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Abstract
We introduce a natural notion of mean (or average) distance in the context of compact
metric graphs, and study its relation to geometric properties of the graph. We show
that it exhibits a striking number of parallels to the reciprocal of the spectral gap of
the graph Laplacian with standard vertex conditions: it is maximised among all graphs
of fixed length by the path graph (interval), or by the loop in the restricted class of
doubly connected graphs, and it is minimised among all graphs of fixed length and
number of edges by the equilateral flower graph. We also establish bounds for the
correctly scaled product of the spectral gap and the square of the mean distance which
depend only on combinatorial, and not metric, features of the graph. This raises the
open question whether this product admits absolute upper and lower bounds valid on
all compact metric graphs.
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1 Introduction

Our aim is to study the notion of mean, or average, distance on metric graphs. Metric
graphs have been studied in mathematics for over 40 years, at least since [21]. They
consist of collections of intervals whose endpoints are suitably identified to create a
connected network structure, and display many features which mirror those of com-
binatorial, i.e., discrete, graphs; but at times they exhibit more complex behaviour
reminiscent of (higher dimensional) Euclidean domains or manifolds, thanks to their
continuous metric structure. In particular, it is possible to define differential operators
such as Laplacians on metric graphs, see [2, 19, 27]; in the last decade or so, the
interplay between the geometry of the graph and the Laplacian spectrum has received
considerable attention, see, e.g., [4, 19] and the references therein.

At the same time, mean distance does not previously seem to have been consid-
ered on metric graphs. On combinatorial graphs a corresponding notion was already
actively investigated in the late 20th Century; in fact, it seems difficult to determine
a precise birthdate of the theory, as there the mean distance is, up to a normalising
factor, simply the �1-norm of the distance matrix. According to [11], this and related
quantities were first studied by Harary [16] and Ore [30] as graph-based sociometric
quantities; while in [15] the authors trace the origin of this notion back to an even
earlier study in quantum chemistry [34]. Subsequently, mean distance has grown to
be an important quantity in combinatorial geometry ever since [9, 11, 31], and it has
also played an important role in inverse combinatorial problems [7]. The interplay of
the �1-norm of the distance matrix with the geometry and potential theory of graphs
was investigated more recently, in [33]; in particular, a new notion of curvature is sug-
gested that, in particular, agrees with the mean distance function whenever the latter
is vertex-wise constant. As a further development that is closer to our main interest in
this article, let us mention that one topic of interest since at least the 1970s has been to
study the relationship between the combinatorial mean distance and the eigenvalues
of the discrete graph Laplacian, see, e.g., [15, 24], and see below.

Our goals here are essentially twofold. First,wewill develop fundamental geometric
bounds for themeandistance of a (compact)metric graph: on the one hand, it seems that
the mean distance is another, and arguably quite fine, quantity that measures how well
connected the graph is, just like the Cheeger constant and the vertex connectivity do (as
our estimates will show). On the other, in practice it is somewhat difficult to compute,
thus providing a need for such estimates. What we will show (see Theorem 3.2) is that
the mean distance is maximised among all graphs of given total length when the graph
is a path, i.e. interval (or a loop among doubly connected graphs); and maximised
among all graphs of given total length and number of edges when the graph is a
so-called equilateral flower graph.
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These results have strong parallels with both the behaviour of mean distance on
combinatorial graphs, and the spectral gap μ2 of the standard Laplacian on metric
graphs. On combinatorial graphs it has been known for decades that mean distance is
minimised on complete graphs [11, Theorem 2.3] and maximised on path graphs [9,
Corollary 1.3], or on cycles among doubly-connected graphs [31, Theorem 6]. This in
turn mirrors inversely what is known regarding the spectral gap of the combinatorial
Laplacian, that is, the algebraic connectivity: it is famously minimised by path graphs
and maximised by complete graphs, see [12]. This strong inverse relationship in the
discrete world has been studied: for example, in [24], quite sophisticated estimates
on the lowest positive eigenvalue of the discrete Laplacian are derived in terms of the
mean distance in combination with the size of the graph and its maximal degree (see
also [25]); as a more recent contribution to this field we mention [32].

Regarding the spectral gap μ2 of the standard Laplacian on metric graphs, it is
known that μ2 is minimised on the path graph [29, Théorème 3.1], or the cycle among
doubly-connected graphs [1, Theorem 2.1], and maximised, under a constraint on the
number of edges, among others by the equilateral flower graph [17, Theorem 4.2].
Thus, in particular, the strong correspondence in the discrete setting also seems to
hold in the metric one.

Our second goal is thus to investigate precisely the relationship between the mean
distance ρ and the spectral gap μ2. We will provide several upper and lower bounds
on the product μ2ρ

2 (scaled in such a way as to be independent of the total length of
the graph), see Theorem 3.5 and Corollaries 3.3 and 3.6, which depend only on the
number of edges of the graph and/or its (first) Betti number (number of independent
cycles); in the case of trees one can find an absolute constant as an upper bound, π2.
These bounds in general do not appear to be optimal, and the natural question arises
as to whether the product μ2ρ

2 admits absolute upper and lower bounds valid for any
compact graph, which we leave as an open problem (Open Problem 3.4).

This paper is structured as follows. In Sect. 2 we will introduce our general frame-
work and provide a definition of mean distance ρ on a metric graph. All our main
results – geometric estimates for ρ as well as bounds linking ρ and the spectral gap
of the standard Laplacian – are collected in Sect. 3. In addition to Theorem 3.2, we
also include a statement on the relationship between ρ and the diameter of the graph,
Theorem 3.1.

The proofs, which rely on various techniques, are spread throughout the remaining
sections: first, we give several explicit examples in Sect. 4, namely star graphs (includ-
ing intervals, see Example 4.1), a special type of “firework graph” which shows that
mean distance can be arbitrarily close to diameter (Example 4.2), and flower graphs
(including loops, Example 4.3), whose analysis is essential for one of the main geo-
metric bounds in Theorem 3.2.

Then, in Sect. 5, we study surgery principles for mean distance, which will be used
to prove Theorem 3.2. These principles are inspired by analogous ones developed in
recent years for spectral and torsional quantities onmetric graphs (see in particular [4]),
but, curiously, such surgicalmethods also play a role in some of the early combinatorial
works; we refer to [15, Sections 5.3 and 5.4] for an overview of results in this direction.
However, while there are parallels to surgery for spectral quantities, in concrete terms
and in the details our results and proofs are quite different as there is currently no known

123



137 Page 4 of 25 L. N. Baptista et al.

variational characterisation of mean distance (cf. Remark 7.2); instead, one needs to
analyse more directly the effect of altering a graph on its distance function. There are
also notable differences in some results; attaching a so-called pendant edge to a graph
has an indeterminate effect on ρ, despite always lowering μ2 (see Proposition 5.3).

