff for each X ∈ m the linear map

α(X , ·) : m → m, Y �→ α(X ,Y ) (4.66)

is skew-adjoint with respect to 〈·, ·〉, i.e.
〈
α(X ,Y ), Z

〉 = −〈
Y , α(X , Z)

〉
(4.67)

holds for all X ,Y , Z ∈ m.

Proof We denote the invariant pseudo-Riemannian metric on G/H corresponding to
〈·, ·〉 by g ∈ �∞(

S2(T ∗(G/H))
)
. Let X ,Y , Z ∈ �∞(T (G/H)) be vector fields

with horizontal lifts X ,Y , Z ∈ �∞(Hor(G)). We expand these vector fields in a
left-invariant frame, i.e.

X = xi AL
i , Y = y j AL

j and Z = zk AL
k ,

where {A1, . . . , AN } ⊆ m is a basis of m and xi , y j , zk : G → R are uniquely deter-
mined smooth functions for i, j, k ∈ {1, . . . , N }. Moreover, we endow Hor(G) → G
with the fibermetric g ∈ �∞(

S2Hor(G)∗
)
defined by left translating the scalar product

〈·, ·〉. Then

g(X ,Y ) ◦ pr = pr∗
(
g(X ,Y )

) = g(X ,Y ) : G → R (4.68)

holds by the definition of g ∈ �∞(
S2T ∗(G/H)

)
. Since Z and Z are pr-related, we

obtain by [13, Prop. 8.16] and (4.68)

pr∗
(
LZ

(
g(X ,Y )

)) = LZ

(
pr∗

(
g(X ,Y )

))

= LZ

(
g(X ,Y )

)

= LZ

(
g
(
xi AL

i , y j AL
j

))

= LZ

(
xi y j 〈Ai , A j 〉

)

= (
LZ x

i )y j 〈Ai , A j 〉 + xi
(
LZ y

j )〈Ai , A j 〉,

(4.69)

where we exploited that g
(
AL
i , AL

j

) = 〈Ai , A j 〉 holds by the definition of g ∈
�∞(

S2Hor(G)∗
)
. Moreover, with ∇Hor,α from Lemma 4.10, we compute

g
(∇Hor,α

Z
X ,Y

) + g
(
X ,∇Hor,α

Z
Y

)

= g
((
LZ x

i )AL
i + zk xi (α(Ak, Ai ))

L , y j AL
j )

+ g
(
xi AL

i ,
(
LZ y

j )AL
j + zk y j (α(Ak, A j ))

L)

= (
LZ x

i )y j 〈Ai , A j 〉 + xi
(
LZ y

j )〈Ai , A j 〉
+ zk xi y j (〈α(Ak, Ai ), A j

〉 + 〈
Ai , α(Ak, A j )

〉)
.

(4.70)
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By comparing (4.69) with (4.70), we obtain by (∇α
XY ) ◦ pr = T pr ◦ (∇Hor,α

X
Y

)

pr∗
(
LZ

(
g(X ,Y )

)) = (
LZ x

i )y j 〈Ai , A j 〉 + xi
(
LZ y

j )〈Ai , A j 〉
= g

(∇Hor,α
Z

X ,Y
) + g

(
X ,∇Hor,α

Z
Y

)

= g
(∇α

Z X ,Y
) + g

(
X ,∇α

ZY
)

= pr∗
(
g
(∇α

Z X ,Y
) + g

(
X ,∇α

Z ,Y
))

,

where the second equality holds iff

〈
α(Ak, Ai ), A j

〉 + 〈
Ai , α(Ak, A j )

〉 = 0 (4.71)

is satisfied for all i, j, k ∈ {1, . . . , N }. Since {A1, . . . , AN } ⊆ m is a basis of
m, Equation (4.71) is equivalent to (4.67). This yields the desired result since the
pull-back by the surjective map pr : G → G/H yields clearly an injective map
pr∗ : C∞(G/H) → C∞(G). ��

We now recall an expression for the Levi-Civita covariant derivative on a reduc-
tive homogeneous space G/H equipped with an invariant pseudo-Riemannian metric
corresponding to the Ad(H)-invariant scalar product 〈·, ·〉 : m × m → R. This is the
next proposition which is taken from [7, Sec. 23.6], where it is stated for the Rieman-
nian case. However, since its proof only relies on the non-degeneracy of the invariant
pseudo-Riemannian metric and its associated Ad(H)-invariant scalar product, it can
be generalized to the pseudo-Riemannian setting.

