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Abstract
In this paper, we consider semilinear elliptic problems in a bounded domain � con-
tained in a given unbounded Lipschitz domain C ⊂ R

N . Our aim is to study how
the energy of a solution behaves with respect to volume-preserving variations of the
domain � inside C. Once a rigorous variational approach to this question is set, we
focus on the cases when C is a cone or a cylinder and we consider spherical sec-
tors and radial solutions or bounded cylinders and special one-dimensional solutions,
respectively. In these cases, we show both stability and instability results, which have
connections with related overdetermined problems.

Keywords Semilinear elliptic equations · Variational methods · Stability · Shape
optimization in unbounded domains

Mathematics Subject Classification 35J61 · 35B35 · 35B38 · 49Q10

1 Introduction

Let C ⊂ R
N , N ≥ 2, be an unbounded uniformly Lipschitz domain and let � ⊂ C

be a bounded Lipschitz domain with smooth relative boundary �� := ∂� ∩ C. More
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precisely, we assume that �� is a smooth manifold of dimension N − 1 with smooth
boundary ∂��. We set �1,� := ∂� \ �� and assume that HN−1(�1,�) > 0, where
HN−1 denotes the (N−1)-dimensional Hausdorff measure. Hence ∂� = ��∪�1,�∪
∂��.

We consider the following semilinear elliptic problem:

⎧
⎪⎪⎨

⎪⎪⎩

−�u = f (u) in �

u = 0 on ��

∂u

∂ν
= 0 on �1,�

(1.1)

where f : R → R is a locallyC1,α nonlinearity and ν denotes the exterior unit normal
vector to ∂�.

Let u� be a positive weak solution of (1.1) in the Sobolev space H1
0 (� ∪ �1,�),

which is the space of functions in H1(�) whose trace vanishes on ��. By standard
variational methods we have that under suitable hypotheses on f such a solution exists
and is a critical point of the energy functional

J (v) = 1

2

∫

�

|∇v|2 dx −
∫

�

F(v) dx, v ∈ H1
0 (� ∪ �1,�), (1.2)

where F(s) = ∫ s
0 f (τ ) dτ .

A classical example of a nonlinearity for which a positive solution exists for any
domain � in C is the Lane-Emden nonlinearity, namely

f (u) = u p, with

{
1 < p < N+2

N−2 if N ≥ 3,

1 < p < +∞ if N = 2.
(1.3)

In this case, u� can be obtained, for instance, by minimizing the functional J on the
Nehari manifold

N (�) = {v ∈ H1
0 (� ∪ �1,�) \ {0} : J ′(v)[v] = 0}.

Given the unbounded region C, an interesting question is to understand how the
energy J (u�) behaves with respect to variations of a domain � inside C. In particular,
one could ask whether the energy J (u�) increases or decreases by deforming � into
a domain �̃ sufficiently close to � and with the same measure.

Loosely speaking, one could consider the function� �→ T (�) = J (u�) and study
it in a suitable “neighborhood” of �. Under this aspect, domains � which are local
minima of T could be particularly interesting. This question could be attacked by
differentiating T (�) with respect to variations of � which leave the volume invariant
and studying the stability or instability of its critical points. However, since (1.1) is
a nonlinear problem and solutions of (1.1) are not unique in general, it is not clear a
priori how to well define the functional T (�).
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We will show in Sect. 2 that for nondegenerate solutions u� of (1.1) the energy
functional T (�) is well defined for domains obtained by small deformations of �

induced by vector fields which leave C invariant.
We remark that the study of the stationary domains of the energy functional T (�)

with a volume constraint is strictly related to the overdetermined problem obtained
from (1.1) by adding the condition that the normal derivative ∂u

∂ν
is constant on ��, see

Proposition 2.6. This is well-known for a Dirichlet problem in RN and when T (�) is
globally defined for all domains � ⊂ R

N (as in the case of the torsion problem, i.e.
f ≡ 1). It has been observed in [21] and [17] in the relative setting of the cone.
The existence or not of domains that are local minimizers of the energy and their

shapes obviously depend on the unbounded region C where the domains � are con-
tained. In this paper, we consider unbounded cones and cylinders, in which there
are some particular domains that, for symmetry or other geometric reasons, could be
natural candidates for being local minimizers of the energy.

Let us first describe the case when C is a cone 	D defined as

	D := {x ∈ R
N : x = tq, q ∈ D, t > 0}, (1.4)

where D is a smooth domain on the unit sphere SN−1.
In 	D we consider the spherical sector �D obtained by intersecting the cone with

the unit ball centered at the origin, i.e. �D = 	D ∩ B1. In �D we can consider a
radially symmetric solution uD of problem (1.1), for the nonlinearities f for which
they exist. Obviously, uD is a radial solution of the analogous Dirichlet problem in
the unit ball B1.

In Sect. 3 we show that, whenever uD is a nondegenerate solution of (1.1), then
the pair (�D, uD) is energy-stationary in the sense of Definition 2.4 and investigate
its “stability” as a critical point of the energy functional T , which is well defined for
small perturbations of �D . This means to investigate the sign of the quadratic form
corresponding to the second domain derivative of T (see Sects. 2 and 3).

Themain resultwe get is that the stability of (�D, uD)depends on thefirst nontrivial
Neumann eigenvalue λ1(D) of the Laplace-Beltrami operator −�SN−1 on the domain
D ⊂ S

N−1 which spans the cone. In particular, we obtain a precise threshold for
stability/instability which is independent of the nonlinearity, and on the radial positive
solution considered, whenever multiple radial positive solutions exist. Let us remark
that for several nonlinearities the radial positive solution is unique (see [19]). For
example, this is the case if f (u) = u p, p > 1.

To state precisely our result we need to introduce the first eigenvalue ν̂1 of the
following singular eigenvalue problem:

{
−z′′ − N−1

r z′ − f ′(uD)z = ν̂
r2
z in (0, 1)

z(1) = 0
(1.5)

This problem arises naturally when studying the spectrum of the linearized operator
−� − f ′(uD). We refer to Sect. 3 for more details.
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Theorem 1.1 Let 	D be the cone spanned by the smooth domain D ⊂ S
N−1, N ≥

3, and let λ1(D) be the first nonzero Neumann eigenvalue of the Laplace-Beltrami
operator −�SN−1 on D. Let uD be a radial positive solution of (1.1) in the spherical
sector �D. We have:

(i) if−ν̂1 < λ1(D) < N−1, then the pair (�D, uD) is an unstable energy-stationary
pair;

(ii) if λ1(D) > N − 1, then (�D, uD) is a stable energy-stationary pair.

Remark 1.2 The case N = 2 is special and in this case, the overdetermined torsion
problem has been completely solved in [20] using that the boundary of any cone in
dimension 2 is flat. In the nonlinear case, the condition N ≥ 3 arises from the study
of an auxiliary singular problem (see Proposition 3.12). It is important to observe
that the singular eigenvalue ν̂1 which appears in (i) is larger than −(N − 1) for
all autonomous nonlinearities f (u) (see [7, Proposition 3.4]). Thus the condition
λ1(D) ∈ (−ν̂1, N − 1) is consistent.

Remark 1.3 It is known that if D is a convex domain in S
N−1, then λ1(D) > N − 1

(see [12, Theorem 4.3] or [2, Theorem 4.1]) and the same holds if D is almost convex
( [5]). On the other side, examples of domains D in the sphere for which (i) holds are
provided in [17], Appendix A.

Let us comment on the meaning of Theorem 1.1. The statement (ii) will be proved
by showing that the quadratic form corresponding to the second derivative of the
energy functional, with a fixed volume constraint, is positive definite in all directions.
This means that the spherical sector locallyminimizes the energy among small volume
preserving perturbations of �D and of the corresponding radial solution uD .

