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Abstract
The geodesic orbit property is useful and interesting in itself, and it plays a key role in
Riemannian geometry. It implies homogeneity and has important classes of Rieman-
nian manifolds as special cases. Those classes include weakly symmetric Riemannian
manifolds and naturally reductive Riemannian manifolds. The corresponding results
for indefinite metric manifolds are much more delicate than in Riemannian signature,
but in the last few years important corresponding structural results were proved for
geodesic orbit Lorentz manifolds. Here we extend Riemannian and Lorentz results to
trans-Lorentz nilmanifolds. Those are the geodesic orbit pseudo Riemannian mani-
folds M = G/H of signature (n − 2, 2) such that a nilpotent analytic subgroup of
G is transitive on M . For that we suppose that there is a reductive decomposition
g = h⊕n (vector space direct sum) with [h, n] ⊂ n and n nilpotent. When the metric
is nondegenerate on [n, n] we show that n is abelian or 2-step nilpotent. That is the
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same result as for geodesic orbit Riemannian and Lorentz nilmanifolds. When the
metric is degenerate on [n, n] we show that n is a double extension of a geodesic orbit
nilmanifold of either Riemannian or Lorentz signature.

Keywords Pseudo Riemannian nilmanifold · Geodesic orbit manifold · Two-step
nilpotent · Double extension · Lorentz and trans Lorentz nilmanifolds

Mathematics Subject Classification 53C30 · 53B30 · 17B30

1 Introduction and Statement of Results

A pseudo-Riemannian manifold (M, ds2) is called a geodesic orbit manifold (or a
manifoldwith homogeneous geodesics, or simply aGO manifold), if every geodesic of
M is an orbit of a 1-parameter subgroup of the full isometry group I (M) = I (M, ds2).
One loses no generality if one replaces I (M) by its identity component I 0(M). IfG is a
transitive Lie subgroup of I 0(M), so (M, ds2) = (G/H , ds2) where H is an isotropy
subgroup of G, and if every geodesic of M is an orbit of a 1-parameter subgroup of G,
thenwe say that (M, ds2) is aG-geodesic orbitmanifold, or aG-GOmanifold.Clearly
every G-GO manifold is a GO manifold, but not vice versa. The class of geodesic
orbit manifolds includes (but is not limited to) symmetric spaces, weakly symmetric
spaces, normal and generalized normal homogeneous spaces, and naturally reductive
spaces. For the current state of knowledge in the theory of Riemannian geodesic orbit
manifolds we refer the reader to [2] and its bibliography.

In this paper, we study the GO condition for pseudo-Riemannian nilmanifolds
(N , ds2), relative to subgroups G ⊂ I (N ) of the form G = N � H , where H is an
isotropy subgroup. Most of our results apply to the case where (N , ds2) is a trans-
Lorentz manifold, that is, the signature of ds2 is (n − 2, 2), where n = dim N .

Our results for G-GO manifolds (M, ds2) = (G/H , ds2) require the coset space
G/H to be reductive. In other words, they make use of an AdG(H)-invariant decom-
position g = m ⊕ h. Very few structural results are known for indefinite metric GO
manifolds that are not reductive, and we always assume that G/H is reductive (see
the discussion below).

The GO condition for reductive spaces is well known:
GeodesicLemma [8] Let (M, ds2) = G/H be a reductive pseudo-Riemannian homo-
geneous space, with the corresponding reductive decomposition g = h⊕m. Then M
is a G-geodesic orbit space if and only if, for any T ∈ m, there exist A = A(T ) ∈ h
and k = k(T ) ∈ R such that if T ′ ∈ m then

〈[T + A, T ′]m, T 〉 = k〈T , T ′〉, (1)

where 〈·, ·〉 denotes the inner product on m defined by ds2, and the subscript m in (1)
means taking the m-component in g = h ⊕ m.

Note that k(T ) = 0 unless T is a null vector [substitute T ′ = T in (1)].
Recall that a pseudo-Riemannian nilmanifold is a pseudo-Riemannian manifold

admitting a transitive nilpotent Lie group of isometries. In the Riemannian case, the
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full isometry group of a nilmanifold (N , ds2), where N is a transitive nilpotent group
of isometries, is the semidirect product I (N ) = N � H , where H is the group of
all isometric automorphisms of (N , ds2) [13, Theorem 4.2]. In other words, N is
the nilradical of I (N ). In the pseudo-Riemannian cases, I (N ) might still contain
N � H and yet be strictly larger. In indefinite signatures of metric a nilmanifold is not
necessarily reductive as a coset space of I (N ), and even when it is, N does not have
to be a normal subgroup of I (N ). Here the GO condition does not rescue us, for there
exist 4-dimensional, Lorentz GO nilmanifolds that are reductive relative to I (N ),
but for which N is not an ideal in I (N ) [7, Sect. 3]. Moreover, already in dimension
4 (the lowest dimension for homogeneous pseudo-Riemannian spaces G/H with H
connected that are not reductive), every non-reductive space is a GO manifold when
we make a correct choice of parameters [3, Theorem 4.1]. These results explain (and
motivate) our study ofG-GO nilmanifoldsG/H = (N�H)/H , where N is nilpotent,
and N is the maximal connected subgroup of isometric automorphisms of (N , ds2)
(although our results remain valid for a smaller subgroup H ). Given a reductiveG-GO
trans-Lorentz nilmanifolds (G/H , ds2), where G = N � H , with N nilpotent, and
the corresponding reductive decomposition g = h⊕ n at the level of Lie algebras, we
denote 〈·, ·〉 the inner product on n induced by ds2, and by 〈·, ·〉′, the restriction of
〈·, ·〉 to the derived algebra n′ = [n, n].

The structure of the paper is as follows. Section 2 contains the proof of the first
main theorem:

Theorem 1 Let (M = G/H , ds2) be a connected trans-Lorentz G-geodesic orbit
nilmanifold where G = N � H , with N nilpotent. Let 〈·, ·〉 denote the inner product
on n induced by ds2. If 〈·, ·〉|n′ is nondegenerate, then N is either abelian or 2-step
nilpotent.

Remark 1 There are verymany connected trans-LorentzG-geodesic orbit nilmanifolds
as in Theorem 1. They are real forms of the complexifications of Riemannian GO
spaces. See [4, Proposition 4.3 and Corollary 5.4] for the collection and [14] for the
fact that those real forms are GO . ♦

Theorem 1 extends the results of [9, Theorem 2.2] (for the Riemannian signature)
and of [11, Theorem 2] and [5, Theorem 7] (for the Lorentz signature) to the trans-
Lorentz case. Our proof of Theorem 1 is split into two parts, given in Sects. 2.1 and 2.2,
depending on the signature of 〈·, ·〉′. In Sect. 2.3 we give an example which shows that
the results of Theorem 1 and [11, Theorem 2] are “almost” tight in the sense of the
signature: there is a G-GO nilmanifold of signature (8, 4), with the Lorentz derived
algebra, which is 4-step nilpotent.

In Sect. 3 we extend the result of [11, Theorem 3] (for the Lorentz signature) to the
trans-Lorentz [signature (n − 2, 2)] setting.

In Theorem 2, stated just below, we prove that if the restriction 〈·, ·〉′ is degenerate
then n can be obtained by the double extension procedure from a metric Lie algebra
of either a Riemannian or Lorentz nilmanifold (by metric Lie algebra we mean a Lie
algebra with an inner product). The double extension construction (which is explained
in Sect. 3) is a useful tool in pseudo-Riemannian homogeneous geometry, in particular
in the theory of bi-invariant metrics (see the recent survey [12]) and in the context of
GO nilmanifolds [11, Sect. 4]. The precise result is
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Theorem 2 Let (M = G/H , ds2) be a connected trans-Lorentz G-geodesic orbit nil-
manifold where G = N � H , with N nilpotent. Let 〈·, ·〉 denote the inner product on
n induced by ds2. If 〈·, ·〉|n′ is degenerate, then (n, 〈·, ·〉) is a either a 2-dimensional
double extension of a metric Lie algebra corresponding to a Lorentz GO nilmani-
fold, or a 4-dimensional double extension of a metric Lie algebra corresponding to a
Riemannian GO nilmanifold.

Remark 2 The Lorentz GO nilmanifold in Theorem 2 is geodesic orbit relative to
the group G0, which is the semidirect product of the group of parallel translations
and pseudo orthogonal automorphisms, as constructed in Lemma 6, and hence by
the results of [11] is either at most 2-step nilpotent, or is by itself obtained from a
2-dimensional double extension of a metric Lie algebra of a Riemannian nilmanifold
(which must be at most 2-step nilpotent by [9, Theorem 2.2]). As the composition of
two repeated 2-dimensional double extensions is equivalent to a single 4-dimensional
double extension, we deduce that in the assumptions of Theorem 2, the Lie algebra of
the nilmanifold M is obtained either by a 2-dimensional double extension of a Lorentz
Lie algebra m0 or by a 4-dimensional double extension of a Riemannian Lie algebra
m0, where in both cases, m0 is at most 2-step nilpotent.

Note that even a 2-dimensional GO double extension of an abelian definite Lie
algebra can be of an arbitrarily high step, as shown in [11, Sect. 5]. ♦

The authors have no competing interests to declare that are relevant to the content
of this article.

