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Abstract
We prove upper and lower bounds on the minimal spherical dispersion, improving
upon previous estimates obtained by Rote and Tichy in (Anz Österreich Akad Wiss
Math Nat Kl 132:3–10, 1995). In particular, we see that the inverse N (ε, d) of the
minimal spherical dispersion is, for fixed ε > 0, linear in the dimension d of the
ambient space. We also derive upper and lower bounds on the expected dispersion for
points chosen independently and uniformly at random from the Euclidean unit sphere.
In terms of the corresponding inverse ˜N (ε, d), our bounds are optimal with respect to
the dependence on ε.

Keywords Dispersion · Expected dispersion · Spherical cap · Spherical dispersion ·
VC-dimension
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1 Introduction andMain Results

In this paper we study the minimal spherical dispersion of point sets on the Euclidean
unit sphere S

d := {

x ∈ R
d+1 : ‖x‖2 = 1

}

with a focus on obtaining bounds that
depend simultaneously on the dimension d + 1 of the ambient space R

d+1 and the
number n of points. The study of this quantity, which we shall define (in a slightly
modified form) in a moment, was initiated by Rote and Tichy [1], extending a con-
cept previously introduced and investigated by Hlawka [2] and Niederreiter [3]. The
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motivation comes from typical problems arising in robotics, where one is interested in
approximating general curves by simple ones (we refer to [1] for more information).
There is also a significant body of research on the dispersion of the d-dimensional
cube and torus, and so we just refer the reader to the recent work [4] and the references
cited therein.

The Euclidean sphere Sd comes with a natural Borel probability measure πd given
by the normalized Hausdorff measure. This measure is commonly known as the nor-
malized spherical measure or normalized surface measure and corresponds to the
uniform distribution on the sphere. A spherical cap C(x, t) ⊆ S

d with center x ∈ S
d

and t ∈ [−1, 1] is given by

C(x, t) :=
{

y ∈ S
d : 〈x, y〉 > t

}

,

so it is simply an open half-space intersected with the sphere. The collection of spher-
ical slices in R

d+1, which we shall denote by Sd , is given by intersecting two open
half-spaces then intersectedwith the sphere. This can be expressed in terms of spherical
cap intersections, more precisely,

Sd :=
{

C(x, t) ∩ C(y, s) : x, y ∈ S
d , s, t ∈ [−1, 1]

}

.

As already mentioned, we are interested in the minimal spherical dispersion, i.e.,
the minimal dispersion with respect to the test set of spherical slices. To define this
quantity, we first introduce the spherical dispersion of an n-element point set Pn :=
{x1, . . . , xn} ⊆ S

d , which is given by

disp
(Pn; d

) := sup
B∈SdPn∩B=∅

πd(B).

This is the largest (in the sense of the normalized surface measure) spherical slice not
containing any point of Pn . For d, n ∈ N, the minimal spherical dispersion is defined
as

disp∗(n, d) := inf
P⊆S

d

#P=n

disp
(P; d),

i.e., the infimum of the dispersion over all possible point sets on S
d with cardinality

n.
The work of Rote and Tichy already contains both lower and upper bounds on

the spherical dispersion. They work with a slightly different class of test sets, which
consists of intersections of half-spheres only. Moreover, the focus of their paper is
on the dependence on the number n of points, while we are aiming for simultaneous
control in the number of points and the dimension of the ambient space; their upper
bound is of the form O(d3/n) and their lower bound of the form O(n−1). We derive
lower bounds depending not just on the number of points n, but also on the dimension
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Fig. 1 Visualization of lower
bounds in Theorem A in
dependence on the relation of n
and d

d, and upper bounds improving upon the dimensional dependence O(d3/n); clearly
our upper bound also holds in the setting considered in [1]. Even though we work with
a richer family of test sets, due to our construction in the proof of the lower bound, it
also carries over to their framework. We shall prove the following results (Fig. 1).

