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Abstract
On a complete Riemannian manifold (M, g), we consider L p

loc distributional solutions
of the differential inequality −�u + λu ≥ 0 with λ > 0 a locally bounded function
that may decay to 0 at infinity. Under suitable growth conditions on the L p norm of
u over geodesic balls, we obtain that any such solution must be nonnegative. This is
a kind of generalized L p-preservation property that can be read as a Liouville-type
property for nonnegative subsolutiuons of the equation �u ≥ λu. An application
of the analytic results to L p growth estimates of the extrinsic distance of complete
minimal submanifolds is also given.

1 Introduction

In order to set our work, we first recall the notion of differential inequality in the
sense of distributions. Let (M, g) be a Riemannian manifold and λ a locally bounded
function over M . Given f ∈ L1

loc(M), we say that a function u ∈ L1
loc(M) satisfies

−�u + λu ≥ f (respectively, ≤ f ) in the sense of distributions if

∫
M
u(−�ϕ + λϕ) dv ≥

∫
M

f ϕ dv (resp. ≤)
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for every 0 ≤ ϕ ∈ C∞
c (M). Using an integration by parts, one can easily see that the

notion of differential inequality in the sense of distributions is a generalization of the
notion of weak differential inequality, which involves W 1,1 functions.

Definition 1.1 (Positivity preserving property) Given a Riemannian manifold (M, g)
and a family of function S ⊆ L1

loc(M), we say that M has the S positivity preserving
property if any function u ∈ S that satisfies−�u+u ≥ 0 in the sense of distributions
is nonnegative almost everywhere in M .

Historically, the notion of positivity preserving property is motivated by the work
of M. Braverman, O. Milatovic and M. Shubin, [1], where the authors conjectured
that every complete Riemannian manifold is L2 positivity preserving. In particular,
this conjecture stimulated the study of the correlation between completeness and L p

positivity preserving property for any p ∈ [1,+∞].
After some partial results involving constraints on the geometry of the manifold at

hand, and covering all cases p ∈ [1,+∞], in [2] (see also [3] and [4]),the authors
proved that any Riemannian manifold (M, g) is L p positivity preserving for every
p ∈ (1,+∞), under the only assumption that M is complete.

For what concerns the case p = +∞, the recent work [5] points out that the L∞
positivity preservation is in a certain sense transversal to the notion of (geodesic)
completeness. Indeed, the authors showed that a necessary and sufficient condition
for a Riemannian manifold to satisfy the L∞ positivity preserving property is the
stochastic completeness of the space.

Modelled on Definition 1.1, in what follows we will consider a notion of positivity
preserving property for slightly more general differential operators. In particular, we
will deal with operators of the form L := −� + λ, where λ is a positive and locally
bounded function. In this context, the present work generalizes the result of [2] and
[3] for complete Riemannian manifolds providing the Sp positivity preservation for
any p ∈ (1,+∞), where Sp is the family of locally p-integrable functions satisfying
a certain growth condition depending on the decay rate of the potential λ at infinity. To
follow, we obtain two results for the case p = 1 when λ is a positive constant, under
the assumption that there exists a family of suitable (exhausting) cut-off functions
whose Laplacians have a “good” decay.

We also have to mention the very recent [6] by Alías et al. In this paper the authors
managed to prove a result that, despite the different aim and the different techniques
used, may be compared with the one contained in Theorem 3.2 below.

We stress that the results we obtained can be read as L p Liouville-type theorems
when one deals with nonnegative solutions to �u ≥ λu. In this direction,we have a
more direct comparison with the existing literature where, typically, one introduces
a further pointwise control on the growth of the function and requires much more
regularity on the solution. In the next sections, we shall comment on these aspects.

The paper is organized as follows. In Sect. 2, we prove an integral inequality in low
regularity which represents the core of the L p

loc argument, 1 < p < +∞. Section3
is devoted to a generalized L p

loc Positivity Preservation for distributional solutions of
−�u + λu ≥ 0 with a possibly decaying functions λ(x). The case p = 1 will be
dealt with in Sect. 4 under additional curvature restrictions that guarantee the exis-
tence of the so-called Laplacian cut-offs. In the final Sect. 5, we present an application
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to complete Euclidean minimal submanifolds with an extrinsic distance growth mea-
sured in integral sense. This generalizes the well-known fact that complete minimal
submanifolds in Euclidean space with quadratic-exponential volume growth must be
unbounded; see [7] and [8].