In Sect. 6 we will provide the proof that among doubly connected graphs of given
length the mean distance is maximised on the loop, the last remaining part of Theo-
rem 3.2. Here, somewhat surprisingly, it is natural to use a symmetrisation argument
basedon the coarea formula and inspired by the approachofFriedlander forminimising
standard Laplacian eigenvalues [13]; however, here again, the actual technical nature
of the proof is very different as mean distance is not characterised as a minimising
quantity.

Finally, in Sect. 7, we give a proof of the lower bound in Theorem 3.5 on the product
of ρ and the spectral gap using variational methods for the latter.

Before continuing, we mention the very recent paper [14], which we became aware
of shortly before submitting the present paper: seemingly unaware of the theory of
metric graphs, the authors of [14] introduce a notion of mean distance that agrees with
ours and discuss the complexity of its computing.

We note that the notion of mean distance is in fact a natural one in any metric
measure space of finite diameter and volume. In the spirit of [8], it would be natural to
introduce the mean distance of further, possibly more general metric measure spaces:
an interesting estimate on the lowest positive eigenvalue of the Laplace–Beltrami
operator of a compact Riemannian manifold was already announced, but not proved,
in [23]. More modestly, one could try and extend the scope of our results to metric
graphs of finite total length but an infinite number of edges. Sincemany of ourmethods
are most natural in the compact case of finitely many edges, and tailored to graphs,
to reduce technical complications and keep the work self-contained we will restrict to
this case and not consider such possible generalisations here.

2 Notation and Assumptions

Throughout, we consider metric graphs G := (V, E, �) consisting of a finite number
V := #V of vertices and E := #E of edges; we denote by β = E − V + 1 the (first)
Betti number of G, the number of independent cycles it contains.

Unlike in the case of combinatorial graphs, we create a metric structure by associat-
ing each edge e with a real interval (0, �e) of length �e > 0, which we may regard as a
parametrisation of the edge. While this parametrisation implies an orientation of each
edge, all quantities considered will be independent of these orientations. In particular,
the total length |G| of G is, by definition

|G| :=
∑

e∈E
�e.

A distance on G is introduced by first considering the Euclidean distance on each
metric edge and then extending it to a (pseudo-)metric dist on G by the usual shortest-
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path construction (we will also sometimes write distG in those cases where it becomes
necessary to specify the graph).

To avoid trivialities, we will always assume without further comment that the met-
ric graph is connected. A metric graph then canonically becomes a metric measure
space (G, dist, dx) upon endowing each metric edge with the 1-dimensional Lebesgue
measure dx . This metric measure structure immediately induces the spaces C(G) and
L2(G) of continuous and square integrable functions over G, respectively.Wewill also
need the Sobolev space

H1(G) := { f ∈ C(G) ∩ L2(G) : f ′ ∈ L2(G)}.

As is well known, all these spaces are, up to a canonical identification, independent
of the choice of parametrisation of the edges, and in particular of the corresponding
orientation.

Our assumptions, namely that there are only finitely many edges each of finite
length, imply that as a metric space G is compact and in particular has finite diameter.
In this case, as is standard, we will refer to G as a compact metric graph. (We refer to
[2, 26] for a more detailed introduction to the notion of metric graphs.)

Our compactness assumption onG implies that the following natural notion ofmean
distance is well defined.

Definition 2.1 The mean distance function on G is the function ρG : G → R defined
by

ρG(x) := 1

|G|
∫

G
dist(x, y) dy;

we will call ρG(x) the mean distance from x on G. The mean distance on G is then
defined as the mean value of ρG ,

ρ(G) := 1

|G|
∫

G
ρG(x) dx = 1

|G|2
∫

G

∫

G
dist(x, y) dy dx .

(As mentioned in the introduction, this concept has been studied for decades in
graph theory, where it is commonly referred to as either “mean distance” or “average
distance” in the literature; we will always use the former.)

It would be possible to extend this definition to graphs of finite total length but an
infinite number of edges; however, as many of our techniques are naturally adapted to
the compact case, and to keep the exposition more simple, we will not do so.

Beyond estimates on the mean distance of a graph G in terms of quantities such as
the total length, the number of edges and the Betti number of the graph, we will be par-
ticularly interested in the interplay between the mean distance and the spectrum of the
correspondingLaplacian−�G with standard vertex conditions, in particular as regards
its spectral gap (see, e.g., [2, 4]). For our purposes the following characterisation will
suffice.
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Definition 2.2 The spectral gap of G is

μ2(G) := inf
u∈H1(G)∫
G u(x)dx=0

‖u′‖2
L2(G)

‖u‖2
L2(G)

. (2.1)

This quantity is known to be strictly positive since G is compact and connected.

3 Main Results

We start with a simple observation on the relationship between ρ(G) and the diameter
diam(G); completely analogous results have been known to hold for discrete graphs
since the 1970s (see [9]). While the (strict) inequality is rather obvious, the key point
is that the inequality is sharp nonetheless.

Theorem 3.1 Let G be a compact metric graph of diameter diam(G) > 0. Then

ρ(G) < diam(G). (3.1)

Moreover, there exists a sequence of graphs Gn for which ρ(Gn)
diam(Gn)

→ 1 as n → ∞.

Proof For (3.1), by definition of ρ and Cauchy–Schwarz,

ρ(G) = 1

|G|2 ‖ dist ‖1 <
1

|G| ‖ dist ‖2 ≤ ‖ dist ‖∞ = diam(G), (3.2)

the strict inequality being due to the linear independence of dist and 1. For a sequence
of graphs Gn for which ρ(Gn)

diam(Gn)
→ 1 we will consider “firework” graphs similar to

the (discrete) ones used in [9] to prove a corresponding assertion for the discrete mean
distance; these will be given in Example 4.2 below. 	


We now turn to our first main result, which consists of fundamental upper and lower
bounds on ρ in terms only of the length, and the length and number of edges, of the
graph G, respectively. As discussed in the introduction, these closely mirror those for
the (inverse of the) first nontrivial standardLaplacian eigenvalueμ2(G): this eigenvalue
admits a lower bound depending only on length [29, Théorème 3.1], with equality for
path graphs (i.e. intervals); there is an improved lower bound for doubly connected
graphs depending only on length andwith equality for loops [1, Theorem 2.1]. There is
a corresponding upper bound based only on length and number of edges, with equality
for equilateral flower graphs, among others [17, Theorem 4.2]. Our result is:

Theorem 3.2 Let G be a compact metric graph with total length |G| = L > 0 and E
edges. Then

(
2E − 1

4E2

)
L ≤ ρ(G) ≤ L

3
, (3.3)
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with equality in the lower bound if and only if G is an equilateral flower graph, and
equality in the upper bound if and only if G is a path graph (i.e., interval). If G is
doubly connected, then the upper bound may be improved to

ρ(G) ≤ L

4
, (3.4)

with equality if and only if G is a loop.