On the contrary, when −ν̂1 < λ1(D) < N − 1, by (i) we have that the pair
(�D, uD) is unstable and therefore �D is not a local minimizer of the energy. This
means that there exist small volume preserving deformations of the spherical sector
�D which produce domains �t and solutions ut of (1.1) in �t whose energy J (ut )
is smaller than the energy J (uD) of the positive radial solution uD in the spherical
sector �D .

Moreover, observe that the function f = f (s) could satisfy suitable hypotheses
such that problem (1.1) has a unique positive solution u� in any domain � ⊂ 	D

(or more generally in � ⊂ C). This is the case, for example, when f ≡ 1, i.e., (1.1)
is a “relative” torsion problem. Then the energy functional T (�) = J (u�) is well
defined for any domain � ⊂ 	D . Hence we may ask whether a global minimum for
T exists, once the volume of � is fixed, and is given by the spherical sector �D . This
question has been addressed in [20], [21] and [17] when f ≡ 1, showing that �D is a
global minimizer if 	D is a convex cone ( [21]), as a consequence of an isoperimetric
inequality introduced in [18], see also [6, 14, 22]. Instead, in [17] it is proved that �D

is not a local minimizer whenever λ1(D) < N − 1, which is the same threshold we
get in Theorem 1.1 for general nonlinearities. It would be very interesting to find a
domain � in 	D which is a local minimizer for T , but not a global minimizer, at least
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for some nonlinearity for which T is globally defined. This seems to be a challenging
question.

The other example of an unbounded domain we consider in the present paper is a
half-cylinder, defined as

	ω := ω × (0,+∞) ⊂ R
N , (1.6)

where ω ⊂ R
N−1 is a smooth bounded domain. We denote the points in 	ω by

x = (x ′, xN ), x ′ ∈ ω. In this case, a geometrically simple domain we consider is the
bounded cylinder

�ω := {(x ′, xN ) ∈ R
N−1 : x ′ ∈ ω, 0 < xN < 1}. (1.7)

In �ω we consider a positive solution

uω(x) = uω(xN ) (1.8)

which is obtained by trivially extending to �ω a positive one-dimensional solution of
the problem

{
−u′′ = f (u) in (0, 1)

u′(0) = u(1) = 0
(1.9)

for a nonlinearity f for which such a solution exists.
Before stating the results concerning the stability of the pair (�ω, uω) we again

consider an auxiliary eigenvalue problem (but not singular):

{
−z′′ − f ′(uω)z = αz in (0, 1)

z′(0) = z(1) = 0
(1.10)

The problem (1.10) is considered in Sect. 4 to study the spectrum of the linearized
operator −� − f ′(uω). We denote by α1 the first eigenvalue of (1.10).

We start by stating a sharp stability/instability result for the torsion problem, i.e.,
taking f ≡ 1 in (1.1).

Theorem 1.4 Let	ω ⊂ R
N , N ≥ 2, and�ω be respectively, as in (1.6) and (1.7), and

let uω be the one-dimensional positive solution of (1.1) in �ω obtained by (1.9) for
f ≡ 1. Let λ1(ω) be the first nontrivial Neumann eigenvalue of the Laplace operator
−�RN−1 in the domain ω ⊂ R

N−1. Then there exists a number β ≈ 1, 439 such that

(i) if λ1(ω) < β, then the pair (�ω, uω) is an unstable energy-stationary pair;
(ii) if λ1(ω) > β, then the pair (�ω, uω) is a stable energy-stationary pair.

Note that the number β that gives the threshold for the stability is indepen-
dent of the dimension N . Its value is obtained by solving numerically the equation√

λ1 tanh(
√

λ1) − 1 = 0 (see (4.44) in the proof of Theorem 1.4).
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It is interesting to observe that the instability result of Theorem 1.4 is related to a
bifurcation theorem obtained in [13]. Indeed, if we consider the cylinder 	ω in R2, in
which case ω is simply an interval inR and�ω is a rectangle, a byproduct of Theorem
1.1 of [13] is the existence of a domain �̃ω in 	ω that is a small deformation of the
rectangle �ω and in which the overdetermined problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�u = 1 in �̃ω

u = 0 on ��̃ω
∂u
∂ν

= c < 0 on ��̃ω

∂u
∂ν

= 0 on �1,�̃ω

has a solution.
By looking at the proof of [13] and relating it to our instability result it is clear that

the bifurcation should occur when the eigenvalue λ1(ω) crosses the value β provided
by Theorem 1.4.

The proof of Theorem 1.4 can be derived from a general condition for the stability
of the pair (�ω, uω) in the nonlinear case, which is obtained in Theorem 4.11. The
proof of Theorem 4.11 involves auxiliary functions that appear naturally in the study
of derivatives of the energy functional T , see Sect. 4.

Let us remark that in the case when f ≡ 1 we succeed in obtaining the sharp bound
of Theorem 1.4 because the solution given by (1.8) and (1.9) is explicit:

uω(x) = uω(xN ) = 1 − x2N
2

,

and so are the auxiliary functions which are solutions of simple linear ODEs. This
allows us to use the condition of Theorem 4.11 to obtain Theorem 1.4.

The result of Theorem 1.4 gives a striking difference between the torsional energy
problem and the isoperimetric problem in cylinders. Indeed, Proposition 2.1 of [1]
shows that the only stationary cartesian graphs for the perimeter functional are the
flat ones. Instead, Theorem 1.4 (as well as the result of [13]) indicate that there are
domains for which the overdetermined problem relative to (1.1), with f ≡ 1, has a
solution and whose relative boundary is a non-flat cartesian graph.

For the semilinear problem, we obtain a stability result for a large class of nonlin-
earities as soon as the eigenvalue λ1(ω) is sufficiently large. Indeed, we have

Theorem 1.5 Let 	ω and �ω be as in (1.6) and (1.7), and let uω be a positive one-
dimensional solution of (1.1) in �ω. Let α1 be the first eigenvalue of (1.10) and let
λ1(ω) be as in Theorem 1.4. If the nonlinearity f satisfies f (0) = 0 and

λ1(ω) > max{−α1, ‖ f ′(uω)‖∞}, (1.11)

then the pair (�ω, uω) is a stable energy-stationary pair.

The condition (1.11) shows that the stability depends on an interplay between the
geometry of the cylinder 	ω (through the eigenvalue λ1(ω)) and the nonlinearity f .
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On the contrary, numerical evidence shows, for the Lane-Emden nonlinearity (1.3),
that, if λ1 is sufficiently close to −α1, instability occurs, see Remark 4.13.

Concerning the eigenvalue α1 in the bound (1.11), as well as the analogous one,
λ1(D) > −ν̂1, of Theorem 1.1, we point out that they are used in the proofs of both
theorems to deduce the positivity of some auxiliary functions. It is an open problem
to understand if they really play a role in the stability/instability result.

We delay further comments on the results and their proofs to the respective sections.
The paper is organized as follows. In Sect. 2 we study problem (1.1) in domains

� contained in a general unbounded set C. We define the energy functional and its
derivative with respect to variations of � which leave C invariant and preserve the
measure of �. This is done by considering nondegenerate solutions of (1.1) in �.

In Sect. 3 we consider the case when C is a cone 	D . In this setting we take
domains which are defined by smooth radial graphs over D, in particular we consider
the spherical sector �D and a corresponding radial solution uD for which we prove
the stability/instability result.

Finally in Sect. 4 we study the case of the cylinder	ω and prove the corresponding
stability/instability result for the pair (�ω, uω) when �ω is a bounded cylinder and
uω is as in (1.8) and (1.9).