Proposition 4.23 Let G/H be a reductive homogeneous space with reductive decom-
position g = h ⊕ m. Moreover, let 〈·, ·〉 : m × m → R be an Ad(H)-invariant scalar
product corresponding to an invariant pseudo-Riemannian metric on G/H. Then the
Levi-Civita covariant derivative defined by this metric fulfills for all X ,Y ∈ m

∇LC
XG/H

YG/H
∣∣
pr(e) = Tepr

( − 1
2 [X ,Y ]m +U (X ,Y )

)
, (4.72)

where U : m × m → m is uniquely determined by

2
〈
U (X ,Y ), Z

〉 = 〈[Z , X ]m,Y
〉 + 〈

X , [Z ,Y ]m
〉

(4.73)

for all Z ∈ m.

Proposition 4.23 can be simplified for naturally reductive homogeneous spaces.
This is the next corollary which can be seen as a reformulation of [7, Prop. 23.25]
adapted to the pseudo-Riemannian setting.

Corollary 4.24 Let G/H be a naturally reductive homogeneous space. Then

∇LC
XG/H

YG/H
∣
∣
pr(e) = Tepr

( − 1
2 [X ,Y ]m

)
(4.74)

holds for all X ,Y ∈ m.
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Proof This is proven in [7, Prop. 23.25]. Nevertheless, we include the proof here, as
well. Since G/H is naturally reductive, we have 〈[X ,Y ]m, Z〉 = 〈X , [Y , Z ]m〉 for
all X ,Y , Z ∈ m implying 〈[Y , X ]m, Z〉 + 〈X , [Y , Z ]m〉 = 0. Using the definition of
U : m × m → m in (4.73) of Proposition 4.23 yields for X ,Y , Z ∈ m

〈U (X , Z),Y 〉 = 〈[Y , X ]m, Z〉 + 〈X , [Y , Z ]m〉 = 0

implying U (X ,Y ) = 0 for all X ,Y ∈ m. Thus Proposition 4.23 yields the desired
result. ��

Next we relate the Levi-Civita covariant derivative on G/H , equipped with an
invariant pseudo-Riemannian metric, to an invariant covariant derivative on G/H .
This is the next remark which coincides with [1, Sec. 13].

Remark 4.25 Let G/H be a reductive homogeneous space equipped with an invari-
ant pseudo-Riemannian metric corresponding the Ad(H)-invariant scalar product
〈·, ·〉 : m × m → R. Then the action τ : G × G/H → G/H is isometric, see e.g.
[6, Chap. 11, Prop. 22]. Therefore∇LC is an invariant covariant derivative on G/H by
[16, Prop. 5.13]. Thus Lemma4.8, Claim 2 implies by Proposition 4.23 that∇LC = ∇α

holds, where α : m × m → m is defined by

α(X ,Y ) = 1
2 [X ,Y ]m +U (X ,Y ) (4.75)

for all X ,Y ∈ m in accordance with [1, Thm. 13.1]. In particular, one has ∇LC =
∇α for α(X ,Y ) = 1

2 [X ,Y ]m by Corollary 4.24 if G/H is naturally reductive. This
coincides with [1, Eq. (13.1)].

4.4 Parallel Vector Fields Along Curves

Having an expression for ∇α on a reductive homogeneous space G/H in terms of
horizontally lifted vector fields on G allows for determining the associated covariant
derivative of vector fields along a given curve on G/H in terms of horizontal lifts,
as well. In this subsection, an ODE for a specific curve in m is determined which is
fulfilled iff the corresponding vector field along the given curve is parallel. Let

γ : I → G/H (4.76)

be a curve and let

Ẑ : I → T (G/H) (4.77)

be a vector field along γ , i.e

Ẑ(t) ∈ Tγ (t)(G/H), t ∈ I . (4.78)
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Moreover, let

g : I → G (4.79)

denote a horizontal lift of γ with respect to the principal connection P ∈
�∞(

End(TG)
)
from Proposition 3.12. It is well-known that g is unique up to the

initial condition g(t0) = g0 ∈ Gγ (0). Furthermore, the curve g is defined on the
whole interval I since principal connections are complete, see e.g. [9, Thm. 19.6]. Let
Z : I → Hor(G) be the horizontal lift of Ẑ along g, i.e.