For (3.3) we will use surgerymethods, which are the subject of Sect. 5; the proof of
(3.3) is given at the end of that section. To prove (3.4) we will use a symmetrisation-
type argument based on the coarea formula (which, curiously, does not seem to work
in the base case), see Sect. 6.

Since ρ and μ2 satisfy compatible bounds, we can also find two-sided bounds for
the scale invariant quantity μ2(G)ρ(G)2:

Corollary 3.3 Let G be a compact metric graph with E edges and first Betti number
β ≥ 0. Then

π2(2E − 1)2

16E4 ≤ μ2(G)ρ(G)2 ≤ min

{
π2E2

9
, π2(1 + β)2

}
(3.5)

The fact that the respective minimisers and maximisers are in perfect correspon-
dence, and more generally that the two quantities behave so analogously, suggests that
there may actually be absolute upper and lower bounds, i.e., absolute constants inde-
pendent of every graph which control μ2(G)ρ(G)2 from above and below. At least for
trees, (3.5) gives an absolute upper bound on this quantity (namely min{π2E2

9 , π2}),
which is sharp for path graphs I , where μ2(I )ρ(I )2 = π2

9 . However, a direct compu-
tation using the values obtained in Sect. 4 shows that both for equilateral flowers and
stars the product μ2ρ

2 is monotonically increasing and approaches π2

4 as E → ∞.
We note that there is a certain parallel between the mean distance of a metric graph

and (upon imposing a Dirichlet condition on at least one vertex) its torsional rigidity,
as the latter is known, too, to be maximised precisely by path graphs and minimised
precisely by equilateral flowers, see [28, Section 4]: this behaviour is precisely opposite
to that of the lowest positive Laplacian eigenvalue, so it seems natural to pose the
following, once appropriate scaling is accounted for.
Open Problem 3.4 Do there exist absolute constants C, c > 0 such that

c ≤ μ2(G)ρ(G)2 ≤ C (3.6)

for all compact graphs G?
Indeed, the conjectured lower bound recalls the celebrated Kohler-Jobin inequality,

which asserts that, in R
d , the normalised quantity λ1(�)τ(�)

2
d+2 (with λ1 the first

Dirichlet Laplacian eigenvalue and τ the torsional rigidity of �) is minimised when
� is a ball (see [18] or, e.g., [5, 6] for more recent results in the area, as well as [28,
Theorem 5.8] for the metric graph case). This, as well as our examples in Sect. 4,
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provide some weak evidence suggesting that the path graph might actually minimise
μ2ρ

2, which, if true, would result in an optimal value of c = π2

9 .

Proof of Corollary 3.3 For the lower bound combine the lower bound in (3.3) with
Nicaise’ inequality [29, Théorème 3.1]. For the first upper bound use the upper bound
in (3.3) and [17, Theorem 4.2], for the second combine ρ(G) ≤ diam(G) (cf. Theo-
rem 3.1) with [10, Theorem 5.2]. 	


We can give an alternative lower bound on ρ involving the total length and μ2,
which in combination with the lower bound in Theorem 3.2 leads to an alternative to
the lower bound in Corollary 3.3:

Theorem 3.5 Let G be a compact metric graph with total length |G| = L > 0. Then

1

L
≤ μ2(G)ρ(G). (3.7)

Corollary 3.6 Let G be a compact metric graph. Then

2E − 1

4E2 ≤ μ2(G)ρ(G)2.

While still unlikely to be optimal, this is generally better than the lower bound
in Corollary 3.3; as E → ∞ it behaves like 1

2E rather than π2

4E2 . In fact, the lower

bound in Corollary 3.6 is seen to be larger whenever π2

4E2 (2E − 1) < 1, that is,

4E2 − 2π2E + π2 > 0, which holds for all E ≥ 5.
The proof of Theorem 3.5 is based on a suitable eigenvalue comparison argument,

which involves linking the first eigenvalue of an auxiliary problem with a Dirichlet
condition at a well-chosen vertex on the one hand, and a related distance function on
the other, and is given in Sect. 7.

4 Examples

Here we will collect some examples where one can determine ρ explicitly: equilateral
star graphs (including path graphs, i.e. intervals, as a special case), the “firework
graphs” that will be used to complete the proof of Theorem 3.1, and equilateral flowers
(including on one edge, i.e. loops). For purposes of legibility, we will generally use m
and n to denote the number of edges and vertices, respectively, of our example graphs.

Example 4.1 (Star graph) For a given m ≥ 1 and L > 0, consider Sm an equilateral
star graph, that is, a graph with m edges of equal length � := L

m (and thus total length
L) and m + 1 vertices, one of degree m (the “central vertex”) and all others of degree
1. To calculate ρ, we identify each of the m identical edges with an interval of the
form [0, L

m ], where 0 corresponds to the central vertex. Then, for any x ∈ Sm ,
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ρSm (x) = 1

L

∫

Sm
dist(x, y)dy

= 1

L

[∫ L
m

0
|y − x |dy + (m − 1)

∫ L
m

0

(
y + x

)
dy

]

= x2

L
+ m − 2

m
x + L

2m
;

note that this includes the special case of an interval I (m = 1, with the interval
parametrised as [0, L]), where

ρI (x) = x2

L
− x + L

2
. (4.1)

Integrating ρSm over all x ∈ [0, L
m ] (and using the symmetry of the graph) yields

ρ(Sm) = L

m2

(
m − 2

3

)
.

Let us consider the behaviour of the formula as a function of m. If m = 1 or m = 2,
then ρ(Sm) = L

3 , which is exactly the value of ρ on an interval (note that stars on one
and two edges are both path graphs).

Now fix L , then since the function x �→ L
x2

(x − 2
3 ), x > 0, attains its maximum at

x = 4
3 (and the same value at x = 1 and x = 2), and is monotonically decreasing for

x > 4
3 , the maximum in m is attained at m = 1, 2, and ρ(Sm) is a decreasing function

of m ≥ 1. We observe that ρ(Sm) → 0 as m → ∞.
If instead we fix the length of each edge � = L

m (and vary m), then

ρ(Sm) = � − 2

3m
� −→ �

as m → ∞.

We next consider a class of graphs built around stars, which include the sequence
Gn referred to in Theorem 3.1, for which ρ(Gn)

diam(Gn)
→ 1.