2 Semilinear Elliptic Problems in Unbounded Sets

In this section we consider problem (1.1) in a bounded Lipschitz domain � contained
in an unbounded open set C which we assume to be (uniformly) Lipschitz regular.

Starting from a positive nondegenerate solution of (1.1) in�we show how to define
an energy functional for small variations of � which preserve the volume.

2.1 Nondegenerate Solutions

Let � ⊂ C be a bounded domain whose relative boundary �� = ∂� ∩ C is a smooth
manifold (with boundary). As in Sect. 1 we set �1,� = ∂� \ ��.

We consider a positiveweak solution u� of (1.1) in the Sobolev space H1
0 (�∪�1,�),

which is the subspace of H1(�) of functions whose trace vanishes on��. By standard
variational methods, such as constrained minimization, Mountain-Pass Theorem etc,
it is easy to exhibit many nonlinearities f = f (s) for which such a solution exists.
Moreover, with suitable assumptions on the growth of f we also have, by regularity
results, that u� is a classical solution of (1.1) inside � and at any regular point of ∂�,
and that u� is bounded (see also [7, Proposition 3.1]).

We assume that u� is nondegenerate, i.e., the linearized operator

Lu� = −� − f ′(u�) (2.1)

does not have zero as an eigenvalue in H1
0 (� ∪ �1,�) or, in other words, Lu� defines

an isomorphism between H1
0 (� ∪ �1,�) and its dual space. We consider small defor-

mations of � which leave C invariant and would like to show that the nondegeneracy

123



75 Page 8 of 43 D. G. Afonso et al.

of u� induces a local uniqueness result for solutions of (1.1) in the deformed domains.
Thus we take a one-parameter family of diffeomorphisms ξt , for t ∈ (−η, η), η > 0,
associated to a smooth vector field V such that V (x) ∈ Tx∂C for every x ∈ ∂Creg,
V (x) = 0 for x ∈ ∂C \ ∂Creg, and set �t := ξt (�), where Tx∂C denotes the tangent
space to ∂C at the point x , and ∂Creg denotes the regular part of ∂C. In particular
�0 = � and in order to simplify the notations we set

�t := ��t , �1,t := �1,�t . (2.2)

Proposition 2.1 Let u� be a positive nondegenerate solution of (1.1) which belongs
to W 1,∞(�) ∩ W 2,2(�). Let V be a smooth vector field and let ξt be the associated
family of diffeomorphisms. Then there exists δ > 0 such that for any t ∈ (−δ, δ) there
is a unique solution ut of the problem

⎧
⎪⎪⎨

⎪⎪⎩

−�u = f (u) in �t

u = 0 on �t

∂u

∂ν
= 0 on �1,t

(2.3)

in a neighborhood of the function u� ◦ ξ−1
t in the space H1

0 (�t ∪�1,t ). Moreover, the
map t �→ ut is differentiable.

Proof By using the diffeomorphism ξt we can pass from the space H1
0 (� ∪ �1,�) to

the space H1
0 (�t ∪ �1,t ). Indeed,

H1
0 (� ∪ �1,�) = {v ◦ ξt : v ∈ H1

0 (�t ∪ �1,t )}. (2.4)

Moreover, ut is a weak solution of (2.3), i.e.,

∫

�t

∇ut · ∇v dx −
∫

�t

f (ut )v dx = 0 ∀v ∈ H1
0 (�t ∪ �1,t )

if and only if the function ût = ut ◦ ξt ∈ H1
0 (� ∪ �1,�) satisfies

∫

�

(Mt∇ût ) · ∇wJt dx −
∫

�

f (̂ut )wJt dx = 0 ∀w ∈ H1
0 (� ∪ �1,�) (2.5)

where

Jt (x) = |det(Jac ξt (x))|

and

Mt = [Jac ξ−1
t (ξt (x))][Jac ξ−1

t (ξt (x))]T . (2.6)
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In other words, setting M̂t := Mt Jt , we have that ût is a solution of

− div(M̂t∇ût ) − f (̂ut )Jt = 0

in the space H1
0 (� ∪ �1,�). Now we consider the map

F : (−η, η) × H1
0 (� ∪ �1,�) → H1

0 (� ∪ �1,�)∗

defined as

F(t, v) = − div(M̂t∇v) − f (v)Jt . (2.7)

Since u� is a solution in � and ξ0 is the identity map we have

F(0, u�) = 0.

Notice that F is differentiable with respect to to v, and

∂vF(0, u�) = −� − f ′(u�). (2.8)

Indeed, for any h ∈ H1
0 (� ∪ �1,�) we have

F(t, v + εh) − F(t, v)

ε
= − div(M̂t (∇v + ε∇h)) − f (v + εh)Jt − (− div(M̂t∇v) − f (v)Jt )

ε

= − div(εM̂t∇h)

ε
− ( f (v + εh) − f (v))Jt

ε

→ − div(M̂t∇h) − f ′(v)Jt

as ε → 0. Hence F is differentiable and evaluating ∂vF at (0, u�) we obtain (2.8).
By the nondegeneracy assumption on the solution u�, we infer that (2.8) gives

an isomorphism between H1
0 (� ∪ �1,�) and H1

0 (� ∪ �1,�)∗. Then, by the Implicit
Function Theorem, there exists an interval (−δ, δ) and a neighborhood B of u� in
H1
0 (� ∪ �1,�) such that for every t ∈ (−δ, δ) there exists a unique function ût ∈

H1
0 (� ∪ �1,�) in B such that F(t, ût ) = 0, that is, ût is the unique solution (in B) of

(2.5). It follows that ut = ût ◦ ξ−1
t is the unique solution of (2.3) in a neighborhood

of u� ◦ ξ−1
t in H1

0 (�t ∪ �1,t ).
Finally, since the map t �→ ût is smooth, so is the map t �→ ut . In addition

ũ := d

dt

∣
∣
∣
∣
t=0

ut =
(

d

dt

∣
∣
∣
∣
t=0

ût

)

− 〈∇u�, V 〉. (2.9)

The proof is complete. ��
Note that, as for u�, ut is a classical solution of (2.3) in �t and on the regular part

of ∂�t . By Proposition 2.1 we have that the energy functional

T (�t ) = J (ut ) = 1

2

∫

�t

|∇ut |2 dx −
∫

�t

F(ut ) dx, (2.10)
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where F(s) = ∫ s
0 f (τ ) dτ , is well defined for all sufficiently small t . Observe that,

since ut is a solution to (2.3), we have

∫

�t

|∇ut |2 dx =
∫

�t

f (ut )ut dx,

so we can also write

T (�t ) = 1

2

∫

�t

f (ut )ut dx −
∫

�t

F(ut ) dx . (2.11)

In the next result we show that T is differentiable with respect to t and compute its
derivative at t = 0, that is, at the initial domain �.

Proposition 2.2 Assume that u� is a positive nondegenerate solution of (1.1) which
belongs to W 1,∞(�) ∩ W 2,2(�). Then

d

dt

∣
∣
∣
∣
t=0

T (�t ) = −1

2

∫

��

|∇u�|2〈V , ν〉 dσ. (2.12)

Proof Recall from Proposition 2.1 that t �→ ut is smooth and (2.9) holds. Differenti-
ating the equation −�ut = f (ut ) with respect to t we obtain

− �ũ = f ′(u�)̃u in �. (2.13)

Now observe that by the hypotheses on u� we have that

ũ + 〈∇u�, V 〉 =
(

d

dt

∣
∣
∣
∣
t=0

ût

)

∈ H1
0 (� ∪ �1,�), (2.14)

thus

ũ = −∂u�

∂ν
〈V , ν〉 on ��. (2.15)

Finally, since ξt maps ∂C into itself we have that, for all small t and x ∈ (∂C ∩ ∂�)reg

〈∇ut (ξt (x)), ν(ξt (x))〉 = 0.