2 Some Preliminary Results

In what follows, we indicate the Riemannian volume form of the Riemannian mani-
fold (M, g) as dv and the set of compactly supported Lipschitz functions over M as
C0,1
c (M). Moreover, if u is a real-valued function, we denote

u+ := max{u, 0} and u− := max{−u, 0}.

We start recalling the Brezis-Kato inequality in a general Riemannian setting. This
result is obtained in [3] for the general inequality �u ≥ f ∈ L1

loc.

Proposition 2.1 (Brezis-Kato inequality) Let (M, g) be a possibly incomplete Rie-
mannian manifold and λ a measurable function.

If u ∈ L1
loc(M) is so that λu ∈ L1

loc(M) and satisfies −�u + λu ≤ 0 in the sense
of distributions, then −�u+ + λu+ ≤ 0 in the sense of distributions.

As a consequence, in the next proposition,we get a refinement of the regularity
result obtained in [3] for complete manifolds. The inequality (2.1) will be the key tool
in the proof of the positivity preserving properties stated in Sect. 3.

Proposition 2.2 Let (M, g) be a complete Riemannian manifold and 0 ≤ λ ∈
L∞
loc(M). Assume that u ∈ L1

loc(M) satisfies −�u + λu ≥ 0 in the sense of dis-
tributions.

Then, u− ∈ L∞
loc(M) and (u−)

p
2 ∈ W 1,2

loc (M) for every p ∈ (1,+∞). Moreover,
u− satisfies

(p − 1)
∫
M

λ(u−)pϕ2 dv ≤
∫
M

(u−)p|∇ϕ|2 dv (2.1)

for every 0 ≤ ϕ ∈ C0,1
c (M).

Proof By theBrezis-Kato inequality, the function u− ∈ L1
loc(M) satisfies�u− ≥ λu−

in the sense of distributions. Therefore, by [2, Theorem 3.1] it follows that u− ∈
L∞
loc(M) and (u−)

p
2 ∈ W 1,2

loc (M) for every p ∈ (1,+∞).

To prove (2.1), let δ > 0 and set vδ := u− + δ ∈ L∞
loc(M) ∩ W 1,2

loc (M). Clearly, for

every q > 0, the function v
q
δ belongs to L∞

loc(M) ∩ W 1,2
loc (M) and its weak gradient

satisfies

∇v
q
δ = qv

q−1
δ ∇vδ. (2.2)
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Moreover, �vδ ≥ λu− in the sense of distributions, implying

∫
M

λu−ψ dv +
∫
M
g(∇vδ,∇ψ) ≤ 0

for every 0 ≤ ψ ∈ W 1,2
c (M), where the subscript c stands for compactly supported.

In particular, choosing ψ = v
p−1
δ ϕ2 with ϕ ∈ C0,1

c (M) and using (2.2), we get

0 ≥
∫
M

λu−v
p−1
δ ϕ2 dv + (p − 1)

∫
M

v
p−2
δ ϕ2|∇vδ|2 dv

+ 2
∫
M

ϕv
p−1
δ g(∇vδ,∇ϕ) dv.

By Cauchy-Schwarz inequality and Young’s inequality, for any ε ∈ (0, p − 1), we
have

2ϕv
p−1
δ g(∇vδ,∇ϕ) ≥ −2ϕv

p−1
δ |∇vδ||∇ϕ|

≥ −εϕ2v
p−2
δ |∇vδ|2 − ε−1v

p
δ |∇ϕ|2

and thus

0 ≥
∫
M

λu−v
p−1
δ ϕ2 dv + (p − 1 − ε)

∫
M

v
p−2
δ ϕ2|∇vδ|2 dv

− ε−1
∫
M

v
p
δ |∇ϕ|2 dv.

As ε → p − 1, we get

(p − 1)
∫
M

λu−v
p−1
δ ϕ2 dv ≤

∫
M

v
p
δ |∇ϕ|2 dv

that, together with the fact that

λu−v
p−1
δ

δ→0−−→ λ(u−)p in L1
loc(M)

v
p
δ

δ→0−−→ (u−)p in L1
loc(M)

by Dominated Convergence Theorem, implies

(p − 1)
∫
M

λ(u−)pϕ2 dv ≤
∫
M

(u−)p|∇ϕ|2 dv

obtaining the claim. 
�
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3 Lploc Positivity Preserving Property

In this section, we face up the question of the L p
loc positivity preserving property for

p ∈ (1,+∞), considering complete Riemannian manifolds and not requiring any
curvature assumption.