Example 4.2 (Firework graph) Here we will construct a four-parameter family of
graphs, which for simplicity we will simply call G, as follows. We start with an
equilateral star on m ≥ 1 edges, each of length J > 0, and then attach, at each of the
m degree one vertices, a copy of another star ∗ with n edges of equal length j ; see
Fig. 1. In particular, |G| = mJ + mnj , and diam(G) = 2J + 2 j .

We will show that, for the correct choice ofm, n, J , j , ρ(G) can be made arbitrarily
close to diam(G) in the sense of Theorem 3.1; for this we merely need to estimate
ρ(G) from below.

First, it is obvious that, for any x ∈ G in any copy of ∗,

ρG(x) ≥ 1

|G|2J (m − 1)nj .
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Fig. 1 A firework graph with
m = 4, n = 7, and J = 5 j

Indeed, we may estimate dist(x, y) from below by 2J for each y in each of the other
m − 1 copies of ∗; this can then be integrated over all such copies, each of which has
total length nj . This then leads to

1

|G|
∫

G
ρG(x)dx ≥ 1

|G|
∫

∪∗
ρG(x)dx

≥ 1

|G|nmj
1

|G|2J (m − 1)nj

= n2m(m − 1) j22J

(mJ + mnj)2
= 2J · m − 1

m
· n2 j2

(J + nj)2

and thus (cf. (3.1))

diam(G) > ρ(G) ≥ 2J · m − 1

m
· n2 j2

(J + nj)2
.

Fixing m and J , we consider any sequence of such graphs for which j → 0 but

simultaneously nj → ∞, then n2 j2

(J+nj)2
→ 1 and diam(G) → 2J . We can thus, given

any ε > 0, find such a firework graph Gm,ε for which 2J < diam(Gm,ε) < 2J + ε

and

diam(Gm,ε) ≥ ρ(Gm,ε) ≥ m − 1

m
· diam(Gm,ε) − ε.

From thiswe can extract a sequenceof graphs satisfying the conclusionofTheorem3.1.

For our third example we consider the flower graphs which will play a role in the
lower bound in Theorem 3.2. We will calculate mean distance only in the case of
equilateral flowers, but Lemma 4.4 below gives a comparison with the non-equilateral
case.
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Example 4.3 (Flower graph) Given m ≥ 1 and L > 0, take Fm to be the flower graph
consisting ofm edges of length � = L

m each, all glued at both ends at a common central
vertex; that is, Fm has exactly one vertex, of degree 2m.

We start by noting the following formula for the integral of the distance function
dist(x, y) over a circle C (of length L

m ), i.e., when both x and y are taken from the
same petal, which can be obtained by a direct calculation: parametrising the loop by
[− L

2m , L
2m ], with x � 0 and the points L

2m and − L
2m , identified in C, representing the

antipodal point to x , we have

∫

C
dist(x, y) dy =

∫ L
2m

0
y dy +

∫ 0

− L
2m

(−y) dy = L

4m2 .

This is, in particular, independent of x and y; and thus, for all x ∈ C

ρ(C) = ρC(x) = L

4m2 = |C|
4m

. (4.2)

We now return to the flower. For convenience, for the rest of the example we will
parametrise the edges as follows: we consider each loop (or petal) of the flower at
having a dummy vertex at the far point from the central vertex, and identify the loop
with [− L

2m , L
2m ], where 0 corresponds to the central vertex, and the points − L

2m and
L
2m are identified at the dummy vertex.

We can now calculate ρFm (x) for a given x ∈ Fm . With the above parametrisation
of the edges,

ρFm (x) = 1

L

[∫

C
dist(x, y)dy + 2(m − 1)

∫ L
2m

0

(
x + y

)
dy

]

= 1

L

(
L2

4m2 + 2(m − 1)
L(L + 4mx)

8m2

)
.

Integrating over x ∈ [− L
2m , L

2m ] and using the symmetry of the graph finally yields

ρ(Fm) = L

4m

(
2m − 1

m

)
.

Let us consider how ρ behaves as a function ofm ≥ 1. If the total length L is fixed,
then, since x �→ L

4x ( 2x−1
x ) attains a global maximum for x > 0 between 0 and 1, then

decreasing to 0 as x → ∞, it follows that ρ(Fm) attains its maximum at m = 1, is
strictly monotonically decreasing in m ≥ 1, and ρ(Fm) → 0 as m → ∞.

If instead we fix the length of each edge � = L
m , we have

ρ(Fm) = �(2m − 1)

4m
−→ �

2

as m → ∞.
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We finish this section with an optimisation result for flower graphs, which will be
needed in the proof of the lower bound in (3.3) in Sect. 5. While elementary, its proof
is necessarily somewhat technical.

Lemma 4.4 For any flower graph F of total length L, on m edges, we have

ρ(F) ≥
(
2m − 1

4m2

)
L,

with equality if and only if F is an equilateral flower on m edges of length L/m each.

Proof Fix a flower graph F with edge lengths �1, . . . , �m , so that
∑m

i=1 �i = L , and
denote by 0 the central vertex. We start by recalling from (4.2) that, if C is a loop of
length � > 0, then ρC(x) = �

4 for all x ∈ C, and so

ρ(C) = 1

�

∫

C
�

4
dx = �

4

as well. Now a similar calculation to the one for the equilateral flower graph yields
that, for any given x ∈ F , supposing that x ∈ ei and |ei | = �i ,

ρF (x) = 1

L

⎛

⎝�2i

4
+

∑

j �=i

� j

(
dist(x, 0) + � j

4

)⎞

⎠ ,

where dist(x, 0) represents the distance between x and the central vertex 0. Integrating
over the corresponding edge ei gives

∫

ei
ρF (x)dx = �i

L

⎛

⎝�2i

4
+

∑

j �=i

� j

(
�i

4
+ � j

4

)⎞

⎠ ,

whence

ρ(F) = 1

4L2

m∑

i=1

⎛

⎝�3i +
∑

j �=i

�i� j (�i + � j )

⎞

⎠ . (4.3)

We will now examine what happens if we perturb the lengths of two petals of F ,
without loss of generality e1 and e2, in such a way that the overall length remains
constant: we will, in effect, consider ∂ρ

∂�1
under the assumption that �3, . . . , �m are

constant, and �2 = L − �1 − ∑m
i=3 �i . To this end we first multiply out the constant

term 4L2 and isolate the parts of (4.3) that depend on �1 and �2:

123



Mean Distance on Metric Graphs Page 13 of 25 137

4L2ρ(F) =
m∑

i=1

[
�3i +

∑

j �=i

�i� j (�i + � j )

]

= �31 +
∑

j �=1

�1� j (�1 + � j ) + �32 +
∑

j �=2

�2� j (�2 + � j ) +
m∑

i=3

[
�3i

+
∑

j �=i

�i� j (�i + � j )