2 Proof of Theorem 1: If ds2|[n,n] is Nondegenerate Then n is Either
Abelian or 2-Step Nilpotent

Given a reductive homogeneous pseudo-Riemannian manifold (G/H , ds2), where
G = N � H , with N nilpotent, we identify n = Lie(N ) with the tangent space to
G/H at 1N . Let 〈·, ·〉 be the inner product on n induces by ds2, and denote n′ = [n, n].

Assume that the restriction 〈·, ·〉′ of the inner product 〈·, ·〉 to n′ is nondegenerate.
Denote v = (n′)⊥; note that n is the direct orthogonal sum of n′ and v, and both
subspaces n′ and v of n are adg(h)-invariant.

Remark 3 Note that if V1 and V2 are adg(h)-invariant subspaces of n, then each of the
following subspaces is also adg(h)-invariant:

V⊥
1 , V1 + V2, V1 ∩ V2, [V1, V2], {X ∈ n : [X , V1] ⊂ V2}.

In particular, the centraliser and the normaliser of an adg(h)-invariant subspace of n
are themselves adg(h)-invariant. ♦

Let (G/H , ds2) be G-geodesic orbit. Following the first steps in the proof of [5,
Theorem 7] and of [11, Theorem 1], we take T = X + Y and T ′ = X ′ + Y ′, where
X , X ′ ∈ n′, Y ,Y ′ ∈ v, and T is non-null in (1). Then k(T ) = 0 and there exists
A = A(X ,Y ) ∈ h such that
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〈[A, X ′], X〉 + 〈[A,Y ′],Y 〉 + 〈[X , X ′] + [Y , X ′] + [X ,Y ′] + [Y ,Y ′], X〉 = 0. (2)

Taking Y ′ = Y , X ′ = 0 we obtain, by continuity,

〈[Y , X ], X〉 = 0, for all Y ∈ v, X ∈ n′. (3)

As v generates n it follows that

〈[T , X ], X〉 = 0, for all T ∈ n, X ∈ n′. (4)

Remark 4 Note that if 〈·, ·〉′ is definite, Eq. (4) implies [n, n′] = 0, and so n is at most
2-step nilpotent, regardless of the signature of 〈·, ·〉. In the context of Theorem 1 we
can therefore assume that 〈·, ·〉′ is indefinite. ♦

Separating the X ′- and the Y ′-components in (2) and using (3) and (4), we find that
for all X ∈ n′ and Y ∈ v with X + Y non-null, there exists A = A(X ,Y ) ∈ h such
that for all X ′ ∈ n′, Y ′ ∈ v,

〈[A,Y ],Y ′〉 = 〈[Y ,Y ′], X〉, (5)

[A + Y , X ] = 0. (6)

Denote s := so(n′, 〈·, ·〉′) ⊂ gl(n′), the algebra of skew-symmetric endomorphisms
relative to the restriction of 〈·, ·〉 to n′. By (4) k := adg(n)|n′ is a subalgebra of
s consisting of nilpotent endomorphisms. In fact, the map φ : n → k defined by
φ(T ) = ad(T )|n′ for T ∈ n is a Lie algebra homomorphism. Using Engel’s Theorem,
k is triangular. Thus it is conjugate by an inner automorphism [10, Theorem 2.1] to a
subalgebra of the nilpotent part u of an Iwasawa decomposition s = t⊕ a⊕ u. In the
following we may (and do) assume k ⊂ u.

In view of Remark 4, to prove Theorem 1 we need to consider two cases: when the
restrictions of 〈·, ·〉 to both n′ and v are Lorentz, and when restriction of 〈·, ·〉 to n is
trans Lorentz and the restriction to v is definite.

We consider these two cases separately in the following two subsections. The proof
of Theorem 1 will follow from Propositions 1 and 2.

2.1 Both n′ and v Are Lorentz

In this subsection we additionally assume, in the assumptions of Theorem 1, that the
restrictions of 〈·, ·〉 to both n′ and v are both Lorentz. We prove the following.

Proposition 1 Let (M = G/H , ds2) be a connected pseudo-Riemannian G-geodesic
orbit nilmanifold where G = N � H with N nilpotent. If the restrictions of 〈·, ·〉 to
both n′ and v are of Lorentz signature, then N is either abelian or 2-step nilpotent.

Proof Denote m = dim n′ (note that m ≥ 2). We adopt the notation and will use the
facts stated at the start of this section.

The subalgebra s = so(n′, 〈·, ·〉′) ⊂ gl(n′) of skew-symmetric endomorphisms
of 〈·, ·〉′ is isomorphic to so(m − 1, 1). We can choose a basis {e1, . . . , em} for n′
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relative to which the restriction of 〈·, ·〉 to n′ and the nilpotent part u of the Iwasawa
decomposition of s are given by the following matrices:

〈·, ·〉|n′ =
( 0 0 1
0 Im−2 0
1 0 0

)
and u =

{(
0 0 0
u 0m−2 0
0 −ut 0

)
: u ∈ R

m−2
}

. (7)

As k ⊂ u, we obtain a linear map � : n → Span(e2, . . . , em−1) such that, for all
T ∈ n,

[T , e1] = �T , [T , em ] = 0, and [T , ei ] = −〈�T , ei 〉em for 2 ≤ i ≤ m − 1. (8)

As u (and hence k) is abelian, we obtain [[v, v], n′] = 0. Since v generates n, we
obtain [[n, n], n′] = 0, which implies that n′ is abelian.

Introduce the 2-forms ωi ∈ �2(n) by

[T1, T2] =
m∑
i=1

ωi (T1, T2)ei for T1, T2 ∈ n. (9)

From (7) and (8) we have

ω1(T1, T2) = 〈[T1, T2], em〉, and ω1(n, n
′) = 0. (10)

As ω1 cannot be zero (since e1 ∈ n′) we obtain ω1(v, v) �= 0.
Using (8) and (9), the Jacobi identity gives

σ
(
ω1(T1, T2)�T3 +

m−1∑
i=2

ωi (T1, T2)〈�T3, ei 〉em
)

= 0, (11)

where σ denotes the cyclic permutation of T1, T2, T3 ∈ n.
Consider the following two subspaces of n:

c = Ker�(= {T ∈ n : [T , n′] = 0}),
q = {T ∈ n : ω1(T , n)(= 〈[T , n], em〉) = 0} (12)

[the fact that Ker� is the centraliser of n′ in n follows from (8)]. By [11, Theorem 1(b)]
we can (and will) assume that c is degenerate. Furthermore, we can assume that c �= n
(equivalently, � �= 0), as otherwise the algebra n is 2-step nilpotent by (8).

In these notations and assumptions, we have the following.

Lemma 1 (a) n′ ⊂ q ⊂ c, and both q and c are adg(h)-invariant ideals of n.Moreover,
[c, c] ⊂ z(n) ∩ n′.

(b) codim q = 2 and codim c ∈ {1, 2} (equivalently, rk � ∈ {1, 2}).
(c) Let e ∈ c ∩ c⊥ be a nonzero (necessarily null) vector. Then e ∈ v, the line Re is

adg(h)-invariant and [e, e⊥] = 0.
(d) Let f ∈ v be a null vector such that f /∈ e⊥ and 〈 f , e〉 = 1. Then [h, [ f , e]] = 0.
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(e) [ f , e] ∈ z(n) ∩ n′ and e ∈ q.

Proof (a) The fact that n′ ⊂ q follows from (10). Furthermore, taking T1 ∈ q in
(11) we obtain ω1(T2, T3)�(T1) = 0 which implies q ⊂ c. As both q and c contain
n′, they are ideals of n. The fact that c is adg(h)-invariant follows from Remark 3.
Moreover, by Remark 3, q is adg(h)-invariant provided Rem is. To see the latter,
we note that [v, n′] is adg(h)-invariant. From (8) (and the fact that � �= 0), we have
em ∈ [v, n′] ⊂ Span(e2, . . . , em). Then [v, n′]∩([v, n′])⊥ = Rem is adg(h)-invariant,
by Remark 3. Finally, the fact that [c, c] ⊂ z(n) ∩ n′ follows from the Jacobi identity,
as [c, n′] = 0.

(b) If rk� ≥ 3, then for almost all triples T1, T2, T3 ∈ n, the vectors
�T1,�T2,�T3 ∈ Span(e2, . . . , em−1) are linearly independent, and so ω1 = 0 by
(11). This is a contradiction, so rk� ≤ 2. As � �= 0 we obtain codim c (= rk�) ∈
{1, 2}. Now as q ⊂ c by (a) and as q is the null space of the skew-symmetric form ω1,
the codimension of q must be a positive even number. Furthermore, from (a) we have
ω1(c, c) = 0. If codim c = 1, this implies codim q = 2. If rk� = 2,we take T1, T2 ∈ n
in (11) such that the vectors�T1,�T2 ∈ Span(e2, . . . , em−1) are linearly independent
and take T3 ∈ c. We obtain ω1(T1, c) = ω1(T2, c) = 0. As Span(T1, T2) ⊕ c = n we
get ω1(n, c) = 0, and so c ⊂ q by (12) which implies c = q by (a).