Differentiating this relation with respect to t and evaluating at t = 0 we obtain

0 = 〈∇ũ(x), ν(x)〉 + dx (〈∇u�, ν〉)[V (x)],

where dx (〈∇u�, ν〉)[V (x)] is the differential of the function 〈∇u�, ν〉∣∣
(∂C∩∂�)reg

com-
puted at x , along V (x). Then, since 〈∇u�, ν〉 = 0 on (∂C ∩ ∂�)reg, and in view of
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(2.13), (2.15), we infer that ũ satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�ũ = f ′(u�)̃u in �

ũ = −∂u�

∂ν
〈V , ν〉 on ��

∂ ũ

∂ν
= 0 on �1,�

(2.16)

in the classical sense in the interior of � and on the regular part of ∂�.
Recalling (2.11) we can write

T (�t ) =
∫

�t

1

2
( f (ut )ut − F(ut )) dx .

Since t �→ f (ut )ut − F(ut ) is differentiable at t = 0, ∂� is Lipschitz and taking
into account that u� ∈ W 1,∞(�) ∩W 2,2(�), then, applying [16, Theorem 5.2.2], we
can compute the derivative with respect to t of the functional T obtaining that

d

dt

∣
∣
∣
∣
t=0

T (�t ) = 1

2

∫

�

( f ′(u�)̃uu� + f (u�)̃u) dx −
∫

�

f (u�)̃u dx

+
∫

∂�

(
1

2
f (u�)u� − F(u�)

)

〈V , ν〉 dσ

= 1

2

∫

�

(
f ′(u�)̃uu� − f (u�)̃u

)
dx

= 1

2

∫

�

((−�ũ)u� + �u�ũ) dx

= 1

2

∫

∂�

(

ũ
∂u�

∂ν
− u�

∂ ũ

∂ν

)

dσ

= −1

2

∫

��

|∇u�|2〈V , ν〉 dσ. (2.17)

The previous applications of the Divergence Theorem are justified by arguing as in
[20, Lemma 2.1], where the regularity hypothesis on u� comes into play. ��
Remark 2.3 It is not difficult to see that ũ is also a weak solution of (2.16). Indeed, let
ϕ ∈ C∞

c (�∪�1,�). Then, for all sufficiently small t , we also have ϕ ∈ C∞
c (�t ∪�1,t ).

Hence, since ut is a weak solution to (2.3), we have

0 =
∫

�t

∇ut∇ϕ dx −
∫

�t

f (ut )ϕ dx =
∫

�

∇ut∇ϕ dx −
∫

�

f (ut )ϕ dx . (2.18)

Now, as proved in [17, Claim (3.17)], it holds that

d

dt

∣
∣
∣
∣
t=0

∇ut = ∇ũ.
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Then, taking the derivative with respect to t in (2.18), evaluating at t = 0, and since
ϕ is arbitrary, we easily conclude.

Let us now consider domains � ⊂ C of fixed measure c > 0 and define

A := {� ⊂ C : � is admissible and |�| = c}, (2.19)

where admissible means that� ⊂ C is a bounded domain with smooth relative bound-
ary�� := ∂�∩C, ∂�� is a smooth (N−2)-dimensionalmanifold and�1,� := ∂�\��

is such thatHN−1(�1,�) > 0. We consider vector fields that induce deformations that
preserve the volume. More precisely we take a one-parameter family of diffeomor-
phisms ξt , t ∈ (−η, η), associated to a smooth vector field V such that V (x) ∈ Tx∂Creg
for all x ∈ ∂Creg, and satisfying the condition |�t | = |�|, for all t ∈ (−η, η), where
�t = ξt (�).

Definition 2.4 We say that the pair (�, u�) is energy-stationary under a volume con-
straint if

d

dt

∣
∣
∣
∣
t=0

T (�t ) = 0 (2.20)

for any vector field tangent to ∂C such that the associated one-parameter family of
diffeomorphisms preserves the volume.

Definition 2.5 Let (�, u�) be an energy-stationary pair under a volume constraint.We
say that it is stable if, for any volume-preserving vector field V , the second derivative

d2

dt2

∣
∣
∣
∣
t=0

T (�t )

is positive.

Since the computation of second domain derivatives is quite involved, we do not
present a general formula. Explicit expressions are given in Sects. 3 and 4, in the
special cases of cones and cylinders.

A characterization of energy-stationary pairs in C is the following:

Proposition 2.6 Let � ∈ A and assume that u� ∈ W 1,∞(�) ∩ W 2,2(�) is a nonde-
generate positive solution of (1.1). Then (�, u�) is energy-stationary under a volume
constraint if and only if u� satisfies the overdetermined condition |∇u�| = constant
on ��.

Proof Let ξt be an arbitrary admissible one-parameter family of diffeomorphisms and
let V be the associated vector field. Since the volume is preserved and V (x) ∈ Tx∂C
on ∂C,

0 = d

dt

∣
∣
∣
∣
t=0

|�t | =
∫

∂�

〈V , ν〉 dσ =
∫

��

〈V , ν〉 dσ. (2.21)
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If |∇u�| is constant on ��, then (�, u�) is energy-stationary, in view of (2.12) and
(2.21). On the other hand, if (�, u�) is energy stationary, then

∫

��

(|∇u�|2 − a)〈V , ν〉 dσ = 0 (2.22)

for every constant a and every admissible vector field V . Assume by contradiction that
|∇u�| is not constant on ��. Then there exists a compact set K ⊂ ��, with nonempty
interior part, such that |∇u�| is not constant on K . Take a nonnegative cutoff function
� such that � ≡ 1 in K , and choose

a =
∫

��
�|∇u�|2 dσ
∫

��
� dσ

. (2.23)

Then we can build a deformation from the vector field V = (|∇u�|2 − a)�ν, and in
this case, since (�, u�) is energy stationary, we would have

∫

K
(|∇u�|2 − a)2 dσ = 0, (2.24)

which contradicts the fact that |∇u�| is not constant on K . The proof is complete. ��
Remark 2.7 It is relevant to observe that all concepts introduced in this section apply to
the case when�1,� is empty, or, equivalently, when C = R

N . Thus all the above results
hold for Dirichlet problems in domains in the whole space. In this case it is known, by
Serrin’s Theorem (see [23]) that if a positive solution for the overdetermined problem

⎧
⎪⎪⎨

⎪⎪⎩

−�u = f (u) in �

u = 0 on ∂�

∂u

∂ν
= constant on ∂�

(2.25)

exists, then � is a ball. Therefore, in view of Proposition 2.6, it follows that the only
energy-stationary pairs inRN are (B, uB), where B is a ball and uB is a nondegenerate
positive solution.

Remark 2.8 We observe that all the results in this section hold true also for non-
degenerate sign-changing solutions u� to (1.1). However, since in the sequel we study
the stability in the case of positive solutions, we have considered only this case

3 The Case of the Cone

Let D ⊂ S
N−1 be a smooth domain on the unit sphere and let	D be the cone spanned

by D, which is defined as

	D := {x ∈ R
N : x = tq, q ∈ D, t > 0}. (3.1)
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In 	D we consider admissible domains �, in the sense of (2.19), that are strictly
star-shaped with respect to the vertex of the cone, which we choose to be the origin
0 in R

N . In other words, we consider domains whose relative boundary is the radial
graph in 	D of a function in C2(D,R). Hence for ϕ ∈ C2(D,R) we set

�ϕ := {x ∈ R
N : x = eϕ(q)q, q ∈ D} (3.2)

and consider the strictly star-shaped domain �ϕ defined as

�ϕ := {x ∈ R
N : x = tq, 0 < t < eϕ(q), q ∈ D}. (3.3)

To simplify the notation we set

�1,ϕ := �1,�ϕ = ∂�ϕ \ �ϕ.