]

= �31 + 2
∑

j �=1
j≥2

�1� j (�1 + � j ) + �32 + 2
∑

j �=2
j≥3

�2� j (�2 + � j )

+
m∑

i=3

[
�3i +

∑

j �=i
j≥3

�i� j (�i + � j )

]

︸ ︷︷ ︸
=:d

,

where since the latter sum does not depend on �1 or �2, we may treat it as a constant d
and subtract it from the total; we will thus work with the quantity D := 4L2ρ(F)−d,
which we will attempt to minimise in function of �1. To simplify the calculation, we
will set B := ∑m

i=3 �i and C := �1 + �2, which we recall we are treating as constant;
we also recall that L = ∑m

i=1 �i , and in particular L = B+C . We may then calculate

D = �31 + �32 + 2�1�2(�1 + �2) + 2
m∑

i=3

[�2�i (�2 + �i ) + �1�i (�1 + �i )]

= �31 + �32 + 2�1�2C + 2C
m∑

i=3

�2i + 2(�21 + �22)

m∑

i=3

�i

= �31 + �32 + 2�1�2C + 2C
m∑

i=3

�2i + 2(�21 + �22)(L − C).

Writing �2 = L − B − �1, we may simplify this to

D = �31 + (C − �1)
3 + 2�1(C − �1)C + 2(L − B)

m∑

i=3

l2i + 2(�21 + (C − �1)
2)B;

since L − B does not depend on �1, under our assumptions we may rewrite D as

D = (4B + C)�21 − (4BC + C2)�1 + constant indep. of �1,

which is quadratic in �1. In particular, ∂D
∂�1

(itself equal to 4 L2 ∂ρ
∂�1

) is zero if and only
if
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�1 = C

2
= L − B

2
;

moreover, this represents the unique global minimum of D (and thus of ρ) for �1 ∈
[0,C].

Summarising, among all flowers on m petals of given total length L and fixed edge
lengths �3, . . . , �m , ρ is minimised exactly when �1 = �2; moreover, holding all other
lengths fixed, any flower graph for which �1 �= �2 will have strictly greater ρ than the
one for which there is equality.

Hence, starting from any given non-equilateral flower F onm edges and iteratively
applying this argument to pairs of its petals, we obtain a sequence of flower graphs
with strictly decreasing ρ, whose edge lengths will converge in the limit to those of
the equilateral flower. Since for fixed L > 0 and m ≥ 1, ρ is obviously continuous
with respect to the m edge lengths (being a polynomial, see 4.3), which are drawn
from a compact subset of [0, L]m , it is immediate that ρ must attain its unique global
minimum among all flowers of length L > 0 on m edges, at the equilateral flower. 	


5 Surgery Principles

In this section we list and prove two basic surgery principles for ρ, which we then
use to prove our main bounds (3.3) (including the characterisation of equality). These
principles, which give sufficient conditions under which making a “local” change
to a graph G to create a new graph G̃ (e.g. cutting through a vertex, lengthening an
edge, attaching or removing a pendant graph) will raise or lower ρ; they are generally
inspired by, and similar to, such surgery principles for eigenvalues of the Laplacian
with standard vertex conditions (see [4]). There will certainly be many more such
principles beyond these two, but these are the two needed to prove (3.3).

The first, cutting through vertices, has a long history in the context of Laplacian
eigenvalues (going back at least to [20, Theorem 1] but implicit in the proof of [29,
Théorème 3.1]). However, since we will not be working with a variational character-
isation of ρ, the proof is completely different, and relies on comparing the respective
mean distance functions ρG and ρG̃ in a suitable way (but cf. Remark 7.2). The second,
the key to the upper bound in (3.3), is a somewhat generalised version of the princi-
ple of “unfolding pendant edges”, see [4, Theorem 3.18(4)], but with rather different
hypotheses on the pendant graph being “unfolded” (see also Fig. 2).

Theorem 5.1 (Surgery principles formean distance) LetG be a compact metric graph.

(1) Suppose G̃ is formed from G by cutting through a vertex (see [4, Section 3.1]). Then
ρ(G̃) > ρ(G) unless G̃ = G (i.e., the cut is the trivial cut, where the cut vertex is
unchanged).

(2) Suppose H is a pendant subgraph of G, that is, H ⊂ G and there exists v ∈ V(G)

such that ∂H := H ∩ G \ H = {v}. Suppose G̃ is formed from G by replacing H
with another graph H̃ in such a way that G̃ \ H̃ = G \ H. If the graphs H and H̃
satisfy, cumulatively,

(a) |H| = |H̃|,
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Fig. 2 “Unfolding pendant edges”: replacing the configuration of e1 ∪ e2 inH by the one in H̃ increases ρ

(b) ρH̃(v) ≥ ρH(v), and
(c) ρ(H̃) ≥ ρ(H),

then ρ(G̃) ≥ ρ(G). The inequality is strict if ρH̃(v) > ρH(v), or if ρ(H̃) > ρ(H).

Example 5.2 SupposeH = H̃ = e1 ∪ e2, but the point of attachment to G\H = G̃\H̃
is changed, as depicted in Fig. 2:

Then both subgraphs may be identified with some interval [0, �], � > 0, with
ρH(x) = ρH̃ = x2

�
− x + �

2 (see (4.1)). In particular, since �
2 > x2

�
− x + �

2 for
any x ∈ (0, �), and since in H̃ we are taking the point of attachment as v � 0
(whereas in H the point of attachment will be somewhere in (0, �)), it follows that
ρH̃(v) = �

2 > ρH(v) as long as |e1|, |e2| �= 0. We conclude from Theorem 5.1(2) that
in this case ρ(G̃) > ρ(G).

More difficult is the issue of lengthening an edge, that is, if G̃ is formed from
G by increasing the length of a given edge e (and thus, equally, the total length of
the graph), holding the graph topology and all other edge lengths constant, do we
have ρ(G̃) ≥ ρ(G)? A corresponding statement holds for the standard Laplacian
eigenvalues (see [4, Corollary 3.12(1)]). In the related case of attaching a pendant
graph at a vertex (see [4, Definition 3.9]), if one attaches a sufficiently short pendant
edge at a vertex v, then ρ will actually decrease as long as ρG(v) < ρ(G). This also
provides an example whereby lengthening a (very short) edge will lower ρ (our thanks
go to Noah Kravitz for pointing out this principle to us).

Proposition 5.3 Suppose the family of graphs G� is formed from G by attaching a
pendant edge of length � to G at a vertex v. Then the function � �→ ρ(G�) is a C1-
function of � ≥ 0, and

d

d�
ρ(G�)

∣∣∣
�=0

= 2

|G|
[
ρG(v) − ρ(G)

]
.