Clearly, if the manifold is non-compact, we do not have any control on the growth at
“infinity” of (the p-norm of) the general function u ∈ L p

loc(M), making it impossible
to retrace step by step what has been done in [2] and [3] in the L p case.

In addition, we also point out that we cannot expect to obtain a genuine positivity
preserving property on thewhole family of functions L p

loc(M). Indeed, if λ is a positive

constant, then u(x) = −e
√

λx is a negative function that solves −u′′ + λu = 0 in
R. So the L p

loc positivity preserving property fails in general complete Riemannian
manifolds.

Taking into account what we have observed so far, it seems natural to limit ourselves
to the class of L p

loc functions whose p-norms satisfy a suitable (sub-exponential)
growth condition.

We start with the following iterative lemma.

Lemma 3.1 Let A > 0 and f : [A,+∞) → (0,+∞) be a nondecreasing function.
Suppose there exist α > 0, δ ≥ 0, β ≥ 1 and γ > 0 so that

f (r) ≤ 1

α(1 + r)−δhγ + β
f (r + h) (3.1)

for every r ≥ A and every h > 0.
Then, for every h > 0,the function f satisfies

f (R) ≥ f (A)
(
α(1 + R − h)−δhγ + β

) R−A
h −1

for every R ≥ A + h.

Proof Fixed h > 0, by assumption, we have f (r) ≤ (
α(1 + r)−δhγ + β

)−1
f (r +h)

for any r ≥ A. Iterating, for every n ∈ N, we get

f (r) ≤ (
α(1 + r)−δhγ + β

)−1
f (r + h)

≤ (
α(1 + r)−δhγ + β

)−1 (
α(1 + r + h)−δhγ + β

)−1
f (r + 2h)

≤ (
α(1 + r + h)−δhγ + β

)−2
f (r + 2h)

≤ . . . ≤ (
α(1 + r + (n − 1)h)−δhγ + β

)−n
f (r + nh)

123



117 Page 6 of 19 A. Bisterzo et al.

for any r ≥ A. It follows that for every R > A

f (R) ≥ f (A + nh)

≥ (
α(1 + A + (n − 1)h)−δhγ + β

)n
f (A)

≥ (
α(1 + A + (n − 1)h)−δhγ + β

) R−A
h −1

f (A),

where n = n(R, A, h) is the unique natural number satisfying A + (n + 1)h ≥ R ≥
A + nh. In particular, if R ≥ A + h, then R−A

h ≥ 1 obtaining

f (R) ≥ (
α(1 + A + (n − 1)h)−δhγ + β

) R−A
h −1

f (A)

≥ (
α(1 + R − h)−δhγ + β

) R−A
h −1

f (A)

since R−A
h − 1 ≥ n − 1. This concludes the proof. 
�

Combining Lemma 3.1 with Proposition 2.2 and with the choice standard family
of rotationally symmetric cut-off functions, we get the following theorem.

Theorem 3.2 (Generalized L p
loc positivity preserving property) Let (M, g) be a com-

plete Riemannian manifold, λ ∈ L∞
loc(M) a positive function and p ∈ (1,+∞).

Moreover, assume there exist o ∈ M and a constant C > 0 so that

λ(x) ≥ C

(1 + dM (x, o))2−ε
∀x ∈ M,

where ε ∈ (0, 2] and dM is the intrinsic distance on M.
If u ∈ L p

loc(M) satisfies −�u + λu ≥ 0 in the sense of distributions and

∫
BR(o)

(u−)p dv = o

(
eθR

ε
2

)
as R → +∞, (3.2)

where θ =
√

(p−1)C
e−1 , then u ≥ 0.

Remark 3.3 (A Liouville-type theorem) It clearly follows that the unique nonpositive
L p
loc distributional solution to −�u + λu ≥ 0 that satisfies condition (3.2) is the null

function. In this sense, Theorem 3.2 can be read as an L p Liouville-type theorem.

Remark 3.4 The case ε > 2 can be considered by reducing the problem to the case
ε = 2, since

λ(x) ≥ C(1 + dM (x, o))ε−2 ≥ C ∀x ∈ M .