3.1 Energy Functional for Star-Shaped Domains

In �ϕ we consider the semilinear elliptic problem

⎧
⎪⎪⎨

⎪⎪⎩

−�u = f (u) in �ϕ

u = 0 on �ϕ

∂u

∂ν
= 0 on �1,ϕ \ {0}

(3.4)

and assume throughout this section that a bounded positive nondegenerate solution
u�ϕ exists and belongs to W 1,∞(�ϕ) ∩ W 2,2(�ϕ). Then we can apply the results of
Sect. 2 and define the energy functional T as in (2.10) for small variations of �ϕ .
Since �ϕ is strictly star-shaped, this property also holds for the domains obtained by
small regular deformations. Thus it is convenient to parametrize the domains and their
variations by C2 functions defined on D. Hence, for v ∈ C2(D,R) and t ∈ (−η, η),
where η > 0 is a fixed number sufficiently small, we consider the domain variations
�ϕ+tv ⊂ 	D .

Let ξ : (−η, η) × 	D \ {0} → 	D \ {0} be the map defined by

ξ(t, x) = e
tv
(

x
|x |
)

x . (3.5)

Then ξ |�ϕ (t, ·) : �ϕ → �ϕ+tv is a diffeomorphism, whose inverse is

(ξ |�ϕ )
−1(t, x) = e

−tv
(

x
|x |
)

x = ξ(−t, x). (3.6)

By definition, ξ(t, x) ∈ ∂	D \ {0} for all (t, x) ∈ (−η, η) × (∂	D \ {0}) and ξ is the
flow associated to the vector field

V (x) = v

(
x

|x |
)

x, (3.7)
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since ξ(0, x) = x and

d

dt
ξ(t, x) = e

tv
(

x
|x |
)

v

(
x

|x |
)

x = V (ξ(t, x)).

The energy functional T in (2.10) becomes a functional defined on functions in
C2(D,R). More precisely, we define, for every v ∈ C2(D,R),

T (ϕ + tv) := T (�ϕ+tv) = J (uϕ+tv), (3.8)

for t ∈ (−δ, δ) with δ > 0 small, where

uϕ+tv := u�ϕ+tv

is the unique positive solution of (3.4) in the domain �ϕ+tv , in a neighborhood of
uϕ ◦ ξ(t, ·)−1.

We now compute the first derivative of the functional T at ϕ along a direction
v ∈ C2(D,R), i.e. the derivative with respect to t of (3.8) computed at t = 0.

Lemma 3.1 Let ϕ ∈ C2(D,R) and assume that uϕ is a bounded positive nondegen-
erate solution to (3.4) and that uϕ belongs to W 1,∞(�ϕ) ∩ W 2,2(�ϕ). Then for any
v ∈ C2(D,R) it holds that

T ′(ϕ)[v] = −1

2

∫

D

(
∂uϕ

∂ν
(eϕq)

)2

eNϕv dσ (3.9)

Proof The result follows from Proposition 2.2. Indeed, since the exterior unit normal
to �ϕ is given by

ν(x) =
x
|x | − ∇SN−1ϕ

(
x
|x |
)

√

1 +
∣
∣
∣∇SN−1ϕ

(
x
|x |
)∣
∣
∣
2
, x ∈ �ϕ,

where ∇SN−1 is the gradient in S
N−1 (see [17, Sect. 2]), then, from (3.7), it follows

that

〈V , ν〉 = |x |
√

1 +
∣
∣
∣∇SN−1ϕ

(
x
|x |
)∣
∣
∣
2
v

(
x

|x |
)

on�ϕ.

Hence, using the parametrization x = eϕ(q)q, for q ∈ D, taking into account that the
induced (N − 1)-dimensional area element on �ϕ is given by

dσ�ϕ = e(N−1)ϕ
√

1 + |∇SN−1ϕ|2 dσ,

and since uϕ = 0 on �ϕ , then, from (2.12), we readily obtain (3.9). ��
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The next step is to compute the second derivative of T at �ϕ with respect to
directions v,w ∈ C2(D,R)

Lemma 3.2 Let ϕ and uϕ be as in Lemma 3.1. Then for any v,w ∈ C2(D,R) it holds

T ′′(ϕ)[v,w] = −N

2

∫

D
eNϕvw

(
∂uϕ

∂ν
(eϕq)

)2

dσ

−
∫

D
eNϕv

∂uϕ

∂ν
(eϕq)

∂ ũw

∂ν
(eϕq) dσ

−
∫

D
eNϕvw

∂uϕ

∂ν
(eϕq)(D2uϕ(eϕq)eϕq) · ν dσ

+
∫

D
eNϕv

∂uϕ

∂ν
(eϕq)

∇uϕ(eϕq) · ∇SN−1w
√
1 + |∇SN−1ϕ|2 dσ

+
∫

D
eNϕ

(
∂uϕ

∂ν
(eϕq)

)2 ∇SN−1ϕ · ∇SN−1w

1 + |∇SN−1ϕ|2 dσ, (3.10)

where ũw = d
ds

∣
∣
s=0 uϕ+sw satisfies (2.16) with V (x) = w

(
x
|x |
)
x.

Proof The proof is the same as that of [17, Lemma 3.2] and therefore we omit it. ��
In view of Definition 2.4, we are interested in studying pairs (�ϕ, uϕ) which are

energy-stationary under a volume constraint. Thus we need to consider domains �ϕ

with a fixed volume. We recall that the volume of the domain defined by the radial
graph of a function ϕ ∈ C2(D,R) is given by

V(ϕ) :=V(�ϕ) = |�ϕ | = 1

N

∫

D
eNϕ dσ.

Simple computations yield, for v,w ∈ C2(D,R):

V ′(ϕ)[v] =
∫

D
eNϕv dσ, V ′′(ϕ)[v,w] = N

∫

D
eNϕvw dσ. (3.11)

Then, for c > 0 we define the manifold

M := {ϕ ∈ C2(D,R) : V(ϕ) = c}, (3.12)

whose tangent space at any point ϕ ∈ M is given by

TϕM =
{

v ∈ C2(D,R) :
∫

D
eNϕv dσ = 0

}

.

We restrict the energy functional to the manifold M and denote it by

I (ϕ) := T
∣
∣
M (ϕ).
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Clearly, if the pair (�ϕ, uϕ) is energy-stationary under a volume constraint, in the
sense of Definition 2.4, then ϕ ∈ M is a critical point of I . Hence, by the Theorem of
Lagrange multipliers, there exists μ ∈ R such that

T ′(ϕ) = μV ′(ϕ). (3.13)

Moreover, the following result holds true:

Proposition 3.3 Let ϕ ∈ M such that (�ϕ, uϕ) is energy-stationary under the volume
constraint. Then the Lagrange multiplier μ is negative and

∂uϕ

∂ν
= −√−2μ on �ϕ. (3.14)

Proof The proof is the same as in [17, Lemma 4.1] ��
For the second derivative of I we have

Lemma 3.4 Let ϕ ∈ M and let v,w ∈ TϕM. If (�ϕ, uϕ) is energy-stationary under
the volume constraint, then

I ′′(ϕ)[v,w] = T ′′(ϕ)[v,w] − μV ′′(ϕ)[v,w]. (3.15)

Proof The proof is the same as in [17, Lemma 4.3]. ��

3.2 Spherical Sectors and Radial Solutions

Given a cone 	D we consider the spherical sector �D obtained by intersecting 	D

with the unit ball B1. Obviously its relative boundary ��D is the radial graph obtained
by taking ϕ ≡ 0 in (3.2), which is in fact the domain D which spans the cone, that is
��D = D.