Theorem A (Lower bounds) Let d ∈ N. Then, for any n ∈ N,

disp∗(n, d
) ≥

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1/2 : n ≤ d + 1

1/4 : d + 1 < n ≤ 2d + 1
1

2n−4d+4 : 2d + 1 ≤ n < 3d − 2
1

n−d+2 : n ≥ 3d − 2.

As will become clear from our proof, this bound is sharp when n = d + 1 and
n = 2d + 1. It may be improved in other cases. However, as the following remark
together with our upper bound in Theorem B show, the dependence on d cannot be
improved (cf. Remark 3).

Remark 1 It is instructive to reformulate Theorem A in terms of the inverse of the
minimal spherical disperison. This quantity is defined as

N (ε, d) := min
{

n ∈ N : disp∗(n, d) < ε
}

.

We obtain from Theorem A that, for any ε ∈ (0, 1/4),

N (ε, d) ≥ max

{

1

ε
+ d − 2,

1

2ε
+ 2d − 2

}

.

It shows that for fixed ε ∈ (0, 1/4) the inverse minimal spherical dispersion grows
linearly with respect to the dimension d.
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The proof relies on the following ideas. The lower bound is based on a test set expan-
sion procedure and a suitable choice of appropriate hyperplanes that yield “good”
spherical slices. For deriving our upper bound, we use the fact that the minimal dis-
persion is always smaller than the expected dispersion, in formulas,

disp∗(n, d
) ≤ E

[

disp
(Pn; d

)]

, (1)

wherePn := {X1, . . . , Xn} and X1, . . . , Xn is an iid sequence of uniformly distributed
random variables on the sphere Sd . This approach is related to the recent work [5] (see
comments after Theorem B), in which the authors study the expected dispersion of
random point sets whose elements are uniformly distributed on the cube. Eventually,
any upper bound on the expected dispersion leads to an upper bound of the minimal
dispersion. The following theorem provides such an upper bound together with a lower
bound and it is interesting to mention that the dependence on n cannot be improved
since there is a corresponding lower bound. Our result reads as follows.

Theorem B Let n, d ∈ N with n ≥ 32d. Assume that X1, . . . , Xn ∈ S
d are indepen-

dent random vectors chosen with respect to πd . Then

1

9

log(n)

n
≤ E

[

disp
(Pn; d

)] ≤ 64

log 2

d

n
log
( en

32d

)

,

where Pn := {X1, . . . , Xn}.
In contrast to the result in [5], where the upper bound on the expected dispersion

is deduced from a δ-cover approach (exploiting [6, Lemma 1, Theorem 1]), our upper
bound on the expected spherical dispersion is in terms of the VC-dimension of the set
Sd and uses a result of Blumer, Ehrenfeucht, Haussler, and Warmuth [7]. The lower
bound in Theorem B follows from similar arguments as in [5] adapted to our spherical
framework.

Remark 2 We shall reformulate the bounds on the expected spherical dispersion from
Theorem B in terms of its inverse, which is defined for all ε ∈ (0, 1) and d ∈ N as

˜N (ε, d) := min
{

n ∈ N : E
[

disp
(Pn; d

)] ≤ ε
}

.

From (1) we know that N (ε, d) ≤ ˜N (ε, d) such that, together with Remark 1, we
obtain for all ε ∈ (0, 1

9e ),

max

{

1

ε
+ d − 2,

1

2ε
+ 2d − 2,

1

9ε
log
( 1

9ε

)

}

≤ ˜N (ε, d) ≤ 96
d

ε
log
(96

ε

)

,

i.e., the dependence on the parameter ε and on d is (individually) optimal.
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Remark 3 Exploiting again the fact that N (ε, d) ≤ ˜N (ε, d) yields to an upper bound
on N (ε, d). We obtain from Remark 1 and Remark 2 that

max

{

1

ε
+ d − 2,

1

2ε
+ 2d − 2

}

≤ N (ε, d) ≤ 96
d

ε
log
(96

ε

)

for ε ∈ (0, 1
9e ). It shows that the inverse minimal spherical dispersion grows lin-

early with respect to d for fixed ε and almost linearly in ε−1 (up to the ε-dependent
logarithmic factor in the upper bound) for fixed dimension d.