123



Lploc Positivity Preservation and Liouville-Type Theorems Page 7 of 19 117

Proof Let u ∈ L p
loc(M) be a distributional solution to−�u+λu ≥ 0 satisfying (3.2).

For any fixed a > 0 and b > a, consider the function ηa,b ∈ C0,1([0,+∞)) so that

⎧⎨
⎩

ηa,b ≡ 1 in [0, a]
ηa,b(t) = b−t

b−a in [a, b]
ηa,b ≡ 0 in [b,+∞).

In particular, |η′
a,b(t)| ≤ 1

b−a almost everywhere in [0,+∞).
Set ϕa,b(x) := ηa,b(d(x, o)), where d(·, ·) is the intrinsic distance on M . Then,

ϕa,b ∈ C0,1
c (M) and satisfies

⎧⎪⎪⎨
⎪⎪⎩

ϕa,b ≥ 0 in M
|∇ϕa,b(x)| ≤ 1

b−a a.e. in M
ϕa,b ≡ 0 in M \ Bb(o)
ϕa,b ≡ 1 in Ba(o).

Using ϕ = ϕa,b in (2.1), we get

1

(b − a)2

∫
Bb(o)\Ba(o)

(u−)p dv ≥ (p − 1)
∫
Ba(o)

λ(u−)p dv

≥ (p − 1)
∫
Ba(o)

C

(1 + dM (·, o))2−ε
(u−)p dv

≥ (p − 1)
C

(1 + a)2−ε

∫
Ba(o)

(u−)p dv

and, by adding

1

(b − a)2

∫
Ba(o)

(u−)p dv

to both sides of previous inequality, we obtain

(
(p − 1)

C

(1 + a)2−ε
+ 1

(b − a)2

)∫
Ba(o)

(u−)p dv ≤ 1

(b − a)2

∫
Bb(o)

(u−)p dv

for every fixed a > 0 and b > a. In particular, it implies that

∫
Ba(o)

(u−)p dv ≤ 1

(p − 1)C(1 + a)ε−2h2 + 1

∫
Ba+h(o)

(u−)p dv (3.3)

for every a > 0 and h > 0.
If we suppose that u− �= 0, then there exists A > 0 so that

∫
BA(o)

(u−)p dv > 0.
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By (3.3), we can apply Lemma 3.1 to

f : a �→
∫
Ba(o)

(u−)p dv

in [A,+∞), with γ = 2, δ = 2 − ε, α = (p − 1)C and β = 1 and we get that for
any h > 0 and for any R > A + h the function f satisfies

f (R) ≥ f (A)
(
(p − 1)C(1 + R − h)ε−2h2 + 1

) R−A
h −1

.

If 0 < ε < 2, we can take h = R1− ε
2

√
e−1

(p−1)C , obtaining

f (R) ≥ f (A)

(
(p − 1)C

h2

(1 + R − h)2−ε
+ 1

) R−A
h −1

≥ f (A)

(
(p − 1)C

h2

(h + R − h)2−ε
+ 1

) R−A
h −1

= f (A)

(
(p − 1)C

h2

R2−ε
+ 1

) R−A
h −1

= f (A)e− A
h −1e

R
h

≥ f (A)e−1

2
eθR

ε
2

for every R big enough so that

R > A + h, h ≥ 1 and e− A
h ≥ 1

2
.

Similarly, if ε = 2,we can choose h =
√

e−1
(p−1)C , in order to get

f (R) ≥ f (A)
(
(p − 1)Ch2 + 1

) R−A
h −1

= f (A)e−θ A−1eθR .

In both cases, we obtain a contradiction to (3.2), implying that u− = 0 almost every-
where, i.e. the claim. 
�

Remark 3.5 In the paper [9] by L. Mari, M. Rigoli and A.G. Setti, using the viewpoint
of maximum principles at infinity for the ϕ-Laplacian, the authors proved a general a
priori estimate that, in our setting, reduces as follow.
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Theorem 3.6 ([9, Theorem B]) Let (M, g) be a complete Riemannian manifold and
λ ∈ C(M) be a positive function satisfying

λ(x) ≥ B

r(x)2−ε
in M \ BR0(o)

for some ε ∈ (0,+∞), B > 0, R0 > 0 and o ∈ M.
Let σ ≥ 0 and u ∈ C1(M) be a distributional solution to

−�u + λu ≥ 0 in M

so that either u−(x) = o(r(x)σ ) as r(x) → +∞, if σ > 0, or u is bounded from
below, if σ = 0. Lastly, assume

lim inf
r→+∞

ln |Br (o)|
r ε−σ

< +∞ i f σ < ε

or

lim inf
r→+∞

ln |Br (o)|
ln r

< +∞ i f σ = ε.