In the spherical sector �D we would like to consider a nondegenerate positive
radial solution uD := u�D of (3.4), hence we first recall conditions on the nonlinearity
f which ensure that a positive radial solution of (3.4) in �D exists. Observe that such
uD is just the restriction to �D of a positive radial solution of the Dirichlet problem

{
−�u = f (u) in B1

u = 0 on ∂B1
(3.16)

Proposition 3.5 Let f : R → R be a locally Lipschitz continuous function. Assume
that f satisfies one of the following:

(i) | f (s)| ≤ a|s|+b for all s > 0, where b > 0 and a ∈ (0, μ1(B1)), whereμ1(B1)

is the first eigenvalue of the operator −� in H1
0 (B1).

(ii) f : [0,+∞) → [0,+∞) is non-increasing.

(iii) • | f (s)| < c|s|p + d, where c, d > 0 and p ∈
(
1, N+2

N−2

)
if N ≥ 3, p > 1 if

N = 2;
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• f (s) = o(s) as s → 0;
• There exist γ > 2, κ > 0 such that for |s| > κ it holds

0 < γ F(s) < s f (s);

• f ′(s) >
f (s)

s
for all s > 0.

Then a radial positive solution of (3.16) in B1, and hence of (3.4) in �D, exists.

Proof In cases (i) and (ii), the corresponding functional

J (u) = 1

2

∫

B1
|∇u|2 dx −

∫

B1
F(u) dx

is coercive and weakly lower semicontinuous in the space H1
0,rad(B1), which is the

subspace of H1
0 (B1) of radial functions, and so it has a minimum which is a solution

of (3.16). In the case (iii) standard variational methods, such as minimization on the
Nehari manifold or Mountain Pass type theorems give a positive solution of (3.16),
which is then radial by the Gidas-Ni-Nirenberg Theorem (see [15]). We refer to [4]
and [9] for the details. ��

We point out that a radial solution uD is always a classical solution of (3.16) in B1,
and hence in �D . In particular, uD is bounded and uD ∈ C2(B1)

Now we would like to study the nondegeneracy of a radial solution uD of (3.4) in
�D .

As recalled in Sect. 2.1, we need conditions that ensure that zero is not an eigenvalue
of the linearized operator

LuD = −� − f ′(uD) (3.17)

in the space H1
0 (�D ∪ �1,0), where �1,0 = ∂�D \ ��D . Obviously, if the linearized

operator LuD admits only positive eigenvalues, then uD is nondegenerate. This is the
case of stable solutions of (3.4), which occur when f satisfies conditions (i) or (ii) in
Proposition 3.5, in particular, if f is a constant.

In general, LuD could have negative eigenvalues, so to detect the nondegeneracy of
uD we have to analyze the spectrum of the linear operator (3.17) in H1

0 (�D ∪ �1,0).
As we will see, the fact that �D is a spherical sector in the cone 	D (and not the ball
B1) plays a role.

The first remark is that zero is an eigenvalue for LuD if and only if it is an eigenvalue
for the following singular problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�ψ − f ′(uD)ψ = �̂

|x |2ψ in �D

ψ = 0 on D
∂ψ

∂ν
= 0 on �1,0 \ {0}.

(3.18)
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Indeed, since N ≥ 3, problem (3.18) is well-defined in the space H1
0 (�D ∪ �1,0)

due to Hardy’s inequality (see [7, Proposition 2.1], for (3.18), and also [3] for the
analogous Dirichlet problem).

Therefore we investigate the eigenvalues of (3.18). The advantage of considering
this singular eigenvalue problem is that, since uD is radial, its eigenfunctions can be
obtained by separation of variables, using polar coordinates in R

N . To this aim we
denote by {λ j (D)} j∈N, the eigenvalues of the Laplace-Beltrami operator −�SN−1 on
the domain D with Neumann boundary conditions. It is well-known that

0 = λ0(D) < λ1(D) ≤ λ2(D) ≤ . . . , (3.19)

and the only accumulation point is +∞. Then we consider the following singular
eigenvalue problem in the interval (0, 1):

⎧
⎨

⎩

−z′′ − N−1
r z′ − f ′(uD)z = ν̂

r2
z in (0, 1)

z(1) = 0
(3.20)

It is shown in [3] (see also [7]) that nonpositive eigenvalues for (3.20) can be defined.
They are a finite number and we denote them by ν̂i , i = 1, . . . , k. It is immediate to
check that the eigenvalues ν̂i are the eigenvalues of (3.18) which correspond to radial
eigenfunctions. In particular, we consider the first eigenvalue ν̂1 of (3.20), referring to
[3] for a variational definition and a study of its main properties.

By using (3.18)-(3.20) we obtain the following result:

Proposition 3.6 The problem (3.18) admits zero as an eigenvalue if and only if there
exist i ∈ N

+ and j ∈ N such that

ν̂i + λ j (D) = 0. (3.21)

Proof The proof follows by [7, Proposition 2.6], where it is proved that the nonpositive
eigenvalues of (3.18) are obtained by summing the eigenvalues of the one-dimensional
problem (3.20) and the Neumann eigenvalues of −�SN−1 on D. We refer also to [11]
for another approach, which consists in approximating the ball by annuli in order to
avoid the singularity at 0. ��

From Proposition 3.6 we get the following sufficient condition for a radial solution
uD to be nondegenerate.

Corollary 3.7 A radial solution uD of (3.4) in �D (i.e. for ϕ = 0) is nondegenerate if
both the following conditions are satisfied:

(I) the eigenvalue problem (3.20) does not admit zero as an eigenvalue;
(II) λ1(D) > −ν̂1.

Proof From Condition (I) we have

ν̂i �= 0 ∀i ∈ N
+, (3.22)
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which means that zero is not an eigenvalue of (3.18) with a corresponding radial
eigenfunction. This, in turn, is equivalent to saying that zero is not a “radial” eigenvalue
of the linearized operator (3.17), i.e., uD is a radial solution of (3.4) in �D (or of
(3.16) in B1) which is nondegenerate in the subspace H1

0,rad(�D ∪�1,0), which is the

subspace of H1
0 (�D ∪ �1,0) given by radial functions.

Now, since λ0(D) = 0, λ1(D) > 0 and since ν̂1 is the smallest eigenvalue of
(3.20), then, from Condition (II) and (3.22) we infer that the sum (3.21) can never
be zero. Hence, thanks to Proposition 3.6, we have that zero is not an eigenvalue of
(3.18) and so cannot be an eigenvalue for the linearized operator (3.17) in the whole
H1
0 (�D ∪ �1,0), i.e. uD is a non-degenerate solution to (3.4) in �D . ��

Remark 3.8 Condition (I) in Corollary 3.7, i.e., the nondegeneracy of uD in the space
H1
0,rad(�D ∪ �1,0), is satisfied by positive radial solutions of (3.4) corresponding to

many kinds of nonlinearities.
It holds if f satisfies conditions (i) or (ii) of Proposition 3.5, because in this case

all the eigenvalues of (3.17) and of (3.18) are positive. It then follows that (II) holds
as well. More precisely, in the case (i), since 0 < a < μ1(B1), the first eigenvalue of
LuD is positive, so

λ0(D)
︸ ︷︷ ︸

=0

+ν̂1 > 0. (3.23)

In the case (ii), since f ′(uD) ≤ 0, it follows that ν̂1 > 0.
Among the nonlinearities satisfying condition (iii) of Proposition 3.5 we could

consider f (u) = u p, 1 < p < N+2
N−2 , N ≥ 3. Then it is known that the positive

radial solution of (3.16) is unique and nondegenerate (see [8, 15]), so (I) holds. It is
also well-known that for this nonlinearity it holds ν̂1 < 0 and ν̂1 is the only negative
eigenvalue of (3.20), because uD can be obtained by the Mountain Pass Theorem
or by minimization on the Nehari manifold and thus it has Morse index one. Then
the validity of (II) depends on the cone, since it depends on λ1(D). However, once
p is fixed, since ν̂1 does not depend on the cone, it is obvious that, by varying D,
there are many cones for which (II) holds. Moreover, it has been proved in [7] that
ν̂1 > −(N − 1) for every autonomous nonlinearity, so that whenever λ1(D) > N − 1
all radial solutions of (3.4) are nondegenerate.