The rest of the paper is organized as follows. Section2 is dedicated to the proofs
and split into several parts, dealing first with the expected spherical dispersion as
presented in Theorem B and then with the lower bound on the minimal spherical
dispersion presented in Theorem A.

2 Proofs of theMain Results

We shall now present the proofs of ourmain results and start with the bounds presented
in Theorem B. After that we go over to arguing for the lower bounds on the minimal
dispersion presented in Theorem A.

2.1 The Expected Spherical Dispersion

In [5], Hinrichs, Krieg, Kunsch, and Rudolf studied the expected dispersion for iid
random points in the d-dimensional cube [0, 1]d . We consider a generalized setting:
assume that there is a probability space (B, �,μ), where B is equipped with a metric
and � is the corresponding σ -algebra of Borel sets. Let B ⊆ � be a family of subsets
of B which we call set of test sets. Then, for P = {x1, . . . , xn} ⊆ B define the
(B, μ)-dispersion of P as

dispμ(P,B) := sup
T∈B, T∩P=∅

μ(T ) = sup
T∈B

μ(T )10(|T ∩ P|).

We restrict ourselves to scenarios whereB is countable, such that the supremumwithin
the dispersion is taken over a countable set, which leads to the measurability of the
mapping x1, . . . , xn �→ dispμ(x1, . . . , xn;B). Given a probability space (�,A,P),
for n ∈ N let X1, . . . , Xn be an iid sequence of random variables, with Xi : � → B,
where each Xi is distributed according to μ. With this we define Pn := {X1, . . . , Xn}
and the expected dispersion as

E[dispμ(Pn;B)].

In contrast to the δ-cover approach of [5], our results on the upper bound of the expected
dispersion are based on the VC-dimension. Moreover, we adapt the statement of the
lower bound of the expected dispersion from [5] to our generalized situation. The
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proof follows as in [5], but for the convenience of the reader we provide it. Eventually
applying the former estimates leads to the upper and lower bound on the expected
spherical dispersion for iid random points on the sphere Sd . Finally, we provide the
justification for the bounds of the inverse of the expected dispersion.

2.1.1 The Upper Bound of the Expected Dispersion, Proof of the Upper Bound of
Theorem B

We start with defining the VC-dimension dB of B. It is the cardinality of the largest
subset P of B such that the set system {P ∩ T : T ∈ B} contains all subsets of P .
Having this we are able to state an auxiliary result of Blumer, Ehrenfeucht, Haussler,
and Warmuth. It follows by virtue of [7, Lemma A2.1, Lemma A2.2 and Proposi-
tion A2.1(iii)].

Lemma 1 For any t > 0 and any n ≥ dB, we have

P
(

dispμ({X1, . . . ,Xn},B) > t
) ≤

(

en

dB

)dB
2−tn/2. (2)

With that estimate we provide the arguments for our upper bound of the expected
dispersion.

Proposition 2 Let n ∈ N with n ≥ dB. Then

E[dispμ(Pn;B)] ≤ 4dB
n

log2

(

en

dB

)

.

Proof Set γ := γdB,n = min
{

1, 2dB
n log2

(

en
dB

)}

. With this we have

E[dispμ(Pn;B)] =
∫ 1

0
P
(

dispμ({X1, . . . ,Xn},B) > t
)

dt
(2)≤ γ +

∫ 1

γ

(

en

dB

)dB
2−tn/2dt

= γ +
(

en

dB

)dB 2

n log 2

[

(

en

dB

)−dB
− 2−n/2

]

≤ γ + 2

n log 2
≤ 4dB

n
log2

(

en

dB

)

.

��
Observing that the mapping

x �→ 4x

n
log2

(en

x

)

(3)

is increasing for x ∈ [1, n] leads to the fact that an upper bound of the VC-dimension
gives an upper bound of the expected dispersion via Proposition 2. Therefore, we state
a further tool for the application of the former proposition to the spherical dispersion.
For a proof of the next result we refer to the application of [7, Lemma 3.2.3.].
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Lemma 3 Given a family of test sets B with VC-dimension dB we have that the VC-
dimension of the new set of test sets

˜B := {D ∩ E : D, E ∈ B}

satisfies d
˜B ≤ 4dB log2 6.