Z(t) = (
Tg(t)pr

∣∣
Hor(G)g(t)

)−1
Ẑ(t), t ∈ I . (4.80)

Next we define the curves in m associated with g and Z , namely

x : I → m, t �→ x(t) = (
Te�g(t)

)−1
ġ(t) (4.81)

and

z : I → m, t �→ z(t) = (
Te�g(t)

)−1
Z(t). (4.82)

We now consider the covariant derivative of Ẑ along γ . This is next proposition which
can be seen as a generalization of [2, Lem. 1], where we use the notation which has
been introduced above.

Proposition 4.26 Let G/H be a reductive homogeneous space and let γ : I → G/H
be smooth. Let g : I → G be a horizontal lift of γ . Moreover, let Ẑ : I → T (G/H)

be a vector field along γ with horizontal lift Z : I → Hor(G) along g : I → G. Let
{A1, . . . , AN } ⊆ m be a basis and write

ġ(t) = xi (t)AL
i (g(t)) and Z(t) = z j (t)AL

j (g(t)) (4.83)

for some uniquely determined smooth functions xi , z j : I → R. Letα : m×m → m be
anAd(H)-invariant bilinear map and let∇α be the corresponding invariant covariant
derivative on G/H. Then the associated covariant derivative of Ẑ along γ lifted to a
horizontal vector field along g : I → G is given by

∇α
γ̇ (t) Ẑ

∣∣∣
t
= ( d

dt z
j (t)

)
AL
j (g(t)) + xi (t)z j (t)

(
α(Ai , A j )

)L
(g(t))

= (
ż(t)

)L
(g(t)) + (

α(x(t), z(t)
)L

(g(t))
(4.84)

for all t ∈ I , where z : I � t �→ zi (t)Ai = (Te�g(t))−1Z(t) ∈ m and x : I � t �→
xi (t)Ai = (Te�g(t))−1ġ(t) ∈ m.
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Proof The proof is essentially given by applying Theorem 4.15. To this end, we define
the vector field X : I → T (G/H) along γ : I → G/H by

X(t) = γ̇ (t), t ∈ I

and we denote by X : I → TG the horizontal lift of X along g : I → G. Moreover,
for fixed t0 ∈ I , we extend X and Ẑ to vector fields defined on an open neighborhood
O ⊆ G/H of γ (t0). These vector fields are denoted by

X̃ ∈ �∞(
T (G/H)

∣∣
O

)
and Z̃ ∈ �∞(

T (G/H)
∣∣
O

)
,

respectively. In particular,

X̃(γ (t)) = X(t) = γ̇ (t) and Ẑ(t) = Z̃(γ (t))

is fulfilled for all t in a suitable open neighborhood of t0 in I .Moreover, their horizontal

lifts X̃ , Ỹ ∈ �∞(
Hor(G)

∣
∣
pr−1(O)

)
fulfill

X(t) = X̃(g(t)) = ġ(t) and Z(t) = Z̃(g(t)).

These horizontal lifts can be expanded in the global frame AL
1 . . . , AL

N of Hor(G). We
write for t ∈ I in a suitable open neighborhood of t0

X(t) = xi (t)AL
i (g(t)) = (

x(t)
)L

(g(t)) and Z(t) = z j (t)AL
j (g(t)) = (

z(t)
)L

(g(t)).

Similarly, we expand

X̃ = x̃ i AL
i

∣∣
pr−1(O)

and Z̃(t) = z̃ j A j
∣∣
pr−1(O)

,

where x̃ i , z̃ j : pr−1(O) ⊆ G → R are uniquely determined smooth functions for
i, j ∈ {1, . . . , N }. By construction

xi (t) = x̃ i (g(t)) and z j (t) = z̃ j (g(t))

holds for all t in a suitable open neighborhood of t0 in I . We now use [16, Thm. 4.24]
as well as Theorem 4.15 to compute the horizontal lift of the covariant derivative of
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Ẑ along γ . We obtain for t ∈ I in a suitable neighborhood of t0