(c) As c is degenerate, the space c ∩ c⊥ has dimension 1 and is spanned by a
(nonzero) null vector e. As n′ ⊂ c by (a) we obtain e ∈ v. The subspace Re is adg(h)-
invariant as c is (and by Remark 3). Then (5) with Y = e, Y ′ ∈ e⊥ ∩ v implies
that 〈[e, e⊥ ∩ v], X〉 = 0 for all X ∈ n′ such that e + X is non-null. This gives
[e, e⊥ ∩ v] = 0. As e ∈ c we have [e, n′] = 0, and so [e, e⊥] = 0.

(d) Choose f ∈ v to be a null vector such that f /∈ c and 〈 f , e〉 = 1 (this choice is
not unique). Let A ∈ h. By (c), Re is adg(h)-invariant, and so [A, e] = ae, for some
a ∈ R, and so 〈[A, f ], e〉 = −a. As e⊥ ⊕ R f = n, we have [A, f ] + a f ∈ e⊥. Then
[[A, f ], e] = −a[ f , e] since [e, e⊥] = 0 by (c). As [ f , [A, e]] = a[ f , e], the claim
follows.

(e)Choose f as in (d). Then e⊥⊕R f = n, and so from (c)we have [e, n] ⊂ R[ f , e].
Then from (d) and (6), with X = [ f , e], we obtain [Y , [ f , e]] = 0, for all Y ∈ v such
that Y + [ f , e] is non-null, and hence for all Y ∈ v. As n′ is abelian, we obtain
[ f , e] ∈ z(n) ∩ n′. But from (8), z(n) ∩ n′ ⊂ Span(e2, . . . , em) (as � �= 0), and so
〈[ f , e], em〉 = 0 by (7). So 〈[n, e], em〉 = 0 and the claim follows by (12). ��

Now choose e ∈ c∩ c⊥ as in Lemma 1(c) and choose f ∈ v\ e⊥ as in Lemma 1(d).
By Lemma 1(a) we have n′ ⊂ q ⊂ c ⊂ e⊥, and by Lemma 1(b), codim q = 2 (and then
either c = q or c = e⊥). As f is not contained in e⊥, and hence in c, we have � f �= 0
by (8). Without loss of generality (scaling f and e and specifying the orthonormal
basis {e2, . . . , em−1}) we can assume that � f = e2, and so by (8),

[ f , e1] = e2, [ f , e2] = −em, [ f , ei ] = 0 for i > 2. (13)

Note that with this choice of the basis, z(n) ∩ n′ ⊂ Span(e3, . . . , em).
Moreover, from Lemma 1(e) (and Lemma 1(a)), the 2-dimensional subspace q⊥

contains e and lies in v. Thus we have q⊥ = Span(e,Y0) for some Y0 /∈ q, Y0 ⊥ e,
with 〈Y0,Y0〉 �= 0. Note that e⊥ = RY0 ⊕ q, and so R f ⊕ RY0 ⊕ q = n. As
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ω1(q, n) = 0 and ω1 �= 0, we must have ω1( f ,Y0) �= 0. Denote κi = ωi ( f ,Y0), so
that [ f ,Y0] = ∑m

i=1 κi ei [by (9)], with κ1 �= 0.
As Y0 ⊥ q, from (5) with Y = Y0 and Y ′ ∈ q∩vwe obtain 〈[Y0,Y ′], X〉 = 0, for all

Y ′ ∈ q∩ v and all X ∈ n′ such that Y0 + X is non-null, which implies [Y0, q∩ v] = 0.
Moreover, as q⊥ is adg(h)-invariant, for any A ∈ h we have [A,Y0] ∈ Span(e,Y0),
and so [A,Y0] = μe, for some μ ∈ R, since Y0 is non-null and Y0 ⊥ e.

Then from (6) with X = [ f ,Y0] we obtain

[[A, f ],Y0] + [ f , [A,Y0]] + [Y , [ f ,Y0]] = 0, (14)

for all Y ∈ v such that Y + [ f ,Y0] is non-null [note that here we have a particular
A = A(X ,Y ) ∈ h]. Let [A, f ] = a f +bY0+Y ′, whereY ′ ∈ q∩v. Then [[A, f ],Y0] =
a[ f ,Y0] as [Y0, q ∩ v] = 0. Furthermore, [ f , [A,Y0]] = μ[ f , e]. By Lemma 1(e)
we have [ f , e] ∈ z(n) ∩ n′, and so [ f , e] ∈ Span(e3, . . . , em). Take Y = f + λe in
(14), where λ ∈ R is chosen in such a way that Y + X = f + λe + [ f ,Y0] is non-
null. As e ∈ c we have [e, [ f ,Y0]] = 0, and so we obtain a[ f ,Y0] + [ f , [ f ,Y0]] ∈
Span(e3, . . . , em). Substituting [ f ,Y0] = ∑m

i=1 κi ei and using (13) we get a(κ1e1 +
κ2e2) + κ1e2 = 0 which implies κ1 = 0, a contradiction. ��

2.2 Trans-Lorentz n′, definite v

In this subsection we consider the last remaining case in the proof of Theorem 1. We
prove the following.

Proposition 2 Let (M = G/H , ds2) be a connected pseudo-Riemannian G-geodesic
orbit nilmanifold where G = N � H with N nilpotent. Denote n′ = [n, n] and
v = (n′)⊥. If the restriction of 〈·, ·〉 to n′ is trans-Lorentz, and the restriction of 〈·, ·〉
to v is definite, then N is either abelian or 2-step nilpotent.

Proof Denote m = dim n′ (we can assume that m ≥ 4, as otherwise the claim follows
from [11, Theorem 1(b)]). We adopt the notation and will use the facts stated at the
start of the section.

The subalgebra s = so(n′, 〈·, ·〉′) ⊂ gl(n′) of skew-symmetric endomorphisms
of 〈·, ·〉′ is isomorphic to so(m − 2, 2). We can choose a basis {e1, . . . , em} for n′
relative to which the restriction of 〈·, ·〉 to n′ and the nilpotent part u of the Iwasawa
decomposition of s are given by the following matrices:

〈·, ·〉|n′ =
(

02 0 I2
0 Im−4 0
I2 0 02

)
and

u =
⎧⎨
⎩

⎛
⎝

0 0 0 0 0
α 0 0 0 0
u v 0m−4 0 0
0 β −ut 0 −α

−β 0 −vt 0 0

⎞
⎠ : u, v ∈ R

m−4, α, β ∈ R

⎫⎬
⎭ . (15)

The homomorphism φ : n → u [given by φ(T ) = ad(T )|n′ for T ∈ n] defines
linear maps U , V : n → R

m−4 = Span(e3, . . . , em−2) and vectors a, b ∈ n such that
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for T ∈ n, the corresponding entries of the matrix φ(T ) in the notation of (15) are
given by u = UT , v = VT , α = 〈a, T 〉 and β = 〈b, T 〉.
Lemma 2 We have φ(n′) = 0, and so the subalgebra n′ is abelian.

Proof Clearly φ(n′) ⊂ [u, u]. From (15), the subalgebra [u, u] is the subspace of
elements of u [as given in (15)] with v = 0 and α = 0, so that for X ∈ n′, we
have V X = 0 and 〈a, X〉 = 0. For X ′ ∈ n we have 0 = [X , X ′] + [X ′, X ] =
φ(X)X ′ + φ(X ′)X which gives x ′

1UX + x1UX ′ = 0 and x ′
1〈b, X〉 + x1〈b, X ′〉 = 0,

where x1 and x ′
1 are the e1-components of the vectors X and X ′, respectively. This

impliesUn′ = 0 and 〈b, n′〉 = 0, so φ(n′) = 0, as required. But φ(T )X = [T , X ] for
T ∈ n and X ∈ n′, and the second claim follows. ��

From Lemma 2 it follows that the subalgebra k = φ(n) ⊂ u is abelian. It is not
hard to see using the root decomposition of u relative to the abelian subalgebra a ⊂ s
in the Iwasawa decomposition (or to calculate directly), that the algebra u contains
three different maximal abelian subalgebras given below [in the notation of (15)]:

(i) u1 = {Q ∈ u : v = 0}.

(ii) u2 = R

⎛
⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
u1 v1 0 0 0 0
0 0 0 0m−5 0 0
0 0 −u1 0 0 −1
0 0 −v1 0 0 0

⎞
⎟⎠ ⊕

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
w 0 0 0m−5 0 0
0 β 0 −wt 0 0

−β 0 0 0 0 0

⎞
⎟⎠ : w ∈ R

m−5, β ∈ R

⎫⎪⎬
⎪⎭
,

where v1 �= 0 [up to specifying a basis in R
m−5 = Span(e4, . . . , em−2)].

(iii) u3 is a maximal abelian subalgebra of the Heisenberg algebra⎧
⎨
⎩

⎛
⎝

0 0 0 0 0
0 0 0 0 0
u v 0m−4 0 0
0 β −ut 0 0

−β 0 −vt 0 0

⎞
⎠ : u, v ∈ R

m−4, β ∈ R

⎫
⎬
⎭ ⊂ u.

We will consider these three cases separately, but following the same pattern. Let
c = Ker φ ∩ v be the centraliser of n′ in v, and c⊥ be its orthogonal complement in v.
By Remark 3, both subspaces c and c⊥ are adg(h)-invariant. We will always assume
that the subspace c⊥ is non-trivial (equivalently, φ �= 0), for otherwise n is at most
2-step nilpotent.