Note that this result immediately applies, mutatis mutandis, if we lengthen any
already existing pendant edge of G: we obtain a “Hadamard-type” formula for the
derivative at � = �0 given by

d

d�
ρ(G�)

∣∣∣
�=�0

= 2

|G|
[
ρG(v0) − ρ(G)

]
,
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where v0 is the degree-one vertex at the end of the edge. This can be obtained as an
immediate consequence of Proposition 5.3 by attaching a short edge to v0 (turning the
latter into a dummy vertex), or else by making a trivial adaptation of the proof of the
proposition.

Proof of Theorem 5.1 In this proof it will be important to distinguish the distance func-
tions on different graphs; thus we will write distG for the distance function on G, and
so on.

(1) Fix any two x, y ∈ G̃ which are not in the image of the cut vertex in G, and
recall that by definition distG̃(x, y) is the infimum of the lengths of all paths between
x and y in G̃. Canonically identifying x and y with points in G, we see that the set
of paths between x and y in G can only be larger than its counterpart in G̃; thus the
infimum is lower,

distG(x, y) ≤ distG̃(x, y).

Since this holds for all x, y outside a finite set, the desired inequality for ρ follows
from the definition.

For the strict inequality, suppose v ∈ G is the vertex being cut, and v1, v2 ∈ G̃ are
two distinct vertices obtained from the cut. Take ε > 0 to be less than a third of the
minimum edge length in G (and thus in G̃ as well). There will necessarily exist edges
e1 ∼ v1 and e2 ∼ v2 in G̃, which are adjacent at v in G, but not at v1 �= v2 in G̃. Then,
in G, for all x ∈ e1 ∩ Bε(v) and y ∈ e2 ∩ Bε(v), distG(x, y) ≤ 2ε.

Now consider the shortest path from x to y in G̃. There are two possibilities: either
it runs through an entire edge of G̃, in which case it must have length at least 3ε, or
it is entirely contained in the union of e1 and e2. Since e1 and e2 are not adjacent at
v1 �= v2, in this case theymust be adjacent at their respective other endpoints, say at the
common vertex w ∈ G̃. Since |e1|, |e2| ≥ 3ε and distG̃(x, v1) < ε, distG̃(y, v2) < ε,
it follows that distG̃(x, w), distG̃(y, w) ≥ 2ε, and thus distG̃(x, y) ≥ 4ε in this case.

At any rate, we obtain that distG(x, y) < 2ε, while distG̃ ≥ 3ε, for all such x, y.
Integrating over all x ∈ e1 ∩ Bε(v) and y ∈ e2 ∩ Bε(v) (which each form a set of
measure ε) leads to the strict inequality

∫

G

∫

G
distG(x, y) dx dy <

∫

G

∫

G
distG̃(x, y) dx dy,

and thus ρ(G) < ρ(G̃).
(2) Note that |G| = |G̃|, so it suffices to prove that

∫

G̃

∫

G̃
distG̃(x, y) dx dy ≥

∫

G

∫

G
distG(x, y) dx dy.

We divide the former integral into three parts, each of which will be analysed sepa-
rately:
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∫

G̃

∫

G̃
distG̃(x, y) dx dy =

( ∫

G̃\H̃

∫

G̃\H̃︸ ︷︷ ︸
(i)

+2
∫

G̃\H̃

∫

H̃︸ ︷︷ ︸
(ii)

+
∫

H̃

∫

H̃︸ ︷︷ ︸
(iii)

)
distG̃(x, y) dx dy.

(i) For the first integral, since for all x, y ∈ G̃\H̃ � G\H, the shortest path connect-
ing x, y does not run through the pendant H̃ (or H, respectively), with the possible
exception of v,

distG̃(x, y) = distG̃\H̃(x, y) = distG\H(x, y) = distG(x, y)

for all x, y ∈ G̃\H̃ � G\H, whence

∫

G̃\H̃

∫

G̃\H̃
distG̃(x, y) dx dy =

∫

G\H

∫

G\H
distG(x, y) dx dy.

(ii) For the second term, we are considering points of the form x ∈ G̃\H̃, y ∈ H̃; since
H̃ is a pendant attached at v, in this case

distG̃(x, y) = distG̃\H̃(x, v) + distH̃(v, y)

(and similarly for H). Noting that the distance functions in G\H and G̃\H̃ coincide,
we deduce that

∫

G̃\H̃

∫

H̃
distG̃(x, y) dy dx =

∫

G̃\H̃
distG̃\H̃(x, v) · |H̃| dx

︸ ︷︷ ︸
=:I

+
∫

H̃
distG̃(v, y) · |G̃ \ H̃| dy

︸ ︷︷ ︸
=:J

.

Using the assumption (a), we may rewrite I as

I =
∫

G\H
distG\H(x, v) · |H| dx =

∫

G\H

∫

H
distG\H(x, v) dy dx

while for J we have, by (a) and (b),

J = |G̃ \ H̃| ·
∫

H̃
distH̃(v, y) dy

= |G̃ \ H̃| · |H̃|ρH̃(v) ≥ |G \ H| · |H|ρH(v)

= |G \ H|
∫

H
distH(v, y) dy

=
∫

G\H

∫

H
distG(v, y) dy dx
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Putting these two estimates together, we obtain

∫

G̃\H̃

∫

H̃
distG̃(x, y) dy dx ≥

∫

G\H

∫

H
distG(x, v) + distG(v, y) dy dx

=
∫

G\H

∫

H
distG(x, y) dy dx .

(iii) Since by (c) we have ρ(H̃) ≥ ρ(H), by (a), |H| = |H̃| (≥ 0), and by assumption
on H̃ andH as pendants, distG̃(x, y) = distH̃(x, y) for all x, y ∈ H̃ and distG(x, y) =
distH(x, y) for all x, y,∈ H, it is immediate that

∫

H̃

∫

H̃
distG̃(x, y) dx dy ≥

∫

H

∫

H
distG(x, y) dx dy.

Finally, putting (i), (ii) and (iii) together yields

∫

G̃

∫

G̃
distG̃(x, y) dx dy =

(∫

G̃\H̃

∫

G̃\H̃
+2

∫

G̃\H̃

∫

H̃
+

∫

H̃

∫

H̃

)
distG̃(x, y) dx dy

≥
(∫

G\H

∫

G\H
+2

∫

G\H

∫

H
+

∫

H

∫

H

)
distG(x, y) dx dy

=
∫

G

∫

G
distG(x, y) dy dx .

For the strict inequality, we note that if ρH̃(v) > ρH(v), then the inequality in (ii) is
strict, while if ρ(H̃) > ρ(H), then the inequality in (iii) is strict. In either case, we
then have ρ(G̃) > ρ(G). 	