∇α
γ̇ (t) Ẑ

∣∣
∣
t
= ∇α

X̃
Z̃
∣∣
∣
g(t)

= ∇Hor,α

X̃
Z̃
∣∣∣
g(t)

= (
L

X̃
z̃ j

)
(g(t))AL

j (g(t)) + x̃ i (g(t))̃z j (g(t))
(
α(Ai , A j )

)L
(g(t))

= ( d
dt z̃

j (g(t))
)
AL
j (g(t)) + x̃ i (g(t))̃z j (g(t))

(
α(Ai , A j )

)L
(g(t))

=
(( d

dt z
j (t)

)
Ai

)L
(g(t)) +

(
α
(
xi (t)Ai , z

i (t)Ai
))L

(g(t))

= (
ż(t)

)L
(g(t)) + (

α(x(t), z(t))
)L

(g(t)).

Applying this argument for each t0 ∈ I yields the desired result. ��

Proposition 4.26 allows for characterizing parallel vector fields along curves.

Corollary 4.27 Let G/H be a reductive homogeneous space equipped with the invari-
ant covariant derivative ∇α . Let Ẑ : I → T (G/H) be a vector field along γ : I →
G/H. Then Ẑ is parallel along γ iff the ODE

ż(t) = −α
(
x(t), z(t)

)
(4.85)

is fulfilled, where x, z : I → m are defined as in Proposition 4.26.

Proof Let g ∈ G. The map (Te�g)−1 : Hor(G) → m is a linear isomorphism which
fulfills (Te�g)−1ξ L(g) = ξ for all ξ ∈ m by the definition of left-invariant vector
fields. Hence Proposition 4.26 yields the desired result due to

0 = ∇α
γ̇ (t) Ẑ

∣∣
t ⇐⇒ 0 = (

Te�g(t)
)−1∇α

γ̇ (t) Ẑ
∣
∣∣
t
= ż(t) + α

(
x(t), z(t)

)

for t ∈ I . ��

4.5 Geodesics

In this short section, we consider geodesics on the reductive homogeneous space
G/H with respect to an invariant covariant derivative ∇α . Recall that a curve γ : I →
G/H is a geodesic if the vector field γ̇ : I → T (G/H) along γ is parallel. Thus
Corollary 4.27 can be used to obtain the following characterization of the geodesics
on G/H with respect to ∇α .

Lemma 4.28 Let G/H be a reductive homogeneous space endowed with the invariant
covariant derivative ∇α corresponding to the Ad(H)-invariant bilinear map α : m×
m → m. Let γ : I → G/H be a curve in G/H and g : I → G be a horizontal lift of
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γ . Define x : I � t �→ x(t) = (Te�g(t))−1ġ(t) ∈ m. Then γ : I → G/H is a geodesic
with respect to ∇α iff the ODE

ẋ(t) = −α
(
x(t), x(t)

)
(4.86)

is satisfied for all t ∈ I .

Proof The curve γ : I → G/H is a geodesic with respect to ∇α iff the vector field
γ̇ : I → T (G/H) is parallel along γ : I → G/H . Thus the desired result follows by
Corollary 4.27. ��

We now apply Lemma 4.28 to a reductive homogeneous space equipped with the
Levi-Civita covariant derivative defined by some invariant pseudo-Riemannianmetric.
Inspired by thewell-known characterization of geodesics on a Lie group equippedwith
a left-invariant metric given in [5, Ap. B], see also [17, Sec. 4] for a discussion in the
complex setting, we obtain the next corollary which generalizes the description of
geodesics on Lie groups equipped with left-invariant metrics.

Corollary 4.29 Let G/H be a reductive homogeneous space and let 〈·, ·〉 : m×m → R

be an Ad(H)-invariant scalar product. Moreover, let ∇LC denote the Levi-Civita
covariant derivative defined by the invariant metric on G/H corresponding to 〈·, ·〉.
Let γ : I → G/H be a curve in G/H and g : I → G be a horizontal lift of γ . Define
x : I � t �→ x(t) = (Te�g(t))−1ġ(t) ∈ m. Then γ : I → G/H is a geodesic with
respect to ∇LC iff the ODE

ẋ(t) = (prm ◦ adx(t))
∗(x(t)) (4.87)

is satisfied for all t ∈ I . Here (prm ◦ adX )∗ : m → m denotes the adjoint with respect
to 〈·, ·〉 of the linear map defined for fixed X ∈ m by prm ◦ adX : m → m.