In the setting of the spherical dispersion, we have B = S
d , μ = πd , and B = Sd .

Note that the test set of spherical slices Sd consists of intersections of spherical caps
of Sd . Therefore, by Lemma 3, for obtaining an upper bound of dSd , it is sufficient to
provide the VC-dimension of the set of test sets of spherical caps, which for d ∈ N is
denoted by

Cd := {

C(x, t) : x ∈ S
d , t ∈ [−1, 1]}.

In the works [8, Proposition 5.12] and [9, Proposition 42] it is shown that dCd = d+2.
Here recall that d is the “classical dimension”, that is, Sd ⊆ R

d+1. Now we have
all auxiliary results to state and prove our upper bound on the expected spherical
dispersion.

Proposition 4 Let n, d ∈ N with n ≥ 32d. Assume that X1, . . . , Xn are independent
random points chosen uniformly distributed from S

d with respect to πd . Then

E
[

disp(Pn; d)
] ≤ 64

log 2
· d
n
log
( en

32d

)

.

Proof The proof follows essentially as already indicated. From the VC-dimension of
Cd mentioned before, we obtain dSd ≤ 32d. Using the monotonicity from (3) and
considering only n ≥ 32d, leads by Proposition 2 to the claimed upper bound of the
expected spherical dispersion. ��

2.1.2 The Lower Bound of the Expected Dispersion

The proof of this result follows as in [5] and is based on the coupon collector’s problem.
We elaborate on some of the details for the sake of completeness and convenience. All
random variables shall be defined on the common probability space (�,A,P). Let
us start by recalling an elementary result from [5, Lemma 2.3], which follows from
Chebychev’s inequality.

Lemma 5 Let 	 ∈ N and (Yi )i∈N be a sequence of independent random variables
uniformly distributed on the set {1, . . . , 	}. If we set

τ	 := min
{

k ∈ N : {Y1, . . . ,Yk} = {1, . . . , 	}},

then, for any natural number n ≤ (∑	
j=1 j−1 − 2

)

	, we have

P[τ	 > n] >
1

2
.
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From this bound on the upper tail of τ	, we can deduce under a ‘decomposition condi-
tion’ a lower bound on the expected (B, μ)-dispersion for independent μ-distributed
points on B.

Proposition 6 Let n, d ∈ N and 	 := � (1+e)n
log(n)

�, where �·� denotes the ceiling function,
which maps x ∈ R to the least integer greater than or equal to x. Assume that there are
pairwise disjoint test sets S1, . . . , S	 ∈ B such that B = ⋃	

i=1 Si and μ(S j ) = 1/	
for any j = 1, . . . , 	. Let X1, . . . , Xn be independent random points on B, where
each Xi is μ-distributed. Then

E
[

dispμ

(Pn;B
)] ≥ 1

9

log(n)

n
,

where Pn := {X1, . . . , Xn}.
Proof We follow verbatim the proof in [5], but include the details for the readers
convenience. For i ∈ {1, . . . , n}, we define random variables Yi : � → {1, . . . , 	} so
that Yi (ω) = j ∈ {1, . . . , 	} if and only if Xi (ω) ∈ S j , i.e,

Yi :=
	
∑

j=1

j1{Xi∈S j }.

This means that the Yi ’s are independent and uniformly distributed in {1, . . . , 	}, and
that the value of Yi indicates the test set from S1, . . . , S	 which the point Xi falls in.
Note that for any ω ∈ � such that

{Y1(ω), . . . ,Yn(ω)} �= {1, . . . , 	} (4)

(which means the left-hand side must be strictly contained in the right-hand side),
there must exist at least one r ∈ {1, . . . , 	} such that {X1(ω), . . . , Xn(ω)} ∩ Sr = ∅.
For those ω ∈ � satisfying (4), we thus have

dispμ

(Pn(ω);B) ≥ 1

	
,

where Pn(ω) := {X1(ω), . . . , Xn(ω)}. Therefore, on average, we obtain

E
[

dispμ

(Pn;B
)] =

∫

�

dispμ

(Pn(ω);B)P(dω)