3.3 Stability of (ÄD, uD)

Let us first observe that if uD is a positive nondegenerate radial solution of (3.4) for
ϕ = 0, belonging to W 1,∞(�D) ∩ W 2,2(�D), then (�D, uD) is energy-stationary in
the sense of Definition 2.4. Indeed, since uD is radial, we have that ∂uD

∂ν
= constant

on �0 = D and thanks to Proposition 2.6 we easily conclude.
To investigate the stability of (�D, uD) we analyze the quadratic form correspond-

ing to the second derivative I ′′(ϕ) at ϕ = 0. Fixing the constant c in the definition of
M (see (3.12)) as c = |�D|, we have that the tangent space to M at ϕ = 0 is given by
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T0M =
{

v ∈ C2(D,R) :
∫

D
v dσ = 0

}

. (3.24)

Writing uD(r) = uD(|x |), we denote by u′
D and u′′

D the derivatives of uD with
respect to r , so that

u′
D(1) = ∂uD

∂ν

∣
∣
∣
∣
D

, u′′
D(1) = [(D2uDν) · ν]|D. (3.25)

By Hopf’s Lemma we know that u′
D(1) < 0 and actually

u′
D(1) = −√−2μD, (3.26)

where μD denotes the Lagrange multiplier in the case ϕ = 0, see (3.13).
For v ∈ T0M , we will denote by ũv the solution of

⎧
⎪⎪⎨

⎪⎪⎩

−�ũv − f ′(uD )̃uv = 0 in �D

ũv = −u′
D(1)v on D

∂ ũv

∂ν
= 0 on �1,0 \ {0}

. (3.27)

Let us remark that for every q ∈ D the outer unit normal vector ν(q) is precisely
q, hence (3.27) corresponds to (2.16) in �D .

Note that, since uD is a nondegenerate radial solution, then the weak solution ũv

of (3.27) is unique for every v.
Our next result shows that the quadratic form corresponding to the second derivative

of I at ϕ = 0 has a simple expression.

Lemma 3.9 For any v ∈ T0M it holds

I ′′(0)[v, v] = −u′
D(1)

(∫

D
v
∂ ũv

∂ν
dσ + u′′

D(1)
∫

D
v2 dσ

)

, (3.28)

where ũv is the solution of (3.27).

Proof From Lemma 3.2, (3.11) and Lemma 3.4, with w = v, by simple substitutions
and elementary computations we obtain:

I ′′(0)[v, v] = −N

2

∫

D
(u′

D(1))2v2 dσ −
∫

D
u′
D(1)v

∂ ũv

∂ν
dσ

−
∫

D
u′
D(1)v2(D2uDν) · ν dσ − NμD

∫

D
v2 dσ. (3.29)

Since ũv = −u′
D(1)v on D, by (3.25) and (3.26), we deduce that

− N

2

∫

D
(u′

D(1))2v2 dσ = −N

2

∫

D
ũ2v dσ ; (3.30)
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− NμD

∫

D
v2 dσ = N

2

∫

D
ũ2v dσ. (3.31)

Then (3.28) follows by substituting (3.30)-(3.31) into (3.29). ��
To investigate the stability of (�D, uD) as an energy stationary pair for I we need

to study the solution ũv of (3.27), for any v ∈ T0M (that is, for functions with mean
value zero on D). As we will see, it will be enough to consider only functions v which
are eigenfunctions of the Laplace-Beltrami operator−�SN−1 withNeumann boundary
conditions on D. Hence we consider the eigenvalue problem

⎧
⎨

⎩

−�ψ = λψ on D
∂ψ

∂ν
= 0 on ∂D

(3.32)

and denote its eigenvalues as in (3.19), counted with multiplicity: 0 = λ0(D) <

λ1(D) ≤ λ2(D) ≤ . . .. The corresponding L2-normalized eigenfunctions are denoted
by {ψ j } j∈N, with

∫

D ψ2
j dσ = 1, ψ0 = constant and

∫

D ψ j dσ = 0 for j ≥ 1.

Theorem 3.10 Let j ≥ 1 and ũ j be the unique solution of (3.27) for v = ψ j . Then,
writing ũ j = ũ j (r , q), the function

h j (r) =
∫

D
ũ j (r , q)ψ j (q) dσ, r ∈ (0, 1) (3.33)

satisfies

⎧
⎪⎨

⎪⎩

−h′′
j − N − 1

r
h′
j − f ′(uD)h j = −λ j (D)

r2
h j in (0, 1)

h j (1) = −u′
D(1)

(3.34)

Proof Since the proof is the same for all j , we drop the index and the dependence on
D and write simply h, ψ and λ.

It is immediate to check that h(1) = −u′
D(1). Moreover, since we can bring the

radial derivative inside the integral on D, for every r ∈ (0, 1] we have:

−h′′(r) − N − 1

r
h′(r) =

∫

D

(

−ũrr (r , q) − N − 1

r
ũr (r , q)

)

ψ(q) dσ

=
∫

D

(

−�ũ + 1

r2
�SN−1 ũ

)

ψ dσ

=
∫

D
f ′(uD(r))̃uψ dσ + 1

r2

∫

D
(�SN−1 ũ)ψ dσ. (3.35)

Now, on the one hand,

∫

D
f ′(uD(r))̃uψ dσ = f ′(uD(r))h(r). (3.36)
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On the other hand, applying Green’s formula, taking into account the Neumann con-
ditions on ψ and ũ, we infer that

1

r2

∫

D
(�SN−1 ũ)ψ dσ = 1

r2

∫

D
ũ�SN−1ψ dσ

= − λ

r2

∫

D
ũψ dσ

= − λ

r2
h(r). (3.37)

Substituting (3.36) and (3.37) into (3.35) we conclude the proof. ��
Remark 3.11 Note that with ũ j and h j as in Theorem 3.10 we have that

ũ j (r , q) = h j (r)ψ j (q).

Indeed, the boundary conditions are clearly satisfied by this function, and it holds

−�(h jψ j ) = −h′′
jψ j − (N − 1)

r
h′
jψ j − h j

r2
�SN−1ψ j

= f ′(uD)h jψ j − λ j (D)

r2
h jψ j + λ j (D)

r2
h jψ j

= f ′(uD)h jψ j .

Proposition 3.12 Let N ≥ 3. For any j ≥ 1 we have

∫ 1

0
r N−3h2j dr < +∞ (3.38)

and

∫ 1

0
r N−1(h′

j )
2 dr < +∞. (3.39)

Moreover, h j ∈ L∞(0,∞) and h j (0) = 0.