Proof We first recall Proposition 4.23. The Levi-Civita covariant derivative on G/H
with respect to the invariant metric fulfills∇LC = ∇α , where α : m×m → m is given
by α(X ,Y ) = − 1

2 [X ,Y ]m +U (X ,Y ) for all X ,Y ∈ m with

2〈U (X ,Y ), Z〉 = 〈[Z , X ]m,Y 〉 + 〈X , [Z ,Y ]m〉 = −(〈[X , Z ]m,Y 〉 + 〈X , [Y , Z ]m〉)
(4.88)

Obviously, (4.88) is equivalently to

U (X ,Y ) = − 1
2

(〈(prm ◦ adX )∗(Y ), Z〉 + 〈(prm ◦ adY )∗(X), Z〉) (4.89)

for all X ,Y , Z ∈ m, where (prm ◦ adX )∗ and (prm ◦ adY )∗ denote the adjoints of the
linear maps (prm ◦ adY ) and (prm ◦ adY ) with respect to 〈·, ·〉, respectively. Since 〈·, ·〉
is non-degenerated, we can rewrite (4.89) equivalently as

U (X , Y ) = − 1
2

(
(prm ◦ adX )∗(Y ) + (prm ◦ adY )∗(X)

)
.
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Thus we obtain

α(X , X) = − 1
2 [X , X ]m +U (X , X) = −(prm ◦ adX )∗(X)

for all X ∈ m. Now Lemma 4.28 yields the desired result. ��
As indicated above, by applying Corollary 4.29 to a Lie group equipped with a

left-invariant pseudo-Riemannian metric considered as the reductive homogeneous
space G ∼= G/{e}, one obtains the following corollary concerning geodesics on G. Its
statement is well-known and can be found in [5, Ap. 2]. We also refer to [17, Sec. 4]
for a discussion of this characterization of geodesics in the complex setting, where it
is named Euler-Arnold Formalism.

Corollary 4.30 Let G be a Lie group equipped with a left-invariant metric defined by
the scalar product 〈·, ·〉 : g × g → R. Then g : I → G is a geodesic iff the curve
x : I � t �→ x(t) = (Te�g(t))−1ġ(t) ∈ g satisfies

ẋ(t) = (adx(t))
∗(x(t)) (4.90)

for all t ∈ I . Here (adX )∗ : g → g denotes the adjoint of adX : g → g with respect to
〈·, ·〉, where X ∈ g is fixed.

Proof Clearly, the Lie group G equipped with the left-invariant metric defined by the
scalar product 〈·, ·〉 : g × g → R can be viewed as the reductive homogeneous space
G/H for H = {e} with reductive decomposition g = {0} ⊕ g equipped with the
pseudo-Riemannian metric defined by the Ad({e})-invariant scalar product 〈·, ·〉 on g.
Thus the assertion follows by Corollary 4.29 due to prm = idg. ��

4.6 Canonical Invariant Covariant Derivatives

We now relate two particular invariant covariant derivatives on G/H to the canonical
affine connections of first and second kind from [1, Sec. 10]. To this end, we list
the two properties concerning invariant covariant derivatives which correspond to the
properties of invariant affine connections from [1, Sec. 10, (A1) and (A2)]. This is the
next definition.

Definition 4.31 Let ∇α be an invariant covariant derivative on G/H corresponding to
the Ad(H)-invariant bilinear map α : m × m → m. The following properties of ∇α

are of particular interest:

1. The curves γX : R � t �→ pr(exp(t X)) ∈ G/H are geodesics with respect to ∇α

for all X ∈ m.
2. The curves γX : R � t �→ pr(exp(t X)) ∈ G/H are geodesics with respect to ∇α

for all X ∈ m and the parallel transport of TeprZ ∈ Tpr(e)(G/H) along γX with
respect to ∇α is given by Ẑ : R � t �→ (

Texp(t X)pr ◦ Te�exp(t X)

)
Z ∈ T (G/H) for

all Z ∈ m.