≥ 1

	
P
[{Y1, . . . ,Yn} �= {1, . . . , 	}] = P[τ	 > n], (5)

where τ	 is defined as in Lemma 5. We now use that 	 = � (1+e)n
log(n)

� and obtain

n

	
≤ log(n)

1 + e
≤ log

( (1 + e)n

log(n)

)

− 2 ≤ log(	) − 2 <
(

	
∑

j=1

j−1
)

− 2,
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where it was used that
∑	

j=1 j−1 > log(	 + 1) and that for any x > 1,

log
( (1 + e)x

log(x)

)

− 2 − log(x)

1 + e
≥ 0,

(where equality holds for x = exp(1+ 1/e)). Therefore, n ≤ (∑	
j=1 j−1 − 2

)

	, and
so we can apply Lemma 5, obtaining together with (5) that

E
[

dispμ

(Pn;B
)] ≥ P[τ	 > n] >

1

2
.

Altogether, this leads us to the estimate

E
[

dispμ

(Pn;B
)]

>
1

2	
≥ 1

2

log(n)

(1 + e)n + log(n)
>

1

9

log(n)

n
,

which completes the proof. ��

2.1.3 The Inverse of the Expected Spherical Dispersion—Proof of Remark 2

Let us consider the inverse of the minimal dispersion, which is, for every ε ∈ (0, 1)
and d ∈ N as

˜N (ε, d) := min
{

n ∈ N : E
[

disp
(Pn; d

)] ≤ ε
}

.

Theorem B together with a simple computation (see [5]) show that whenever ε ∈
(0, 1

9e ),

˜N (ε, d) ≥ 1

9ε
log
( 1

9ε

)

.

For convenience of the reader we prove the following lemma which serves as tool
to obtain the upper bound on the inverse of the expected spherical dispersion.

Lemma 7 Let ε ∈ (0, 1), d ∈ N, and c1, c2 ∈ [1,∞) be absolute constants. Define a

differentiable function f : (0,∞) → R via x �→ c1
d
x log

(

c2
x
d

)

. Then, for any real

number x ≥ d a
ε
log
(

a
ε

)

with a := c1(1 + c2/e), we have

f (x) < ε.

Proof First, we show that f is decreasing for all x > ed
c2

and, in particular, for any

x ≥ a d
ε
log
(

a
√
d

ε

)

. To see this, we first note that f is differentiable and that, for all

x ∈ (0,∞),

f ′(x) = c1
d

x2

[

1 − log
(

c2
x

d

)

]

.
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The latter is obviously less than zero if and only if 1 < log
(

c2
x
d

)

, which is equivalent

to x > ed
c2
.

For some β ∈ (0,∞), we define gβ : (0,∞) → R via x �→ log(βx)
x . This function

is again differentiable with g′
β(x) = 1

x2
(1 − log(βx)) and satisfies

g′
β(x) = 0 ⇐⇒ x = xmax = e

β
.

In particular, gβ(xmax) = β
e . Hence, for each x ∈ (0,∞), gβ(x) ≤ gβ(xmax) = β

e .
After this preparation, we shall now prove the desired estimate. For every x ≥

d a
ε
log
(

a
ε

)

, due to the monotonicity of f ,

f (x) ≤ c1d

a d
ε
log
(

a
ε

) log

(

c2
a

ε
log
(a

ε

)

)

= εc1
a

⎡

⎢

⎢

⎢

⎣

1 +
log

(

c2 log
(

a
ε

)

)

log
(

a
ε

)

⎤

⎥

⎥

⎥

⎦

= εc1
a

[

1 + gc2
(

log
(a

ε

))]

,

with the choice β := c2 above. Using the established bound on g, we obtain, for all

x ≥ d a
ε
log
(

a
ε

)

,

f (x) ≤ εc1
a

[1 + c2/e] ≤ ε,

where we used a := c1(1 + c2/e) in the last estimate. ��
Using the upper bound of the expected dispersion from Theorem B and eventually

applying the previous lemma with c1 = 64/ log 2, c2 = e/32 leads to

˜N (ε, d) ≤ d
a

ε
log
(a

ε

)

with a = 64
log 2 (1 + 1/32) ≤ 96.