Denote π : h → so(c⊥) the restriction of the representation of h to c⊥, so that
π(A)Y = [A,Y ] for A ∈ h and Y ∈ c⊥.

Lemma 3 (a) If L ⊂ c⊥ is an adg(h)-invariant subspace, then [L, L⊥] = 0.
(b) The subspace c⊥ has no 1-dimensional adg(h)-invariant subspaces.
(c) If L ⊂ c⊥ is a 2-dimensional adg(h)-invariant subspace, then [L, L] ⊂ z(n),

where z(n) is the centre of n.
(d) If the subalgebra π(h) ⊂ so(c⊥) is abelian, then [c⊥, c⊥] ⊂ z(n).

Proof Assertion (a) follows from (5) if we take Y ∈ L and Y ′ ∈ L⊥.
For assertion (b), suppose that for a nonzero Y ∈ c⊥, the space R Y is adg(h)-

invariant. Then [h,Y ] = 0, and so [Y , v] = 0 by (6). As v generates n, we obtain
[Y , n] = 0, and in particular, φ(Y ) = 0 contradicting the fact that Y ∈ c⊥ \ {0}.

For assertion (c), suppose that L = Span(Y1,Y2) ⊂ c⊥ is adg(h)-invariant, with
the vectors Y1 and Y2 being orthonormal. Then for any A ∈ h, we obtain that AY1 is a
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multiple of Y2, and AY2 is a multiple of Y1. Hence AX = 0, where X = [Y1,Y2], and
so [X , v] = 0, by (6). As v generates n, the subspace [L, L] = RX lies in the centre
of n.

For assertion (d), suppose that the subalgebra π(h) ⊂ so(c⊥), is abelian. Then c⊥
is the direct, orthogonal sum of adg(h)-invariant subspaces of dimension 1 or 2 each.
But by assertion (b), there can be no 1-dimensional subspaces, and then the claim
follows from assertions (c) and (a). ��

Introduce the 2-forms ωi ∈ �2(v) by

[Y1,Y2] =
m∑
i=1

ωi (Y1,Y2)ei for Y1,Y2 ∈ v. (16)

Then

[Y3, [Y1,Y2]] =
m∑
i=1

ωi (Y1,Y2)φ(Y3)ei . (17)

From Lemma 2 (and the fact that [c, n′] = 0) we have n′ = [v, v] + [v, n′] =
[v, v] + φ(c⊥)n′.

We now separately consider three cases for φ(n) as given above.
Case (i): φ(n) ⊂ u1. Then φ(c⊥)n′ ⊂ Span(e2, . . . , em). As e1 ∈ n′ = [v, v] +

φ(c⊥)n′, we obtain ω1(v, v) �= 0. The Jacobi identity gives σ(ω1(Y1,Y2)(〈a,Y3〉e2 +
UY3 −〈b,Y3〉) = 0, where σ denotes the cyclic permutation of Y1,Y2,Y3 ∈ v, which
can be written as

σ(ω1(Y1,Y2)φ(Y3)) = 0. (18)

Taking Y1,Y2 ∈ c and Y3 ∈ c⊥ we obtain ω1(c, c) = 0. By Lemma 3(a) we have
[c, c⊥] = 0, and so by (16) we obtain that also ω1(c, c

⊥) = 0. As ω1(v, v) �= 0,
we deduce that ω1(c

⊥, c⊥) �= 0. Now if rk φ(= dim c⊥) > 2, then the elements
φ(Y1), φ(Y2) and φ(Y3) are linearly independent for almost all triples of vectors
Y1,Y2,Y3 ∈ v, and so (18) implies ω1(v, v) = 0, a contradiction. By Lemma 3(b),
we have dim c⊥ > 1, and so the only remaining possibility is dim c⊥ = 2. But then
from Lemma 3(c) we obtain [c⊥, c⊥] ⊂ z(n). Taking Y1,Y2,Y3 ∈ c⊥ in Eq. (17), we
get ω1(c

⊥, c⊥) = 0, a contradiction.
Case (ii): φ(n) ⊂ u2. For Y ∈ v, we have

φ(Y ) =
⎛
⎜⎝

0 0 0 0 0 0〈a,Y 〉 0 0 0 0 0
λ〈a,Y 〉 μ〈a,Y 〉 0 0 0 0
WY 0 0 0m−5 0 0
0 〈b,Y 〉 −λ〈a,Y 〉 −(WY )t 0 −〈a,Y 〉

−〈b,Y 〉 0 −μ〈a,Y 〉 0 0 0

⎞
⎟⎠ , (19)

where λ,μ ∈ R and W : v → R
m−5 = Span(e4, . . . , em−2). We can assume that

a �= 0 and μ �= 0, for otherwise φ(n) ⊂ u1.
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Arguing similarly to the previous case, we see that φ(c⊥)n′ ⊂ Span(e2, . . . , em),
and so we must have ω1(v, v) �= 0. From the Jacobi identity we obtain

σ(ω1(Y1,Y2)(〈a,Y3〉e2 + WY3)) = 0, (20)

where σ denotes the cyclic permutation of Y1,Y2,Y3 ∈ v. From (20) with Y1,Y2 ∈ c
andY3 ∈ c⊥ weobtainω1(c, c) = 0. Furthermore,we have [c, c⊥] = 0 byLemma3(a),
and so ω1(c, c

⊥) = 0 by (16). It follows that ω1(c, v) = 0, and so we must have
ω1(c

⊥, c⊥) �= 0, as ω1(v, v) �= 0.
From the e2-component of (20) we obtain ω1 ∧ α = 0, where α is the 1-form on

v defined by α(Y ) = 〈a,Y 〉. By generalised Cartan’s Lemma [1, Lemma 1] we get
ω1 = γ ∧ α for some 1-form γ ∈ v∗. As ω1 �= 0, the 1-form γ is not a multiple of
α. Moreover, as ω1(c, v) = 0, both the vector a and the vector c ∈ v dual to γ lie in
c⊥. Taking the inner product of (20) with es, s = 4, . . . ,m − 2, we find that Wtes ∈
Span(a, c). Hence in the matrix φ(Y ) given in (19), for all Y ∈ (Span(a, c))⊥ ∩v, we
haveWY = 〈a,Y 〉 = 0. We first suppose that b ∈ Span(a, c). Then c⊥ ⊂ Span(a, c),
and as dim c⊥ > 1 by Lemma 3(b), we deduce that dim c⊥ = 2 and hence, that
[c⊥, c⊥] lies in the centre of n, by Lemma 3(c). But now if we take Y1,Y2,Y3 ∈ c⊥
with 〈a,Y3〉 �= 0 in (17), then from the e2-component we get ω1(c

⊥, c⊥) = 0 which
is a contradiction.

We therefore suppose that b /∈ Span(a, c), and so Span(a, b) ⊂ c⊥ ⊂ Span(a, b, c)
from (19). Note that the subspace [v, [v, n′]] is adg(h)-invariant by Remark 3.
As [Y , n′] = φ(Y )n′ for Y ∈ v, Eq. (19) gives that the subspace [v, [v, n′]]
lies in Span(e3, . . . , em). Moreover, as φ(Y )2e3 = μ〈a,Y 〉em−1 and φ(Y )2e2 =
−μ〈a,Y 〉(λ〈a,Y 〉em−1 + μ〈a,Y 〉em), and as a �= 0 and μ �= 0, we obtain that the
subspace [v, [v, n′]] contains Span(em−1, em). But then [v, [v, n′]] ∩ ([v, [v, n′]])⊥ =
Span(em−1, em), and so the subspaceSpan(em−1, em) is adg(h)-invariant byRemark 3.
Then the subspace {Y ∈ c⊥ : [Y , n′] ⊂ Span(em−1, em)} is also adg(h)-invariant by
Remark 3. But the latter subspace is given by {Y ∈ c⊥ : WY = 0, 〈a,Y 〉 = 0} =
c⊥ ∩ (Span(a, c))⊥ = RY0, where Y0 �= 0 is the component of b orthogonal to
Span(a, c). This gives a 1-dimensional adg(h)-invariant subspace of c⊥, in contradic-
tion with Lemma 3(b).

Case (iii): φ(n) ⊂ u3. This is the most involved case. For Y ∈ v, we have

φ(Y ) =
⎛
⎝

0 0 0 0 0
0 0 0 0 0

UY VY 0m−4 0 0
0 〈b,Y 〉 −(UY )t 0 0

−〈b,Y 〉 0 −(VY )t 0 0

⎞
⎠ , (21)

where b ∈ v, and U , V : v → R
m−4 = Span(e3, . . . , em−2) are such that for all

Y1,Y2 ∈ v we have

〈UY1, VY2〉 = 〈UY2, VY1〉 (equivalently, the matrixUtV is symmetric). (22)

The following lemma sorts out the “non-generic” cases.
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Lemma 4 Suppose φ(n) �⊂ u1 and φ(n) �⊂ u2 [up to specifying the basic vectors
e1, e2, em−1, em, but keeping the form of 〈·, ·〉|n′ given in (15)]. We have the following.
(a) For almost all Y ∈ v, the vectors UY and VY are linearly independent.
(b) The subspace Span(em−1, em) is adg(h)-invariant.
(c) c = KerU ∩ Ker V , c⊥ = (KerU ∩ Ker V )⊥, and so for almost all Y ∈ c⊥, the

vectors UY and VY are linearly independent.
(d) For almost all e ∈ Span(e3, . . . , em−2), the 1-forms ξe and ηe on v defined by

ξe(Y ) = 〈UY , e〉 and ηe(Y ) = 〈VY , e〉 are linearly independent.
Proof We cannot have U = V = 0, as otherwise the subspace c⊥ is at most
1-dimensional, in contradiction with Lemma 3(b). Furthermore, if U and V are pro-
portional, we can specify the vectors e1, e2, em−1, em [without changing the form of
〈·, ·〉|n′ given in (15)] in such a way that V = 0 hence obtaining φ(n) ⊂ u1. We can
therefore assume that U and V are not proportional.