Then, u ≥ 0.

This result compares with our Theorem 3.2. Indeed, on the one hand, if we assume
the pointwise control u−(x) = o(rσ (x)), for 0 < σ < ε, condition (3.2) is satisfied

provided |BR | = O(R−pσ eθR
ε
2
), p ∈ (1,+∞), while Theorem 3.6 requires the

volume growth |BR | = O(eR
ε−σ

).
On the other hand, our Theorem 3.2 improves Theorem 3.6 in two aspects. First

of all, we require less regularity on the functions u and λ. Indeed, we only need L p
loc

solutions with L∞
loc potentials in order to use the Kato inequality and the regularity

result claimed in Sect. 2. Secondly, we only need an L p-bound on the asymptotic
growth of u−, instead of a pointwise asymptotic control. This allows us to consider
a wider class of functions, for example having a super-quadratic growth, even in the
case ε < 2.

In the particular case where ε = 2, for instance when λ is a constant, we get the
next version of Theorem 3.2.

Corollary 3.7 Let (M, g) be a complete Riemannian manifold, λ ∈ L∞
loc(M) so that

λ ≥ C for a positive constant C and p ∈ (1,+∞).
If u ∈ L p

loc(M) satisfies −�u + λu ≥ 0 in the sense of distributions and

∫
BR

(u−)p dv = o(eθR) as R → +∞ (3.4)

with θ =
√

(p−1)C
e−1 , then u ≥ 0 in M.
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Remark 3.8 Corollary 3.7 improves very much one of the main results of [3] in the
setting of complete manifolds. Indeed, in that paper, the L p

loc positivity preservation
is obtained under the condition

∫
BR(o) (u−)

p dv = o(R2). See [3, Corollary 5.2 and
Remark 5.3].

As a byproduct, by applying Corollary 3.7 to both the functions u and −u, we get
an uniqueness statement for L p

loc solutions to −�u + λu = 0.

Corollary 3.9 (Uniqueness) Let (M, g) be a complete Riemannian manifold, λ ∈
L∞
loc(M) so that λ ≥ C for a positive constant C and p ∈ (1,+∞).
If u ∈ L p

loc(M) satisfies −�u + λu = 0 in the sense of distributions and

∫
BR

(u±)p dv = o(eθR) as R → +∞

with θ =
√

(p−1)λ
e−1 , then u = 0 almost everywhere in M.

Remark 3.10 As already observed at the beginning of this section, for every λ > 0,
the function u(x) = −e

√
λx provides a counterexample to the L p

loc(R) positivity
preserving property, for any p ∈ (1,+∞). Moreover, we stress that its p-norm has
the following asymptotic growth

∫ R

−R
(u−)p(x) dx = O(ep

√
λR)

with p
√

λ >

√
(p−1)λ
e−1 . Therefore, Theorem 3.2 and Corollary 3.7 are not far from

being sharp. It would be very interesting to understand to what extent this exponent
can be refined.

4 L1loc Positivity Preserving Property

The approach used in Sect. 3, which is based on inequality (2.1), is clearly not appli-
cable for p = 1. To overcome this problem, we resort to some special cut-off to be
used as test functions in the distributional inequality satisfied by u. The existence of
these functions is ensured, for instance, by requiring certain conditions on the decay
of the Ricci curvature.

4.1 Cut-off FunctionsWith Decaying Laplacians

The first theorem we present in this section is based on the following iterative lemma.
It is an analogue of the Lemma 3.1 for the case p = 1.
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Lemma 4.1 Let A > 0 and f : [A,+∞) → (0,+∞) be a nondecreasing function.
Suppose there exist σ > 1, γ > 0, α > 0 and β ≥ 1 so that

f (r) ≤ 1

αrγ + β
f (σr) (4.1)

for every r ≥ A. Then, f satisfies

f (R) ≥
(
R

A

)logσ (αAγ +β) f (A)

αAγ + β

for every R > A.