2.2 Lower Bound of the Minimal Spherical Dispersion

The general idea behind the lower bound exploits the following observation. Assume
weare given a point set {x1, . . . , xd} ∈ S

d . Then there exists a hyperplane H containing
the origin 0 ∈ R

d+1 which supports all points, i.e., {x1, . . . , xd} ∈ H . Considering
the half-space determined by this hyperplane intersected with the sphere Sd leads to
a spherical slice (even a spherical cap) with πd -volume of at least 1/2.
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2.2.1 Proof of Theorem A

Proof Let n ∈ N and Pn := {x1, . . . , xn} ⊆ S
d . For n′ ≥ n, consider the set P ′ :=

Pn ∪ {xn+1, . . . , xn′−1, xn′ } with xn+1, . . . , xn′ ∈ S
d . Then

disp
(Pn; d

) ≥ disp
(P ′; d), (6)

because the number of points in the primed point set obtained by this procedure is
non-decreasing.

We now distinguish four regimes:
1st case: n ≤ d + 1: Since n ≤ d + 1, we may consider an expanded point set
P ′ := Pn ∪ {xn+1, . . . , xd+1}, where {xn+1, . . . , xd+1} ∈ S

d . Then there exists a
vector θ ∈ S

d and a corresponding hyperplane Hθ := {y ∈ R
d+1 : 〈θ, y〉 = 0}

perpendicular to θ such that {x1, . . . , xd , 0} ⊆ Hθ . The half-space H+
θ := {

y ∈
R
d+1 : 〈θ, y〉 > 0

}

and the half-spaces H−
θ := {

y ∈ R
d+1 : 〈θ, y〉 < 0

}

do not
contain any points of {x1, . . . , xd} and the same holds for the corresponding spherical
caps S+ := H+

θ ∩ S
d and S− := H−

θ ∩ S
d . Moreover, either S+ or S− contains the

point xd+1, so that we set S0 ∈ {S+, S−} to be the spherical capwhich does not contain
xd+1. Eventually, by the continuity of measure, πd(S0) = 1

2 such that the definition
of the spherical dispersion thus yields

disp
(P ′; d) = 1

2
.

Using this together with (6), we obtain

disp
(Pn; d

) ≥ disp
(P ′; d) = 1

2
.

2nd case: n ≥ d+1:We proceed similar as in the previous case. Namely, we use the
hyperplane spanned by the points {x1, . . . , xd , 0}. In other words, there is a vector θ

such that the aforementioned hyperplane is given by Hθ := {y ∈ R
d+1 : 〈θ, y〉 = 0}.

As in the previous case we have the two half-spaces H+
θ and H−

θ as well as the
corresponding spherical caps S+ and S− that do not contain any point of {x1, . . . , xd}.
Recall thatπd(S+) = πd(S−) = 1/2.Nowby the pigeonhole principle,we can choose
S ∈ {S+, S−}, such that the spherical cap S contains at most �(n − d)/2� points from
{xd+1, . . . , xn}. Further, we decompose S in �(n − d)/2� + 1 spherical slices (given
as intersections of two spherical caps) of equal πd -measure. Formally, we just choose
θ⊥ ∈ S with 〈θ, θ⊥〉 = 0 (i.e., θ⊥ ∈ S

d ∩ Hθ ) and now define a rotation in the plane
spanned by θ and θ⊥; such a rotation by an angle α is given by the orthogonal matrix
A := id(d+1)×(d+1) +(cos(α) − 1)[θ ⊗ θ + θ⊥ ⊗ θ⊥], where id(d+1)×(d+1) denotes
the (d + 1) × (d + 1) identity matrix. Then we take α := π/� n−d

2 � and perform
successive rotations of Hθ at this angle, considering spherical slices obtained from the
intersection of the spherical cap S with the spherical cap obtained from intersecting
S
d with the rotation of Hθ . Then, again by the pigeon hole principle, we find at least

one of the slices, say S0 ∈ Sd , with S0 ∩ Pn = ∅, such that
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π(S0) ≥ 1

2(�(n − d)/2� + 1)
≥ 1

n − d + 2
.