We can now prove the bounds (3.3), including the statements about equality.

Proof of (3.3) For the lower bound, given a graph G which is not already a flower,
by Theorem 5.1(1) there exists a flower F with the same number of edges, obtained
by gluing all vertices of G together, such that ρ(G) > ρ(F). The claim now follows
immediately from Lemma 4.4.

For the upper bound, if G is not already a tree, then by Theorem 5.1(1) there exists
a tree T having the same total length such that ρ(T ) > ρ(G). If T is not already a path
graph, we successively apply Example 5.2 to pairs of adjacent pendant edges e1, e2,
that is, edges e1 and e2 in T sharing a common vertex v, such that their other vertex
is a leaf. After a finite number of steps T is transformed into an interval I of the same
total length as T and hence as G, with ρ(I ) > ρ(T ).

To conclude, suppose G is any graph which is not a path graph. If it is not a tree,
then we are in the first case, and ρ(G) < ρ(T ) ≤ ρ(I ). If it is a tree, then we are in the
second case, and ρ(G) < ρ(I ) still. This shows both the inequality, and the sharpness
of the inequality at the same time. 	


We finish with the proof that the effect of attaching a pendant edge at a vertex v
depends on the relation between ρG(v) and ρ(G).
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Proof of Proposition 5.3 We will show that the function

� �→
∫

G�

∫

G�

distG�
(x, y) dx dy (5.1)

is a C1-function of � ≥ 0, with derivative at � = 0 given by 2|G|ρG(v); the other
assertions of the proposition then follow directly upon applying the quotient rule to
the function

� �→ ρ(G�) = 1

|G�|2
∫

G�

∫

G�

distG�
(x, y) dx dy

(and noting that � �→ |G�| is a smooth function, with d
d� |G�| = 1 for all � ≥ 0). Now,

for fixed � > 0, denoting by e = e(�) the pendant edge of length � attached to v, we
have

∫

G�

∫

G�

distG�
(x, y) dx dy =

(∫

G

∫

G
+2

∫

G

∫

e
+

∫

e

∫

e

)
distG�

(x, y) dx dy.

Using the fact that e is a pendant (and, as a subgraph, identifiable with an interval),
we obtain

∫

e

∫

e
distG�

(x, y) dx dy = �3

3

(see Example 4.1, and in particular (4.1)), as well as

∫

G

∫

e
distG�

(x, y) dx dy = � · [
�
2 + ρG(v)

]
,

since the mean distance from an arbitrarily chosen x ∈ e to v will be �
2 , the mean

distance from v to an arbitrary y ∈ G is, by definition, ρG(v), and this mean over G
needs to be integrated over the edge e of length � to obtain the total integral value.
Putting these together, it follows that for any � ≥ 0 the derivative of the function (5.1)
exists and at zero is given by

lim
�→0

1
�

(
2� · [

�
2 + ρG(v)

] + �3

3

)
= 2|G|ρG(v),

as claimed. The statement of the proposition now follows. 	


6 Symmetrisation and Doubly Connected Graphs

In this section we will prove the sharpened upper bound (3.4) for doubly connected
graphs, including the characterisation of equality. We recall that a graph G is said to
be doubly (path) connected if, for any x, y ∈ G, there exist two edgewise disjoint
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paths P1 and P2 in G connecting x and y (although we allow the paths to intersect
at a finite number of vertices); equivalently, no edge of G is a bridge whose removal
would disconnect G.

Unlike for (3.3), in this case there is a natural proof via symmetrisation using the
same basic tool, the coarea formula, as Friedlander’s symmetrisation-based proof of
Nicaise’ inequality [13] (see also [1, 3], and Remark 6.3). We recall that the coarea
formula states that

∫

�

ϕ|∇ψ | dx =
∫ ∞

0

∫

{x :ψ(x)=t}
ϕ(x) dσ dt, (6.1)

valid for an integrable nonnegative function ϕ on some domain � (which can be a
metric graph) and an absolutely continuous, integrable nonnegative function ψ (for
metric graphs, see, e.g., [22] or [10, Lemma 4.6]).

Lemma 6.1 For any compact graph G of total length L > 0 and any x ∈ G, we have

ρG(x) = 1

L

∫ maxy dist(x,y)

0
[#{y : dist(x, y) = t}] · t dt

Proof We apply the coarea formula (6.1) to the Lipschitz continuous function ϕ =
ψ = dist(x, ·). Since its gradient has absolute value 1 almost everywhere, this yields

ρG(x) = 1

L

∫ ∞

0

∫

{y:dist(x,y)=t}
t dσdt

= 1

L

∫ maxy dist(x,y)

0
[#{y : dist(x, y) = t}] · t dt,

as claimed. 	

We recall (Example 4.3) that for the loop (or circle) C of length L ,

ρ(C) = ρC(x) = L

4
;

large classes of examples and some intuition suggest that loops should be the only
graphs G with the property that ρG(x) is constant independent of x , although we
will not attempt to prove that here. Curiously, precisely this independence will play a
central role in the symmetrisation argument.

Lemma 6.2 Let G be a compact, doubly connected graph of length L > 0. For each
x ∈ G,

M(x) := max
y∈G

dist(x, y) ≤ L

2
.

The inequality is strict for at least one x0 ∈ G (and thus all x in a small neighbourhood
of x0) if G is not a loop.
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Proof Fix x, y ∈ G. Since G is doubly connected, there exist at least two paths P1, P2
in G from x to y, which can intersect at at most a finite set of points. It follows that
|P1| + |P2| ≤ L and hence at least one path has length at most L

2 .
If M(x) = L

2 for all x ∈ G, then for any x ∈ G there exists y ∈ G such that there
are exactly two edgewise disjoint paths P1 and P2 from x to y, each of length exactly
L
2 , whose union exhausts G. The only possibility is that G is a loop. 	

Proof of (3.4) We will show that, for any x ∈ G, we have

ρG(x) ≤ L

4
, (6.2)

that is, the pointwise value of ρG is always below the constant value of ρC on C. The
inequality will follow immediately from (6.2).

Fix x ∈ G and write

ξ(t) := ξx (t) := #{y : dist(x, y) = t}

for the size of the level set of the corresponding distance function, for any 0 ≤ t ≤
M := M(x) ≤ L

2 . We extend ξ(t) by zero to a function on [0, L
2 ]; then, by the coarea

formula (6.1),

∫ L
2

0
ξ(t) dt =

∫ M

0
ξ(t) dt = L.