We use the following well known fact. If F1, F2 : R
p → R

q are linear maps such
that rk(F1x, F2x) ≤ 1, for all x ∈ R

p, then either F1 and F2 are proportional, or there
exist w ∈ R

q and λ1, λ2 ∈ (Rp)∗ such that F1x = λ1(x)w and F2x = λ2(x)w, for
all x ∈ R

p.
For assertion (a),we apply the above fact toU andV . Aswe assume thatU andV are

not proportional, we obtain thatUY = λ1(Y )w, VY = λ2(Y )w for non-proportional
1-forms λ1, λ2 ∈ v∗ and for some w �= 0. But this leads to a contradiction with (22).

To prove assertion (b) we note that from assertion (a) and from (21) it follows
that Span(em−1, em) ⊂ [v, n′] ⊂ Span(e3, . . . , em), and so [v, n′] ∩ ([v, n′])⊥ =
Span(em−1, em).Hence the subspaceSpan(em−1, em) is adg(h)-invariant byRemark3.

For assertion (c) we note that from (21) we have c⊥ = (KerU ∩Ker V )⊥ +Rb. But
if b /∈ (KerU ∩Ker V )⊥, then the subspace {Y ∈ c⊥ : [Y , n′] ⊂ Span(em−1, em)} =
{Y ∈ c⊥ : UY = VY = 0} is 1-dimensional and is adg(h)-invariant by assertion (b)
andRemark 3, in contradictionwithLemma3(b). It follows thatb ∈ (KerU∩Ker V )⊥,
and so c⊥ = (KerU∩Ker V )⊥ and c = KerU∩Ker V , as required. Then assertion (a)
implies that for almost all Y ∈ c⊥, we have rk(UY |VY ) = 2.

For assertion (d), we apply the above linear-algebraic fact to the conjugates of U
and V . As we assume U and V to be not proportional, the condition that the 1-forms
ξe and ηe on v are linearly dependent for all e ∈ Span(e3, . . . , em−2) would imply the
existence of w ∈ v \ {0} and e, e′ ∈ Span(e3, . . . , em−2) such thatUY = 〈w,Y 〉e and
VY = 〈w,Y 〉e′, for all Y ∈ v. But then by assertion (c), c⊥ = Rw which contradicts
Lemma 3(b). ��

As Cases (i) and (ii) have been already understood, for the rest of the proof we will
assume that the conditions of Lemma 4 are satisfied.

As φ(v)n′ ⊂ Span(e3, . . . , em), in order to have both e1 and e2 in n′, we need the
2-forms ω1, ω2 ∈ �2(v) defined by (16) to be linearly independent. From the Jacobi
identity we obtain

σ(ω1(Y1,Y2)UY3 + ω2(Y1,Y2)VY3) = 0, (23)

where σ denotes the cyclic permutation of Y1,Y2,Y3 ∈ v. Taking Y1,Y2 ∈ c and
Y3 ∈ c⊥ in such a way that rk(UY3|VY3) = 2 we obtain ω1(c, c) = ω2(c, c) = 0.
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As we also have ω1(c, c
⊥) = ω2(c, c

⊥) = 0 by Lemma 3(a) and (16), we obtain
ω1(c, v) = ω2(c, v) = 0, and hence the restrictions of ω1 and ω2 to c⊥ must be
linearly independent.

Lemma 5 In the assumptions of Lemma 4 we have the following.

(a) dim c⊥ ≤ 4.
(b) Introduce K1, K2 ∈ so(c⊥) by 〈KiY ,Y ′〉 = ωi (Y ,Y ′) for Y ,Y ′ ∈ c⊥ and i = 1, 2.

Denote S = Span(K1, K2) ⊂ so(c⊥) (note that dim S = 2). Then the subalgebra
π(h) ⊂ so(c⊥) normalises the subspace S.

Proof For assertion (a), consider the pencil μ1ω1 + μ2ω2 ⊂ �2(v), where μ1, μ2 ∈
R. Suppose at least one element of this pencil has rank greater than or equal to 4.
Specifying the vectors e1, e2, em−1, em we can assume, without loss of generality, that
rk ω1 ≥ 4.

Let U ⊂ Span(e3, . . . , em−2) be the subset of those vectors e for which the 1-
forms ξe, ηe ∈ v∗ are linearly independent. By Lemma 4(d), the subset U is open
and dense in Span(e3, . . . , em−2). Taking the inner product of (23) with e ∈ U we
obtain ω1 ∧ ξe + ω2 ∧ ηe = 0. By generalised Cartan’s Lemma [1, Lemma 1],
there exist 1-forms γ11, γ12 = γ21, γ22 ∈ v∗ such that ω1 = γ11 ∧ ξe + γ12 ∧ ηe
and ω2 = γ21 ∧ ξe + γ22 ∧ ηe. In particular, rk ω1 ≤ 4, and so rk ω1 = 4 by
our assumption. Let L1 = {Y ∈ v : iY (ω1) = 0}. Then L1 has codimension 4,
and ξe(L1) = ηe(L1) = 0, for all e ∈ U , and hence for all e ∈ v. It follows that
UL1 = V L1 = 0, and so by Lemma 4(c), c⊥ = (KerU ∩ Ker V )⊥ ⊂ L⊥

1 which
implies dim c⊥ ≤ 4.

Now suppose that rk(μ1ω1 +μ2ω2) < 4, for all μ1, μ2 ∈ R. As the rank is always
even and as ω1 and ω2 are linearly independent, we obtain rk(μ1ω1 + μ2ω2) = 2,
for all (μ1, μ2) ∈ R

2 \ {(0, 0)}. Then it is easy to see that there exist three linearly
independent 1-forms ζ1, ζ2, ζ3 ∈ v∗ such that ω1 = ζ1 ∧ ζ3 and ω2 = ζ2 ∧ ζ3.
From (23) we get ω1 ∧ ξe + ω2 ∧ ηe = 0, for all e ∈ Span(e3, . . . , em−2) which gives
ζ1 ∧ ζ3 ∧ ξe + ζ2 ∧ ζ3 ∧ ηe = 0. It follows that ζ1 ∧ ζ2 ∧ ζ3 ∧ ξe = 0, and so ξe ∈
Span(ζ1, ζ2, ζ3), and similarly ηe ∈ Span(ζ1, ζ2, ζ3), for all e ∈ Span(e3, . . . , em−2).
But then the common kernel L2 of the 1-forms ζ1, ζ2, ζ3 has codimension 3 and lies
in the kernel of both U and V . It follows that c⊥ = (KerU ∩ Ker V )⊥ ⊂ L⊥

2 and so
dim c⊥ ≤ 3.

For assertion (b), we first note that the subspace Span(e3, . . . , em) = (Span(em−1,

em))⊥ is adg(h)-invariant by Lemma 4(b) and Remark 3. Now let A ∈ h and
Y ,Y ′ ∈ c⊥. Then by (9), the component of the vector [AY ,Y ′] + [Y , AY ′]
lying in Span(e1, e2) equals (ω1(AY ,Y ′) + ω1(Y , AY ′))e1 + (ω2(AY ,Y ′) +
ω2(Y , AY ′))e2 = 〈[K1, π(A)]Y ,Y ′〉e1 + 〈[K2, π(A)]Y ,Y ′〉e2. As Span(e3, . . . , em)

is adg(h)-invariant, the component of the vector A[Y ,Y ′] lying in Span(e1, e2) equals
the component of the vector A(ω1(Y ,Y ′)e1 + ω2(Y ,Y ′)e2) lying in Span(e1, e2),
which is ω1(Y ,Y ′)(A11e1 + A12e2) + ω2(Y ,Y ′)(A21e1 + A22e2) = 〈(A11K1 +
A21K2)Y ,Y ′〉e1 +〈(A12K1 + A22K2)Y ,Y ′〉e2, where Ai j denotes the corresponding
entry of the matrix of (ad(A))|n′ relative to the basis {e1, e2, . . . , em}. We deduce that
[K1, π(A)], [K2, π(A)] ∈ Span(K1, K2), as required. ��
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By Lemmas 3(b) and 5(a), we have 2 ≤ dim c⊥ ≤ 3. Moreover, by Lemma 5(b),
the subalgebra π(h) ⊂ so(c⊥) normalises the 2-dimensional subspace S =
Span(K1, K2)⊂ so(c⊥). If π(h) is abelian, then by Lemma 3(d), we obtain [c⊥, c⊥] ⊂
z(n). Then taking Y1,Y2,Y3 ∈ c⊥ in (17) we get

∑m
i=1 ωi (Y1,Y2)φ(Y3)ei = 0 which

by (21) gives ω1(Y1,Y2)UY3 + ω2(Y1,Y2)VY3 = 0. As by Lemma 4(c), the vec-
tors UY3 and VY3 are linearly independent for almost all Y3 ∈ c⊥, we deduce that
ω1(c

⊥, c⊥) = ω2(c
⊥, c⊥) = 0, a contradiction. So the subalgebra π(h) ⊂ so(c⊥) is

non-abelian. It is easy to see that the only possible case when the normaliser of a two-
dimensional subspace S of a subalgebra so(c⊥), dim c⊥ ∈ {2, 3, 4}, is non-abelian is
the following: dim c⊥ = 4, so that so(c⊥) = so(4) = so(3) ⊕ so(3) (direct sum of
ideals), and then S lies in one of the two so(3)-components.