The next lemma is very similar some parts of [1, Sec. 10].
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Lemma 4.32 Let G/H be a reductive homogeneous space equipped with an invariant
covariant derivative ∇α corresponding to the Ad(H)-invariant bilinear map α : m×
m → m. Then the following assertions are fulfilled:

1. ∇α fulfills the property from Definition 4.31, Claim 1 iff α(X , X) = 0 holds for
all X ∈ m.

2. ∇α fulfills the property from Definition 4.31, Claim 2 iff α(X ,Y ) = 0 is fulfilled
for all X ,Y ∈ m.

Proof Let X ∈ m be arbitrary. We define the curve γX : R � t �→ pr(exp(t X)) ∈
G/H . Obviously, the curve R � t �→ exp(t X) ∈ G is a horizontal lift of γ . Define
x : R → m by x(t) = (Te�exp(t X))

−1 ◦ (Tepr
∣
∣
m

)−1γ̇ (t). Clearly, x(t) = X holds for
all t ∈ R. By Lemma 4.28, the curve γ : I → G/H is a geodesic with respect to ∇α

iff α(X , X) = 0 holds, i.e. Claim 1 is shown.
It remains to prove Claim 2. To this end, let Z ∈ m be arbitrary. We now define

the vector field Ẑ : R � t �→ (
Texp(t X)pr ◦ Te�exp(t X)

)
Z ∈ T (G/H) along the curve

γX : R � t �→ pr(exp(t X)) ∈ G/H . Next we consider the curve z : R → m given
by z(t) = (

Te�exp(t X)

)−1 ◦ (
Tepr

∣∣
m

)−1
Ẑ(t) = Z . According to Corollary 4.27, the

vector field Ẑ : I → T (G/H) is parallel along γ iff α(x(t), z(t)) = α(X , Z) = 0
holds for all t ∈ R. This yields the desired result. ��

The next proposition can be viewed as a reformulation of [1, Thm. 10.1] and [1,
Thm. 10.2].

Proposition 4.33 Let G/H be a reductive homogeneous space.

1. Define the Ad(H)-invariant bilinear map

α : m × m → m, (X ,Y ) �→ α(X ,Y ) = 1
2 [X ,Y ]m. (4.91)

The corresponding invariant covariant derivative ∇α is the unique invariant
covariant derivative on G/H which is torsion free and satisfies Definition 4.31,
Claim 1.

2. Define the Ad(H)-invariant bilinear map

α : m × m → m, (X ,Y ) �→ α(X ,Y ) = 0. (4.92)

The corresponding invariant covariant derivative ∇α is the unique invariant
covariant derivative which satisfies Definition 4.31, Claim 1 and Claim 2.

Proof Claim 2 is an immediate consequence of Lemma 4.32, Claim 2.
It remains to proof Claim 2. Obviously,∇α is torsion free for α(X ,Y ) = 1

2 [X ,Y ]m
by Lemma 4.19. Moreover, ∇α fulfills Definition 4.31, Claim 1 by Lemma 4.32,
Claim 1 because of α(X , X) = 0 for all X ∈ m. It remains to prove the uniqueness of
α. To this end, let β : m × m → m be an Ad(H)-invariant bilinear map and assume
that the Ad(H)-invariant bilinear map

γ = α + β : m × m → m, (X ,Y ) �→ 1
2 [X ,Y ]m + β(X ,Y )
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fulfills γ (X , X) = 0 for all X ∈ m such that γ defines the torsion-free invariant
covariant derivative ∇γ on G/H , i.e. γ (X ,Y ) − γ (Y , X) = [X ,Y ]m holds for all
X ,Y ∈ m by Lemma 4.19. This yields

γ (X ,Y ) − γ (Y , X) = 1
2 [X ,Y ]m + β(X ,Y ) − ( 1

2 [Y , X ]m + β(Y , X)
)

= [X ,Y ]m + β(X ,Y ) − β(Y , X)

= [X ,Y ]m.

(4.93)

By (4.93), one obtains β(X ,Y ) − β(Y , X) = 0 for all X ,Y ∈ m, i.e. β(X ,Y ) =
β(Y , X) is symmetric. Moreover, we have β(X , X) = 0 for all X ∈ m due to

0 = γ (X , X) = 1
2 [X , X ]m + β(X , X) = β(X , X).