We claim that

∫ M

0
ξ(t) · t dt ≤

∫ L
2

0
2 · t dt = L2

4
. (6.3)

To see this, note that, obviously,

∫ L
2

0
2 dt = L =

∫ L
2

0
ξ(t) dt,

and so

0 ≤
∫ M

0
ξ(t) − 2 dt = −

∫ L
2

M
ξ(t) − 2 dt =

∫ L
2

M
2 − ξ(t) dt;

note that the first integral is necessarily nonnegative since the nonnegative functions ξ

and 2 have the same L1-norm on [0, L
2 ], while ξ is supported only on [0, M] ⊂ [0, L

2 ].
(The first integral is seen to be zero if and only if M = L

2 ). It follows directly that

∫ M

0
(ξ(t) − 2)t dt ≤ M

∫ M

0
ξ(t) − 2 dt = M

∫ L
2

M
2 − ξ(t) dt ≤

∫ L
2

M
(2 − ξ(t))t dt .
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Rearranging yields (6.3) and thus the pointwise comparison between ρG and ρC . The
inequality statement in the theorem now follows immediately from Lemma 6.1, since

ρG(x) = 1

L

∫ M

0
ξ(t) · t dt ≤ 1

L

∫ L
2

0
2 · t dt = L

4
,

which establishes (6.2) for arbitrary x ∈ G.
Finally, if G is not a loop, then there exists some x0 ∈ G for which M(x0) < L

2 .
By a continuity argument, we can find δ, ε > 0 such that M(x) ≤ L

2 − ε for all x in a
δ-neighbourhood of x0. For such x , we have

∫ M(x)

0
(ξx (t) − 2)t dt ≤ M(x)

∫ L
2

M(x)
2 − ξx (t)︸︷︷︸

=0

dt

=
∫ L

2

M(x)
(2 − ξx (t))t dt −

∫ L
2

M(x)
2(t − M(x)) dt .

Since

∫ L
2

M(x)
2(t − M(x)) dt =

∫ L
2 −M(x)

0
2t dt ≥

∫ ε

0
2t dt = ε2,

we can thus sharpen (6.3) to

∫ M(x)

0
ξx (t) · t dt ≤

∫ L
2

0
2t dt − ε2 = L2

4
− ε2

and thus obtain

ρG(x) ≤ L

4
− ε2

L

for all x in a δ-neighbourhood of some x0 ∈ G; in particular, the total measure of all
such x ∈ G is at least 2δ. It follows that the inequality ρ(G) ≤ L

4 must be strict. 	


Remark 6.3 Curiously, it is not clear how this symmetrisation idea could be adapted
to simply connected graphs and the interval: on the loop the mean distance function is
constant, so we obtain a pointwise comparison between ρG(x) and the constant value
ρC(x) = L

4 . To use such an argument compare an arbitrary graphwith an interval (path
graph) I , where ρI (x) is not constant (see (4.1)), we would first need to find a way of
associating, for each x ∈ G, some unique yx ∈ I such that then ρG(x) ≤ ρI (yx ). It is
not at all clear how this should work.
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7 A Variational ComparisonMethod

This short section is devoted to the proof of Theorem 3.5.Wefirst fix any point, without
loss of generality a vertex, v ∈ G such that

ρG(v) = 1

|G|
∫

G
dist(x, v)dx = ρ(G),

whose existence follows directly from the continuity of the function ρG and the defi-
nition of ρ(G) as mean value of ρG .

We define

λ1(G, v) := inf
0 �= f ∈H1(G)

f (v)=0

∫
G | f ′(x)|2 dx
∫
G | f (x)|2 dx (7.1)

to be the first eigenvalue of the Laplacian on G with a Dirichlet condition at v and
standard conditions elsewhere (we allow that G \ {v} be disconnected; in this case
the corresponding eigenfunctions may be supported on a proper subset of G). Fix any
f ∈ H1(G) such that f (v) = 0. For x ∈ G we denote by P(v, x) any shortest path in
G from v to x , then from

f (x) − f (v) =
∫

P(v,x)
f ′(y) dy

and the Cauchy–Schwarz inequality it follows that

| f (x)| ≤
(∫

P(v,x)
| f ′(y)|2dy

)1/2

dist(v, x)1/2.

Replacing P(v, x) with G, taking squares, integrating over x ∈ G and infimising over
f yields

1 ≤ λ1(G, v)
∫

G
dist(v, x) dx = λ1(G, v)ρ(G)L.

Theorem 3.5 now follows from the following eigenvalue comparison result.

Lemma 7.1 Let G be a compact metric graph, let v ∈ G be arbitrary, and let λ1(G, v)
be the first eigenvalue of the Laplacian on G with a Dirichlet condition at v and
standard conditions elsewhere, as defined by (7.1). Then

λ1(G, v) ≤ μ2(G).

Proof Denote byψ ∈ H1(G) any eigenfunction associated withμ2(G), and denote by
G+ and G− any two (disjoint) nodal domains of ψ , i.e., connected subsets of {x ∈ G :
ψ(x) �= 0}; then a standard variational argument (cf. [3, Proof of Theorem 3.4]) shows
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thatμ2(G) = λ1(G+, ∂G+) = λ1(G−, ∂G−)where λ1(G±, ∂G±) is the first eigenvalue
of G± with Dirichlet conditions at every point in ∂G± (and standard conditions at all
interior vertices).

Now necessarily v ∈ G \ G+ or v ∈ G\G−, without loss of generality G\G+. Then
domain monotonicity for Dirichlet eigenvalues implies that

μ2(G) = λ1(G+, ∂G+) ≥ λ1(G, v),

as claimed. 	

Remark 7.2 We finish with some open-ended comments related to the observation that
there is no obvious variational characterisation of ρ; it would be very interesting if
one could be obtained as this would open up the use of more variational techniques to
studying it, and would potentially offer insights into the parallels with the variational
quantity μ2. We note that, as is easy to see, for any given x ∈ G (with G a compact
metric graph), the mean distance from x can be characterised as

ρG(x) = 1

|G| sup{‖ f ‖L1(G) : f ∈ H1(G), f (x) = 0, | f ′| = 1 a.e.}.

This principle can be used to rephrase slightly some of the arguments presented above,
at least those which involve comparing two graphs G and G̃ for which there is some
kind of natural pointwise correspondence between them. For example, to prove Theo-
rem 5.1(1) one can use that there is a canonical identification G → G̃ such that, under
this identification, C(G) ⊂ C(G̃), with preservation of all function norms, and for
almost every x , due to the weakened continuity requirement in G̃,

{ f ∈ H1(G), f (x) = 0, | f ′| = 1 a.e.} ⊂ { f ∈ H1(G̃), f (x) = 0, | f ′| = 1 a.e.},
whence ρG(x) ≤ ρG̃(x) for a.e. x . Integrating over x and using that |G| = |G̃| yields
the result. This argument mirrors more closely the corresponding argument for μ2.
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