In this last remaining case, denote ω̃ j ∈ �2(c⊥), j = 1, 2, the restriction of the
2-form ω j ∈ �2(v) to c⊥, and for e ∈ Span(e3, . . . , em−2), denote ξ̃e, η̃e ∈ (c⊥)∗
the restrictions of the 1-forms ξe, ηe ∈ v∗, respectively (so that for Y ∈ c⊥ we have
ξ̃e(Y ) = 〈UY , e〉 and η̃e(Y ) = 〈VY , e〉). Restricting Eq. (23) to c⊥ [note that Uc =
V c = 0 andω1(c, v) = ω2(c, v) = 0 anyway], we obtain ω̃1∧ ξ̃e+ω̃2∧ η̃e = 0, for all
e ∈ Span(e3, . . . , em−2). Applying the Hodge star operator (and noting that the dual
vectors to ξ̃e and η̃e areUte, V te ∈ c⊥, respectively) gives iUt e(�ω̃1)+iV t e(�ω̃2) = 0.
Let �K j ∈ so(c⊥), j = 1, 2, be defined by 〈(�K j )Y ,Y ′〉 = �ω̃ j (Y ,Y ′) for Y ,Y ′ ∈
c⊥. Then from the latter equation we obtain 〈(�K1)Ute,Y 〉+ 〈(�K2)V te,Y 〉 = 0, for
all Y ∈ c⊥ and all e ∈ Span(e3, . . . , em−2). This is equivalent to

Ũ (�K1) + Ṽ (�K2) = 0, (24)

where Ũ and Ṽ are the restrictions of U and V to c⊥, respectively. Note that K1
and K2 are linearly independent and belong to the same so(3)-component of the
algebra so(c⊥) = so(3) ⊕ so(3) (direct sum of ideals). As these components are �-
invariant, we obtain that �K1 and �K2 are also linearly independent and belong to
the same so(3)-component. This implies that (�K2)

2 = μ Id for some μ < 0 and
that (�K1)(�K2) = ν Id+K3, where ν ∈ R, and K3 �= 0 belongs to the same so(3)-
component of so(c⊥) as �K1 and �K2. In particular, det K3 �= 0.We nowmultiply (24)
by Ũ t on the left and by �K2 on the right. We get Ũ t Ũ (ν Id+K3) + μŨ t Ṽ = 0.
But UtV is symmetric by (22), and so Ũ t Ṽ is symmetric (as Uc = V c = 0) which
implies that the 4×4 matrix Ũ t Ũ K3 is also symmetric. Choosing a basis for c⊥ which
diagonalises the semi-definite matrix Ũ t Ũ we find that Ũ t Ũ K3 can be symmetric only
when Ũ t Ũ K3 = 0. But as det K3 �= 0, this implies Ũ = 0, that is, Uc⊥ = 0, which
in combination with Uc = 0 gives U = 0. This is a contradiction with Lemma 4(a)
which completes the proof of the proposition and of Theorem 1. ��

2.3 Example

The following example shows that Theorem 1, concerning the 2-step property of n for
the case when the derived algebra n′ is nondegenerate, is “almost" tight in terms of the
signature. We construct a nilpotent, metric Lie algebra (n, 〈·, ·〉) with the following
properties:
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• dim n = 12, dim n′ = 4, dim v = 8.
• n′ is Lorentz and v is of signature (5, 3), so that n is of signature (8, 4).
• n is 4-step nilpotent (and n′ is abelian).
• (n, 〈·, ·〉) is G-geodesic orbit (for G as in Theorem 1).

We definen = v⊕n′, where dim n′ = 4, dim v = 8.Wehave a basis {e1, e2, e3, e4}
for n′, and a basis { f1, . . . , f8} for v. The inner product 〈·, ·〉 is defined in such a way
that v ⊥ n′, and

〈·, ·〉|v =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 I2
0 0 0 1 0
0 0 I2 0 0
0 1 0 0 0
I2 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and 〈·, ·〉|n′ =
⎛
⎝
0 0 1
0 I2 0
1 0 0

⎞
⎠ .

The Lie bracket is defined as follows:

[ f1, e1] = e2, [ f2, e1] = e3, [ f1, e2] = [ f2, e3] = −e4,

[ f1, f2] = e1, [ f1, f6] = e2, [ f2, f6] = e3, [ f1, f4] = [ f2, f5] = e4.

It is not hard to see that the algebra n′ so defined is 4-step nilpotent (in fact, if we
disregard the inner product, our algebra n′ is the direct sum of the 6-dimensional ideal
Span( f1, f2, e1, e2, e3, e4) (the algebra L6,21(1) in [6]) and the 6-dimensional abelian
ideal Span( f3, f4 + e2, f5 + e3, f6 − e1, f7, f8)).

We now define, for every T = X + Y , where X = ∑4
i=1 xi ei ∈ n′, Y =∑8

j=1 y j f j ∈ v, the linear operator A on n such that An′ ⊂ n′, Av ⊂ v, and
relative to the chosen bases for v and n′,

A|v =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

x2+y4 x3+y5 0 −y1 −y2 0 0 0
x1−y6 0 0 0 0 y1 0 0

0 x1−y6 0 0 0 y2 0 0
y2 −y1 0 0 0 0 0 0
0 y3−x4 −y2 y6−x1 0 −x2−y4 0 0

x4−y3 0 y1 0 y6−x1 −x3−y5 0 0

⎞
⎟⎟⎟⎟⎠

and A|n′ =

⎛
⎜⎜⎝

0 0 0 0
−y1 0 0 0
−y2 0 0 0
0 y1 y2 0

⎞
⎟⎟⎠ .

A direct calculation shows thatA so defined is a skew-symmetric derivation, and that
the GO equation 〈AT ′ + [T , T ′], T 〉 = 0 [see (1)] is satisfied, for all T ′ ∈ n. As
A depends linearly on T , one may expect the algebra (n, 〈·, ·〉) to be even naturally
reductive. ♦

This example also shows that a pseudo-Riemannian G-GO nilmanifold with non-
degenerate derived algebra loses the property of being 2-step nilpotent already when
〈·, ·〉′ is Lorentz (for the case when 〈·, ·〉′ is definite, see Remark 4).
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3 Proof of Theorem 2: If ds2|[n,n] is Degenerate Then n is a Double
Extension

In this section we consider the case when the restriction of the inner product 〈·, ·〉 to
the derived algebra n′ is degenerate.

We start with the following Lemma.

Lemma 6 Let (M = G/H , ds2) be a connected pseudo-Riemannian G-geodesic orbit
nilmanifold where G = N � H , with N nilpotent. Let 〈·, ·〉 denote the inner product
on n induced by ds2. Suppose 〈·, ·〉|n′ is degenerate. Let m1 and e be subspaces of n
with the following properties:

(i) e ⊂ n′ ⊂ m1 (so that, in particular, m1 is an ideal of n);
(ii) both m1 and e are adg(h)-invariant;
(iii) 〈e,m1〉 = 0 and [e,m1] = 0;
(iv) dimm1 + dim e = dim n.

Define the metric nilpotent Lie algebra m0 = m1/e with the inner product 〈·, ·〉0
induced fromm1 [this is well-defined by (iii)], and the pseudo-Riemannian nilmanifold
(M0 = G0/H0, ds20 ),where G0 = N0�H0,with N0 the (simply connected) Lie group
whose Lie algebra ism0, ds20 is the left-invariant metric on M0 defined by 〈·, ·〉0, and
H0 is the maximal connected group of pseudo-orthogonal automorphisms of 〈·, ·〉0.

Then (M0, ds20 ) is a G0-GO pseudo-Riemannian nilmanifold.

Note that the fact that the inner product 〈·, ·〉0 as constructed in Lemma 6 is non-
degenerate follows from assumption (iv).

If we denote m0 = dim e, then the signature of the metric ds20 is (p−m0, q −m0),
where (p, q) is the signature of ds2. In the settings of Lemma 6, we say that the
metric Lie algebra (n, 〈·, ·〉) is a 2m0-dimensional double extension of the metric Lie
algebra (m0, 〈·, ·〉0). Informally, to get (n, 〈·, ·〉), we first take the central extension
of (m0, 〈·, ·〉0) by e and then the extension of the resulting Lie algebra m1 by m0-
dimensional space of derivations.