Proof Having fixed R ≥ A, we have

f (R) ≤ (αRγ + β)−1 f (σ R)

≤ (αRγ + β)−1(α(σ R)γ + β)−1 f (σ 2R)

≤ (αRγ + β)−2 f (σ 2R)

and, iterating,

f (R) ≤ (αRγ + β)−n f (σ n R)

for every n ∈ N.
Now consider n ∈ N so that σ n+1A ≥ R ≥ σ n A. In particular, from

σ n+1A ≥ R ⇒ n ≥ logσ

(
R

A

)
− 1

we deduce

f (R) ≥ f (σ n A) ≥ (αAγ + β)n f (A)

≥ (αAγ + β)
logσ

(
R
A

)
f (A)

αAγ + β

=
(
R

A

)logσ (αAγ +β) f (A)

αAγ + β

as claimed 
�
As a consequence, by requiring the existence of a family {φR}R of cut-off functions

whose Laplacians decay as |�φR | ≤ CR−γ for a positive constant γ , we get

Theorem 4.2 (Generalized L1
loc positivity preserving property) Let (M, g) be a com-

plete Riemannian manifold and λ a positive constant. Assume that for a fixed o ∈ M,

123



117 Page 12 of 19 A. Bisterzo et al.

there exist some positive constants γ and R0 and a constant σ > 1 satisfying the
following condition: for every R > R0, there exists φR ∈ C2

c (M) such that

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ φR ≤ 1 in M
φR ≡ 1 in BR(o)
supp(φR) ⊂ Bσ R(o)
|�φR | ≤ C

Rγ in M

(4.2)

where C = C(σ ) > 0 is a constant not depending on R. If u ∈ L1
loc(M) satisfies

−�u + λu ≥ 0 in the sense of distributions and there exists k ∈ N so that

∫
BR(o)

u− dv = O(Rk) as R → +∞, (4.3)

then u ≥ 0 almost everywhere in M.

Proof Fix u ∈ L1
loc(M) a distributional solution to −�u + λu ≥ 0 that satisfies

condition (4.3) for a certain k ∈ N. By Brezis-Kato inequality �u− ≥ λu− in the
sense of distributions, implying

λ

∫
M
u−φR dv ≤

∫
M
u−�φR dv ∀R > R0.

Using the definition of φR , we get

λ

∫
BR(o)

u−φR dv ≤ C

Rγ

∫
Bσ R(o)\BR(o)

u− dv ∀R > R0

and, by adding

C

Rγ

∫
BR(o)

u− dv

to both sides of the previous inequality, we obtain

∫
BR(o)

u− dv ≤ C

λRγ + C

∫
Bσ R(o)

u− dv

= 1

αRγ + 1

∫
Bσ R(o)

u− dv ∀R > R0,

(4.4)

where α = λ
C depends on σ . Similarly to what we have done in Theorem 3.2, if we

suppose that u− �= 0 almost everywhere in M , then there exists A ≥ R0 so that

∫
BA(o)

u− dv > 0.
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By (4.4), we can apply Lemma 4.1 to the function f : [A,+∞) → R>0 given by

f : r �→
∫
Br (o)

u− dv

with β = 1, and we get

f (R) ≥
(
R

A

)logσ (αAγ +1) f (A)

αAγ + 1

for every R > A. Choosing A ≥ R0 big enough so that

logσ (αAγ + 1) ≥ k + 1

we have

f (R) ≥
(
R

A

)k+1 f (A)

αAγ + 1

for every R > A, thus obtaining a contradiction to (4.3). Hence u− = 0 almost
everywhere, implying the claim. 
�

As showed byD. Bianchi andA.G. Setti in [10, Corollary 2.3], a sufficient condition
for the existence of a family {φR}R satisfying (4.2) is a sub-quadratic decay of the
Ricci curvature. Whence, we get the following corollary.

Corollary 4.3 Let (M, g) be a complete Riemannian manifold of dimension m and λ

a positive constant. Consider o ∈ M and assume that

Ricg ≥ −(m − 1)C2(1 + r2)η,

whereC is a positive constant,η ∈ [−1, 1)andr(x) := d(x, o) is the intrinsic distance
from o in M. If u ∈ L1

loc(M) satisfies−�u+λu ≥ 0 in the sense of distributions and,
for some k ∈ N,

∫
BR(o)

u− dv = O(Rk) as R → +∞,

then u ≥ 0 almost everywhere in M.