Thus, by the definition of the spherical dispersion we have

disp
(Pn; d

) ≥ π(S0) ≥ 1

n − d + 2
.

3rd case: d + 1 < n ≤ 2d + 1: As in the 1st case we create an expanded point set
P ′ by adding points until we have exactly 2d + 1 and then we take (6) into account.
Without loss of generality let us assume that the first 2d points do not lie on a single
hyperplane through the origin, because this would lead us eventually back to the 1st
case. Let H1 be the hyperplane in Rd+1 determined by the points {0, x1, . . . , xd} and
let H2 be the hyperplane determined by {0, xd+1, . . . , x2d}. Assume that θ1, θ2 ∈ S

d

are the respective normals to these hyperplanes and choose those vectors such that
〈θ1, θ2〉 ≥ 0; in particular we know that |〈θ1, θ2〉| �= 1. Let us look at the corresponding
upper and lower open half-spaces, i.e., for i = 1, 2 define

H+
θi

:= {

y ∈ R
d+1 : 〈θi , y〉 > 0

}

, and

H−
θi

:= {

y ∈ R
d+1 : 〈θi , y〉 < 0

}

.

Define

S+,+ := H+
θ1

∩ H+
θ2

∩ S
d , S+,− := H+

θ1
∩ H−

θ2
∩ S

d ,

S+,− := H−
θ1

∩ H+
θ2

∩ S
d , S+,− := H−

θ1
∩ H−

θ2
∩ S

d .

One can easily see that the spherical slices S+,+, S+,−, S+,−, S+,− are pairwise dis-
joint and that for any S ∈ {S+,+, S+,−, S+,−, S+,−} we have S ∩ {x1, . . . , x2d} = ∅.
Moreover

πd

(

S+,− ∪ S+,+) = πd

(

S−,− ∪ S−,+) = 1

2
,

such that

• either πd(S+,−) ≥ 1/4 or πd(S+,+) ≥ 1/4; and
• either πd(S−,−) ≥ 1/4 or πd(S−,+) ≥ 1/4.

Hence, there is an S1 ∈ {S+,−, S+,+} and an S2 ∈ {S−,−, S−,+} with πd -measure
greater than or equal to 1/4. Since S1 and S2 are disjoint, we can choose S0 ∈ {S1, S2}
in such a way that it does not contain x2d+1, i.e., S ∩ P ′ = ∅.

Therefore

disp
(P ′; d) = sup

S∈Sd
S∩P ′=∅

πd(S) ≥ πd(S0) ≥ 1

4
,
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which together with (6) yields

disp
(Pn; d

) ≥ disp
(P ′; d) ≥ 1

4
.

4th case: n > 2d: Let H1 and H2 be as in the 3rd case. This gives rise to four
different spherical slices that do not contain any of the points {x1, . . . , x2d}, where
two of the slices, say S1, S2 ∈ Sd , have πd -measure of at least 1/4. Thus, by the
pigeonhole principle we find an S ∈ {S1, S2} that contains at most �(n − 2d)/2�
points of {xd+1, . . . , xn}. Now we decompose S into �(n−2d)/2�+1 spherical slices
of equal πd -measure (given as intersections of two spherical caps) and get by the
pigeonhole principle that there must exist a test set S0 ∈ Sd with S0 ∩ Pn = ∅ such
that

πd(S0) ≥ 1

4
· 1

�(n − 2d)/2� + 1
≥ 1

2n − 4d + 4
.

Therefore, we have

disp
(Pn; d

) = sup
S∈Sd

S∩Pn=∅
πd(S) ≥ πd(S0) ≥ 1

2n − 4d + 4
.

Eventually taking the maximum over the lower bounds derived in the previous four
cases, depending on the range where those are satisfied, yields the claimed estimate.
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