Thus β : m×m → m is a symmetric bilinear map that fulfills β(X , X) = 0 for all X ∈
m. By polarization, we obtain β(X ,Y ) = 0 for all X ,Y ∈ m. Hence γ = α + β = α

holds, i.e. α : m × m � (X ,Y ) �→ 1
2 [X ,Y ]m ∈ m is the unique Ad(H)-invariant

bilinear map that satisfies α(X ,Y ) − α(Y , X) = [X ,Y ]m and α(X , X) = 0 for all
X ,Y ∈ m. This yields the desired result. ��
Definition 4.34 Let G/H be a reductive homogeneous space.

1. The invariant covariant derivative defined by α(X ,Y ) = 1
2 [X ,Y ]m for all X ,Y ∈

m is called the canonical invariant covariant derivative of first kind. It is denoted
by ∇can1.

2. The invariant covariant derivative defined by α(X ,Y ) = 0 for all X ,Y ∈ m is
called the canonical invariant covariant derivative of second kind. It is denoted by
∇can2.

Remark 4.35 By Proposition 4.18, the canonical covariant derivatives of first kind
∇can1 and of second kind ∇can2 from Definition 4.34 correspond to the canonical
affine connections of first and second kind form [1, Sec. 10], respectively.

Remark 4.36 Assume thatG/H is a naturally reductive homogeneous space. Then the
Levi-Civita covariant derivative coincides with the canonical covariant derivative of
first kind by Remark 4.25, i.e ∇LC = ∇can1 holds. This has already been proven in [1,
Thm. 13.1 and Eq. (13.2)].

Remark 4.37 LetG/H be equippedwith an invariant pseudo-Riemannianmetric. Then
∇can2 is an invariant metric covariant derivative on G/H by Proposition 4.22.

We briefly comment on the canonical covariant derivatives on symmetric homoge-
neous spaces in the next remark following [1, Thm. 15.1].

Remark 4.38 Let (G, H , σ ) be a symmetric pair and let G/H be the correspond-
ing symmetric homogeneous space. Let g = h ⊕ m denote the canonical reductive
decomposition. Then [X ,Y ] ∈ h holds for all X ,Y ∈ m by Lemma 3.9. Therefore
1
2 [X ,Y ]m = 0 is fulfilled for all X ,Y ∈ m. Hence ∇can1 = ∇can2 holds by Proposi-
tion 4.33.
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Moreover, for pseudo-Riemannian symmetric spaces, we obtain the following
remark whose statement can be found in [1, Thm. 15.6].

Remark 4.39 LetG/H be a pseudo-Riemannian symmetric homogeneous space. Then
one has ∇LC = ∇can1 = ∇can2 by Remark 4.36 combined with Remark 3.11.

We end this section by specializing Corollary 4.27 on parallel vector fields along
curves to the canonical covariant derivatives ∇can1 and ∇can2.

Corollary 4.40 Let Ẑ : I → T (G/H) be a vector field along the curve γ : I → G/H.
Using the notation of Corollary 4.27, the following assertions are fulfilled:

1. Ẑ is parallel along γ with respect to ∇can1 iff

ż(t) = − 1
2 [x(t), z(t)]m (4.94)

holds for all t ∈ I .
2. Ẑ is parallel along γ with respect to ∇can2 iff

ż(t) = 0 (4.95)

is fulfilled for all t ∈ I .

Remark 4.41 A similar description of parallel vector fields as in Corollary 4.40,
Claim 1 has already appeared in [18, Prop. 2.12] for the special case, where G/H is a
normal naturally reductive space, see Remark 3.7 for this notion, and γ : I → G/H
is a geodesic, i.e. for x : I → m being constant.

5 Conclusion

We considered invariant covariant derivatives on a reductive homogeneous space in
detail.Weproved that they are uniquely determined by evaluating themon fundamental
vector fields. Moreover, we provided a new proof for their existence by expressing
them in terms of horizontally lifted vector fields. By this result, a characterization of
parallel vector fields along curves in a reductive homogeneous space equipped with an
invariant covariant derivative is obtained. In addition, the so-called canonical covariant
derivatives of first and second kind corresponding the canonical affine connections of
first and second kind from [1] are considered.
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