4.2 Cut-off FunctionsWith Equibounded Laplacians

The second theorem of this section is an L1
loc positivity preserving property based

on the existence of a family of cut-off functions with equibounded Laplacians. The
structure of the proof is very similar to the one adopted for Theorem 4.2 and it makes
use of the following iterative lemma.
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Lemma 4.4 Let A > 0 and f : [A,+∞) → (0,+∞) be a nondecreasing function.
Suppose there exist α > 1 and σ > 1 so that

f (r) ≤ 1

α
f (σr) (4.5)

for every r ≥ A. Then, f satisfies

f (R) ≥ f (A)

(
R

Aσ

)θ

for every R > A, where θ = ln(α)
ln(σ )

> 0.

Proof Iterating (4.5), for every n ∈ N we get

f (r) ≤ 1

αn
f (σ nr)

for any r ≥ A. It follows that for any R > A

f (R) ≥ f (Aσ n) ≥ αn f (A) ≥ α
logσ

(
R
Aσ

)
f (A) = f (A)

(
R

Aσ

) ln(α)
ln(σ )

,

where n = n(R, A, σ ) is the unique natural number satisfying σ n+1 ≥ R
A ≥ σ n . This

concludes the proof. 
�
We can now state our second main theorem that involves functions with an L1-

controlled growth.

Theorem 4.5 (Generalized L1
loc positivity preserving property) Let (M, g) be a com-

plete Riemannian manifold and λ a positive constant. Assume that for a fixed o ∈ M,
there exist some positive constants C and R0 and a constant σ > 1 satisfying the
following condition: for every R > R0,there exists φR ∈ C2

c (M) such that

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ φR ≤ 1 in M
φR ≡ 1 in BR(o)
supp(φR) ⊂ Bσ R(o)
|�φR | ≤ C in M .

(4.6)

If u ∈ L1
loc(M) satisfies −�u + λu ≥ 0 in the sense of distributions and

∫
BR(o)

u− dv = o(Rθ ) as R → +∞ (4.7)

with θ = ln
(
1+ λ

C

)
ln(σ )

, then u ≥ 0 almost everywhere in M.
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Proof As in the proof of Theorem 4.2, we get

λ

∫
M
u−φR dv ≤

∫
M
u−�φR ∀R > R0

that implies

∫
BR(o)

u− dv ≤ C

λ + C

∫
Bσ R(o)

u− dv ∀R > R0. (4.8)

If u− �= 0 almost everywhere in M , then there exists A > 0 such that

∫
BA(o)

u− dv > 0.

By (4.8), we can apply Lemma 4.4 with

f : r �→
∫
Br (o)

u− dv

and α = C+λ
C and we deduce that f (R) ≥ C0R

ln(α)
ln(σ ) for every R > A, where C0 > 0.

This contradicts (4.7). Hence u− = 0 almost everywhere in M , as required. 
�
In the proof of [11, Corollary 4.1], the authors obtained a family of cut-off functions

satisfying (4.6) under the only assumption of a lower bound on the Ricci curvature.
As a consequence, we obtain the following

Corollary 4.6 Let (M, g) be a complete Riemannian manifold and λ a positive con-
stant. Consider o ∈ M and assume that

Ricg(x) ≥ −G2(r(x))

for every x ∈ M\BR(o), where G ∈ C∞ is given by

G(t) = αt
∏

0≤ j≤k

ln[ j](t)

for t > 1, α > 0 and k ∈ N. Then, there exists a constant θ = θ(λ, M, α, k) > 0 such
that if u ∈ L1

loc(M) satisfies −�u + λu ≥ 0 in the sense of distributions and

∫
BR(o)

u− dv = o(Rθ ) as R → +∞,

then u ≥ 0 almost everywhere in M. In particular, the L1 positivity preserving property
holds true in the family of functions

{u ∈ L1
loc(M) : u− ∈ L1(M)}.
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Remark 4.7 In [5, Theorem B], the authors constructed a counterexample to the L1

positivity preserving property in a complete 2-manifold having Gaussian curvature
with an asymptotic of the form K (x) ∼ −Cr(x)2+ε , for ε > 0. This underlines that
the result contained in Corollary 4.6 is sharp.