Proof of Lemma 6 To check the G0-GO property for (m0, 〈·, ·〉0) we need to choose
(an arbitrary, but fixed) linear complement to e in m1, which, with some abuse of
notation, we will still denote m0. Then m1 = m0 ⊕ e. For X ,Y ∈ m0 we have
〈X ,Y 〉0 = 〈X ,Y 〉, as e ⊥ m1 by assumption (iii). We define the Lie bracket [·, ·]0
on m0 by [X ,Y ]0 = [X ,Y ]m0 , for X ,Y ∈ m0. It is easy to see that (m0, 〈·, ·〉0) is
isomorphic to the quotient algebra m1/e.

Let X ∈ m0. By the Geodesic Lemma, there exist A(X) ∈ h and k(X) ∈ R such
that for all Y ∈ m0 we have 〈[X + A(X),Y ], X〉 = k(X)〈X ,Y 〉. By assumption (ii)
we have [A(X),Y ] ∈ m1 (= m0 ⊕ e), and so we can define an endomorphism D(X)

ofm0 by the formula D(X)Y = [A(X),Y ]m0 . As adg(A(X)) is skew-symmetric and
e ⊥ m1, the endomorphism D(X) is skew-symmetric relative to 〈·, ·〉0. To see that
D(X) is a derivation of the Lie algebra (m0, [·, ·]0) we write, for Y1,Y2 ∈ m0,

0 = ([A(X), [Y1,Y2]] − [[A(X),Y1],Y2] − [Y1, [A(X),Y2]])m0

= ([A(X), [Y1,Y2]])m0 − ([[A(X),Y1],Y2])m0 − ([Y1, [A(X),Y2]])m0
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= ([A(X), [Y1,Y2]0])m0 − ([D(X)Y1,Y2])m0 − ([Y1, D(X)Y2])m0

= D(X)([Y1,Y2]0) − [D(X)Y1,Y2]0 − [Y1, D(X)Y2]0,

where in the third line, we used the fact that e is adg(h)-invariant, by assumption (ii).
It follows that there exists A0(X) ∈ h0, where h0 is the Lie algebra of H0, such

that D(X)Y = [A0(X),Y ]0, for all X ,Y ∈ m0. Then from assumption (iii) and the
fact that 〈[X + A(X),Y ], X〉 = k(X)〈X ,Y 〉 it follows that 〈[X + A0(X),Y ]0, X〉0 =
k(X)〈X ,Y 〉0, for all X ,Y ∈ m0, as required by the Geodesic Lemma. ��

First suppose that 〈·, ·〉|n′ has degeneracy 1 and is semidefinite. Denote v = (n′)⊥
and choose a vector e such that n′ ∩ v = Re. Denotem1 = n′ + v. Note that e⊥ = m1
and that all four subspaces Re, n′, v and m1 are adg(h)-invariant, by Remark 3. To
be able to apply Lemma 6 (with e = Re) we only need to check that [e,m1] = 0.
Taking T ′ = e and T = X + Y ∈ m1 in (1), where X ∈ n′ and Y ∈ v, we obtain
〈[e, X + Y ], X〉 = 0, and so 〈[e, X ], X〉 = 〈[e,Y ], X〉 = 0, for all X ∈ n′, Y ∈ v.
From the second equation it follows that [e,Y ] is a multiple of e, and hence [e,Y ] = 0,
for all Y ∈ v, as adn(Y ) is nilpotent. From the first equation we also obtain that [e, X ]
is amultiple of e, as adn′ e is nilpotent and skew-symmetric and 〈·, ·〉|n′ has degeneracy
1 and is semidefinite. Then [e, X ] = 0, for all X ∈ n′, as adn(X) is nilpotent. Thus
[e,m1] = 0, and the claim follows from Lemma 6, with e = Re.

Next suppose that 〈·, ·〉|n′ has degeneracy 2 and is semidefinite. Denote v =
(n′)⊥, o = n′ ∩ v and s = n′ + v. The restriction of 〈·, ·〉 to s has degeneracy 2
and is semidefinite. We have dim o = codim s = 2 and o⊥ = s. Moreover, all four
subspaces o, n′, v and s are adg(h)-invariant, by Remark 3. If [o, s] = 0, we can
directly apply Lemma 6 with m1 = s and e = o, and the claim follows. We therefore
assume that [o, s] �= 0. Taking T ′ = e ∈ o and T ∈ s in (1) we obtain 〈[e, T ], T 〉 = 0.
As the restriction of the inner product to s is semidefinite, of degeneracy 2 (and
s⊥ = o), and ads e is both skew-symmetric and nilpotent, we obtain [e, T ] ⊂ o, for
all e ∈ o and T ∈ s, and hence [s, o] ⊂ o. We obtain a nilpotent representation of
the (nilpotent) algebra s on the 2-dimensional space o. By Engel’s Theorem, we can
find a basis {e1, e2} for o such that [s, e2] = 0 and [T , e1] = λ(T )e2, for all T ∈ s,
where λ ∈ s∗. As we have assumed that [o, s] �= 0, the 1-form λ is nonzero (but
note that λ(o) = 0). Then [o, s] = Re2, and so by Remark 3, the subspace Re2 is
adg(h)-invariant. Choose two vectors f1, f2 ∈ n such that Span( f1, f2) ⊕ s = n,
and 〈 fi , f j 〉 = 0, 〈 fi , e j 〉 = δi j , for i, j = 1, 2. We claim that the assumptions of
Lemma 6 are satisfied with e = Re2 and m1 = R f1 ⊕ s. Indeed, assumptions (i)
and (iv) are obviously true, and for assumption (ii) we note that m1 = (Re2)⊥ by
construction, and hence m1 is adg(h)-invariant by Remark 3, as Re2 is. It remains to
show that [m1, e2] = 0. As we already know that [s, e2] = 0, it suffices to show that
[ f1, e2] = 0. Taking T ′ = e2 and T = ξ f1+X ∈ m1, where X ∈ s, ξ ∈ R, in (1) (and
using the fact that Re2 and m1 are orthogonal, adg(h)-invariant subspaces) we obtain
〈[ f1, e2], ξ f1 + X〉 = 0, for all X ∈ s, ξ ∈ R. It follows that [ f1, e2] is a multiple of
e2, which must be zero, by nilpotency. The claim now follows from Lemma 6.

The last case to consider is the one when 〈·, ·〉|n′ has degeneracy 1 and index 1. This
is the most involved case. As above, we denote v = (n′)⊥ and choose a vector e such
that n′ ∩ v = Re. Denote m1 = n′ + v, so that e⊥ = m1. The subspaces Re, n′, v and
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m1 are adg(h)-invariant, by Remark 3. We claim that the assumptions of Lemma 6 are
satisfied with e = Re. It is easy to see that the only fact we need to establish is that
[e,m1] = 0.

The proof is completed by the following proposition.

Proposition 3 In the above notation, the vector e lies in the centre of m1.

Proof Denote m = dim n′. Seeking a contradiction we assume that [m1, e] �= 0.
Let f = {T ∈ n : 〈[T , X ], X〉 = 0, for all X ∈ n′}. It is easy to see that f is a

subalgebra of n.

Lemma 7 In the above notation, the following holds.

(a) v ⊂ f and [f, e] = 0 (so, in particular, [e, v] = 0).
(b) There exists a hyperplane n0 ⊂ n′,with n0⊕Re = n′, and a basis {e1, . . . , em−1}

for n0 such that relative to the basis {e1, . . . , em−1, e} for n′, we have

〈·, ·〉|n′ =
( 0 0 1 0

0 Im−3 0 0
1 0 0 0
0 0 0 0

)
, adn′ T =

( 0 0 0 0
VT 0m−3 0 0
0 −(VT )t 0 0

a(T ) (WT )t 0 0

)
and

adn′ e =
(

0 0 0 0
u 0m−3 0 0
0 −ut 0 0
0 0 0 0

)
, (25)

for all T ∈ f, where u ∈ L := Span(e2, . . . , em−2), u �= 0, a ∈ f∗ and V ,W :
f → L are linear maps. In particular, [f, em−1] = 0.

(c) The subspacesSpan(u, em−1) andRem−1 are adg(h)-invariant.Moreover, for any
A ∈ h, we have [A, e] = α(A)e, [A, u] = β(A)em−1, [A, em−1] = γ (A)em−1,

for some α, β, γ ∈ h∗.

Proof For assertion (a), the fact that [f, e] = 0 easily follows: for all T ∈ f and X ∈ n′,
we have 0 = 〈[T , X ], e〉 = −〈[T , e], X〉. Therefore [T , e] is a multiple of e, which
must be zero as adn′ T is nilpotent.

To see that v ⊂ f, take T ′ = Y ∈ v and T = X ∈ n′ in (1). As v and n′ are
orthogonal, adg(h)-invariant subspaces, se obtain 〈[X ,Y ], X〉 = 0, as required.