Remark 4.8 When stated in terms of a Liouville-type property, our Corollary 4.6 com-
pares e.g. with [12, Theorem C], where the authors consider the case λ = 0 of
subharmonic functions. Their result states that a C1, nonnegative subharmonic func-
tion with precise pointwise exponential control and a logarithmic L1 growth must
be constant. They also provide a rotationally symmetric example (M, g) with Gaus-
sian curvature K (x) ∼ −Cr(x)2 showing that, without the pointwise control, there
exists an unbounded smooth solution of �u = 1 of logarithmic L1-growth. As a
consequence, keeping the curvature restriction of Corollary 4.6, in order to obtain the
Liouville result under a pure L1-growth condition, which is even faster than logarith-
mic, one has to assume that λ > 0.

5 An Application toMinimal Submanifolds

Recall that an immersed submanifold x : �n ↪→ R
m is said to be minimal if its

mean curvature vector field satisfies H� = 0. It is a standard fact that the minimality
condition is equivalent to the property that the coordinate functions of the isometric
immersion are harmonic, i.e.

�� xi = 0 ∀i = 1, . . . ,m.

In particular, this implies that for any minimal submanifold in Euclidean space,

�� |x |2 = 2n.

As an application of the main results in Sect. 3, we prove that complete minimal
submanifold enjoy the following L p extrinsic distance growth condition.

Corollary 5.1 Let x : � ↪→ R
m be a complete minimal submanifold and suppose there

exists a positive function ξ : R≥0 → R>0 such that

(dR
m
(x, o))2 ≤ ξ(d�(x, o)) and ξ(R) = O(R2−ε), as R → +∞

for some constants C > 0 and ε ∈ (0, 2] and for some fixed origin o ∈ �. Then, for
every p ∈ (1,+∞),

lim sup
R→+∞

∫
B�
R (o) ξ p dv�

eθR
ε
2

> 0, (5.1)

where θ =
√

(p−1)C
e−1 .
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Proof Without loss of generality,we can suppose o = 0 ∈ R
m . Let

w(x) := dR
m
(x, o) = |x |2

and define

λ(x) := 2n

ξ(d�(x, o))
.

Then

�� w = 2n = λξ ≥ λw.

By contradiction, suppose that (5.1) is not satisfied for some p ∈ (1,+∞). Then

0 = lim sup
R→+∞

∫
B�
R (o) ξ p dv�

eθR
ε
2

≥ lim sup
R→+∞

∫
B�
R (o) w p dv�

eθR
ε
2

≥ 0,

showing that

∫
B�
R (o)

w p dv� = o(eθR
ε
2
), R → +∞.

An application of Theorem 3.2, in the form of a Liouville-type result, yields that
w ≡ 0. Contradiction. 
�
Remark 5.2 In the assumption of Corollary 5.1 we get an asymptotic estimate on the
behaviour of |B�

R |. Indeed, since there exist two constants C > 0 and ε ∈ (0, 2] such
that

ξ(x) ≤ C
(
1 + d�(x, o)

)2−ε
,

then
∫
B�
R (o)

ξ p dv ≤ C
∫
B�
R (o)

(1 + d�(x, o))(2−ε)p dv ≤ C(1 + R)(2−ε)p|B�
R (o)|.

By (5.1), it follows

lim sup
R→+∞

(1 + R)(2−ε)p|B�
R (o)|

eθR
ε
2

> 0.

Whence, we obtain the validity of the following nonexistence result.

Corollary 5.3 There are no complete minimal submanifolds �n ↪→ R
m satisfying the

following conditions:
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a) the extrinsic distance from a fixed origin o ∈ � satisfies

(
dR

m
(x, o)

)2 ≤ ξ(d�(x, o))

with

ξ(R) = O(R2−ε) as R → +∞

for some ε ∈ (0, 2];
b) the intrinsic geodesic balls of � centred at o satisfy the asymptotic estimate

|B�
R (o)| = o

(
R−(2−ε)peθR

ε
2

)
as R → +∞,

with θ =
√

(p−1)C
e−1 and p ∈ (1,+∞).

Remark 5.4 We stress that in case ε = 2, i.e. for bounded minimal submanifolds,
the volume growth we obtained is far from being optimal. Indeed, in [7] and [8], the
authors achieved the rate |B�

R (o)| = O(eCR2
). This discrepancy comes from the fact

that we use integral techniques and estimates.
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