For assertion (b), we note that the subspace [e, n′] ⊂ n′ does not contain Re
(indeed, for no X ∈ n′ we can have [X , e] = e, as adn′ X is nilpotent). Choose a
linear complement n0 to Re in n′ in such a way that n0 ⊃ [e, n′]. The restriction
of 〈·, ·〉 to n0 is nondegenerate and is of Lorentz signature. For T ∈ f we define
the endomorphism φT of n0 by [T , X ] = φT X + μ(X)e, for X ∈ n0. For every
T ∈ f, the endomorphism φT is skew-symmetric (as 〈e, n′〉 = 0) and nilpotent (as
[f, e] = 0 by assertion (a)). Moreover, the map φ : f → so(n0, 〈·, ·〉|n0) sending
T to φT is a Lie algebra homomorphism (as [f, e] = 0). Considering the Iwasawa
decomposition of the Lie algebra so(m − 2, 1) = so(n0, 〈·, ·〉|n0), by the argument
similar to that in the proof of Proposition 1 [see Eqs. (7) and (8)] we can construct
a basis {e1, . . . , em−1} for n0 such that the restriction of 〈·, ·〉 to n′ relative to the
basis {e1, . . . , em−1, e} for n0 has the form as given in (25), and moreover, there is
a linear map V : f → L (= Span(e2, . . . , em−2) such that for all T ∈ f we have
φT e1 = VT , φT em−1 = 0 and φT ei = −〈V T , ei 〉em−1, for i = 2, . . . ,m − 2.
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It follows that for some linear mapW : f → L and linear forms a, b ∈ f∗, we have

[T , e1] = VT + a(T )e, [T , em−1] = b(T )e,

[T , ei ] = −〈VT , ei 〉em−1 + 〈WT , ei 〉e, i = 2, . . . , em−2, (26)

for all T ∈ f. In particular, taking T = e and using the fact that [e, n0] ⊂ n0 (by
construction of n0) we obtain We = 0 and a(e) = b(e) = 0. Thus adn′ e has the
form as given in (25), where we denote u = Ve ∈ L . Then from (26) we obtain
[e, u] = −‖u‖2em−1, and so [T , [e, u]] = −‖u‖2b(T )e, for all T ∈ f. But [T , e] = 0
by assertion (a), which gives [[T , u], e] = ‖u‖2b(T )e. As adn′ [T , u] is nilpotent we
get ‖u‖2b(T ) = 0, for all T ∈ f. If b �= 0 we get u = 0 (as the restriction of 〈·, ·〉 to
L is definite), and so [e, n′] = 0. As [e, v] = 0 by assertion (a) we obtain [e,m1] = 0
contradicting our assumption. Therefore b = 0, and then Eq. (26) imply that adn′ T
has the form given in (25).

The last statement in assertion (b) follows from (25).
For assertion (c), we note that from (25) we obtain [e, n′] = Span(u, em−1) and

[e, [e, n′]] = Rem−1, and so the first claim follows from Remark 3. Then the second
claim also follows (note that the u-component of [A, u] vanishes as 〈[A, u], u〉 = 0
and u lies in the subspace L with a definite inner product). ��
Let now f /∈ m1 be a null vector such that f ⊥ n0 and 〈 f , e〉 = 1 (the choice of such
an f is not unique); note that m1 ⊕ R f = n.

Lemma 8 The following holds:

[h, [ f , e]] = 0, (27)

[e, [ f , v]] = [[ f , e], v] = 0, (28)

[v, [ f , [ f , e]]] = 0, (29)

[ f , [ f , [ f , e]]] = 0. (30)

Proof From Lemma 7(c), for any A ∈ h, we have 〈[A, f ], e〉 = −〈[A, e], f 〉 =
−α(A), 〈[A, f ], em−1〉 = −〈[A, em−1], f 〉 = 0 and 〈[A, f ], u〉 = −〈[A, u], f 〉 = 0,
as em−1 ∈ n0 ⊂ f ⊥. It follows that [A, f ] = −α(A) f + Y + X , where Y ∈ v
and X ∈ (Span(em−1, u))⊥ ∩ n′. Then [A, [ f , e]] = [[A, f ], e] + [ f , [A, e]] =
[−α(A) f +Y +X , e]+[ f , α(A)e] = 0, as [Y , e] = 0 by Lemma 7(a) and [X , e] = 0
by (25). This proves (27).

Take in (1) T ′ = [ f , e] and a non-null vector T = μ f + Y + X , where Y ∈
v, X ∈ n′ and μ ∈ R. As [A, [ f , e]] = 0 by (27) and v ⊥ n′ we obtain 〈[μ f + Y +
X , [ f , e]], μ f + X〉 = 0, for all Y ∈ v, X ∈ n′ andμ ∈ R, by continuity, from which
we get

〈[Y , [ f , e]], X〉 = 0, 〈[X , [ f , e]], X〉 = 0, 〈[ f , [ f , e]], f 〉 = 0,

〈[ f , [ f , e]], X〉 + 〈[X , [ f , e]], f 〉 = 0, (31)

for all Y ∈ v, X ∈ n′.
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The first equation of (31) implies that [Y , [ f , e]] is amultiple of e. But [Y , [ f , e]] =
[[Y , f ], e], as [Y , e] = 0 by Lemma 7(a), and so [Y , [ f , e]] = [[Y , f ], e] = 0, as
adn′ [Y , f ] is nilpotent. This proves (28).

We now consider the last equation of (31). We have 〈[X , [ f , e]], f 〉 = 〈−[e, [X ,

f ]] − [ f , [e, X ]], f 〉. As [e, n′] ⊂ n0 (by construction of n0) and f ⊥ n0, we
have 〈[e, [X , f ]], f 〉 = 0. Taking X = x1e1 + x̃ + xm−1em−1 + xe ∈ n, where
x1, xm−1, x ∈ R and x̃ ∈ L (= Span(e2, . . . , em−2)) we obtain from (25) that
[e, X ] = x1u + 〈x̃, u〉em−1, which gives 〈[X , [ f , e]], f 〉 = −〈[ f , [e, X ]], f 〉 =
−〈[ f , x1u+〈x̃, u〉em−1], f 〉 = −x1〈[ f , u], f 〉−〈x̃, u〉〈[ f , em−1], f 〉. From the last
equation of (31) we obtain [ f , [ f , e]] = 〈[ f , u], f 〉em−1 +〈[ f , em−1], f 〉u+ηe, for
some η ∈ R. But then η = 0 from the third equation of (31). Moreover, as e ∈ v, we
get [e, [ f , e]] = 0 by (28), which implies [e, [ f , [ f , e]]] = 0. Substituting the above
expression for [ f , [ f , e]] and using (25) we find

〈[ f , em−1], f 〉 = 0, and so [ f , [ f , e]] = 〈[ f , u], f 〉em−1. (32)

But from Lemma 7(a), (b) we have v ⊂ f and [f, em−1] = 0 which implies
[[ f , [ f , e]], v] = 0, by the second equation of (32) . This establishes (29).

From the second equation of (31) we obtain that [ f , e] ∈ f, and so adn′ [ f , e] has
the form given in (25), in particular, [[ f , e], u] ∈ Span(em−1, e). As [e, [ f , u]] ∈
[e, n′] = Span(u, em−1) (by (25)), we obtain [ f , [e, u]] = [[ f , e], u] + [e, [ f , u]] ∈
Span(u, em−1, e). But [e, u] = −‖u‖2em−1 by (25), and so we obtain [ f , em−1] =
ρ1u + ρ2em−1 + ρ3e, for some ρ1, ρ2, ρ3 ∈ R. Then from the first equation of (32)
we get ρ3 = 0. Moreover, as [ f , e] ∈ f, from (25) we find [[ f , e], em−1] = 0 which
implies [e, [ f , em−1]] = 0 (since [e, em−1] = 0 by (25)). From the expression for
[ f , em−1] above we obtain [e, ρ1u + ρ2em−1] = 0 which implies ρ1 = 0, again
by (25). Therefore [ f , em−1] = ρ2em−1 which gives [ f , em−1] = 0, by nilpotency.
Now Eq. (30) follows from the second equation of (32). ��

We can now complete the proof of the proposition.We have n = R f ⊕m1 = R f ⊕
(v+n′) = (R f ⊕v)+n′. It follows that the subspaceV = R f ⊕v contains some linear
complement to n′ in n, and hence generates n. Then n = V+[V,V]+ [V, [V,V]]+
· · · , and so n′ = [V,V] + [V, [V,V]] + · · · As we already know that [e, v] = 0
[by Lemma 7(a)], to show that [e,m1] = 0 it suffices to prove that [e, n′] = 0, that
is, to prove that [e, [T1, [T2, [. . . , [Tr−1, Tr ] . . . ]]]] = 0, where r ≥ 2, and where, for
every i = 1, . . . , r , we have either Ti = f or Ti ∈ v. The proof goes by induction by
r ≥ 2. If r = 2 the claim follows from the facts that [e, v] = 0 and that [e, [ f , v]] =
0 [by (28)]. Suppose r > 2. If T1 ∈ v, then the claim follows by the induction
assumption from the fact that [e, T1] = 0. Suppose T1 = f . Then by the induction
assumption it suffices to prove that [[e, f ], [T2, [T3, [. . . , [Tr−1, Tr ] . . . ]]]] = 0. If
T2 ∈ v, the claim follows from the fact that [e, [ f , v]] = 0 [by (28)] and the induction
assumption [or from (29) if r = 3]. Suppose T2 = f . Then it suffices to prove
that [[[e, f ], f ], [T3, [. . . , [Tr−1, Tr ] . . . ]] = 0. But [[[e, f ], f ], f ] = 0 by (30) and
[[[e, f ], f ], v] = 0 by (29). It follows that [[[e, f ], f ], Ti ] = 0, for all i = 3, . . . , r ,
which completes the proof of Proposition 3. ��

With Proposition 3, application of Lemma 6 completes the proof of Theorem 2.
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