Proof Again, for simplicity, we drop the index j . Since ũ ∈ H1(�D) (see Sect. 2),
writing ũ = ũ(r , q) and recalling that ψ is a L2(D)-normalized solution to (3.32), we
get that

+∞ >

∫

�D

|∇ũ|2 dx

=
∫ 1

0
r N−1(h′)2

∫

D
ψ2 dσ dr +

∫ 1

0
r N−3h2

∫

D
|∇SN−1ψ |2 dσ dr

=
∫ 1

0
r N−1(h′)2 dr + λ

∫ 1

0
r N−3h2 dr ,
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which proves (3.38) and (3.39). Once we have these estimates, we can proceed as in
[10, Lemma A.9] to get the boundness of h and h(0) = 0. ��
Proposition 3.13 Let λ j (D), j ≥ 1 be a nontrivial Neumann eigenvalue of −�SN−1

on D. Assume that

−ν̂1 < λ j (D),

where ν̂1 is the smallest eigenvalue of (3.20). Then for the solution h j of (3.34) it holds
that

h j > 0 in (0, 1).

Proof Let z1 be an L2-normalized first eigenfunction of (3.20). From [3, Sect. 3.1] we
know that z1 does not change sign.

Writing the equations satisfied by h j and z1 in Sturm-Liouville form we have:

(r N−1h′
j )

′ + r N−1( f ′(uD) − r−2λ j (D))h j = 0,

(r N−1z′1)′ + r N−1( f ′(uD) + r−2ν̂1)z1 = 0.

By Proposition 3.12 we know that h j (0) = 0 and h j (1) = −u′
D(1) > 0.

Now, assume by contradiction that h j changes sign in (0, 1). Then there would
exist r0 ∈ (0, 1) such that h j (0) = 0. Since −ν̂1 < λ j (D), then, by the Sturm-
Picone Comparison Theorem it would follow that z1 has a zero in (0, r0). This is a
contradiction, because z1 does not change sign. Hence the only possibility is that h j

is strictly positive in (0, 1). ��
We are ready to prove our main result for problem (1.1) in the case of the cone, i.e.,

Theorem 1.1, which is a sharp instability/stability result for the pair (�D, uD).

Proof of Theorem 1.1

Let us fix the domain D which spans the cone, so that we denote λ1(D) simply by λ1.
For (i), let ũ1 = h1ψ1 be the solution of (3.27) with v = ψ1. Then

I ′′(0)[ψ1, ψ1] = −u′
D(1)(h′

1(1) + u′′
D(1)). (3.40)

Putting (3.34) in Sturm-Liouville form we get

− (r N−1h′
1)

′ − r N−1 f ′(uD)h1 = −r N−3λ1h1. (3.41)

On the other hand, writing −�uD = f (uD) in polar coordinates and differentiating
with respect to r = |x | we get

−(u′
D)′′ − N − 1

r
(u′

D)′ − f ′(uD)u′
D = −N − 1

r2
u′
D,
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which in Sturm-Liouville form is

− (r N−1u′′
D)′ − r N−1 f ′(uD)u′

D = −r N−3(N − 1)u′
D . (3.42)

Multiplying (3.41) by u′
D and integrating by parts in (r̄ , 1) we get that

∫ 1

r̄
r N−1h′

1u
′′
D dr − (r N−1h′

1u
′
D)
∣
∣1
r̄ −

∫ 1

r̄
r N−1 f ′(uD)h1u

′
D dr

= −λ1

∫ 1

r̄
r N−3h1u

′
D dr .

(3.43)

Similarly, multiplying (3.42) by h1 and integrating by parts we deduce that

∫ 1

r̄
r N−1h′

1u
′′
D dr − (r N−1h1u

′′
D)
∣
∣1
r̄ −

∫ 1

r̄
r N−1 f ′(uD)u′

Dh1 dr

= −(N − 1)
∫ 1

r̄
r N−3u′

Dh1 dr .
(3.44)

Notice that, in view of Proposition 3.12, the right-hand sides of (3.43), (3.44) remain
finite when taking the limit as r̄ → 0+. In addition, we claim that

lim
r̄→0+ r

N−1h′
1(r̄)u

′
D(r̄) = 0. (3.45)

Indeed, integrating (3.41) and taking the absolute value we obtain

∣
∣
∣
∣

∫ 1

r̄
−(r N−1h′

1)
′ dr

∣
∣
∣
∣ =

∣
∣
∣r̄ N−1h′

1(r̄) − h′
1(1)

∣
∣
∣

≤
∫

r̄
r N−1| f ′(uD)|h1 dr +

∫ 1

0
r N−3λ1h1 dr

≤ C1

for some C1 > 0. Hence

lim sup
r̄→0+

r̄ N−1|h′
1(r̄)| ≤ C2 (3.46)

for some C2 > 0, and thus, since limr̄→0+ u′
D(r̄) = 0, (3.45) follows.

Now, subtracting (3.44) from (3.43) and taking the limit as r̄ → 0+, then, thanks
to (3.45) and since h1(0) = 0, h1(1) = −u′

D(1), we obtain

− u′
D(1)(h′

1(1) + u′′
D(1)) = (N − 1 − λ1)

∫ 1

0
r N−3h1u

′
D dr . (3.47)

Since λ1 > −ν̂1, then, by Proposition 3.13, we have that h1 > 0 in (0, 1). On the
other hand u′

D < 0 in (0, 1) and λ1 < N − 1 by assumption. Hence by (3.40) and
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(3.47) we obtain

I ′′(0)[ψ1, ψ1] < 0,

which proves (i).
For (ii), we choose an orthonormal basis (ψ j ) j of L2(D) made of normalized

eigenfunctions of (3.32). Then any v ∈ T0M can be written as

v =
∞∑

j=1

(v, ψ j )ψ j ,

where (·, ·) denotes the inner product in L2(D). We assume without loss of generality
that

∫

D v2 dσ = 1. Let ũ j be the solution of (3.27) with v = ψ j , then we can check
that

ṽ =
∞∑

j=1

(v, ψ j )̃u j

is the solution of (3.27). As observed in Remark 3.11, ũ j (r , q) = h j (r)ψ j (q) for
every j ∈ N, so

∂ ũ j

∂ν
(1, q) = h′

j (1)ψ j (q) on D.

By an argument analogous to the one presented in the proof of (i), we have that if
k > j , then h′

k(1)≥h′
j (1) and in fact h′

k(1) > h′
j (1) if k > j are such that λk > λ j .

Indeed, writing the equations for h j , hk , multiplying the first one by hk and the
second one by h j , integrating by parts and subtracting we get

−u′
D(1)(h′

k(1) − h′
j (1)) = (−λ j + λk)

∫ 1

0
r N−3hi h j ≥ 0.

Exploiting the orthogonality of the basis (ψ j ) j and exploiting (3.47) we obtain

I ′′(0)[v, v] = −u′
D(1)

⎛

⎝

∫

D

⎛

⎝
∞∑

j=1

(v, ψ j )ψ j

⎞

⎠

( ∞∑

k=1

(v, ψ j )h
′
k(1)ψk

)

dσ + u′′
D(1)

∫

D
v2 dσ

⎞

⎠

= −u′
D(1)

⎛

⎝

⎛

⎝
∞∑

j=1

(v, ψ j )
2h′

j (1)

⎞

⎠+ u′′
D(1)

⎞

⎠

≥ −u′
D(1)

⎛

⎝h′
1(1)

⎛

⎝
∞∑

j=1

(v, ψ j )
2

⎞

⎠+ u′′
D(1)

⎞

⎠

= −u′
D(1)(h′

1(1) + u′′
D(1))

= (N − 1 − λ1)

∫ 1

0
r N−3h1u

′
D dr > 0,
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because h1 > 0 in (0, 1), u′
D < 0 in (0, 1) and λ1 > N − 1 by assumption. The proof

is complete. ��

Remark 3.14 As already pointed out in Remark 2.7, in the case when C = R
N , the

couples (B, uB), where B is a ball and uB is a positive nondegenerate radial solution,
are the only energy-stationary pairs. Thus it remains to study the stability of (B, uB)

as critical point of the energy functional T . This can be done by looking at the problem
as the case of a cone spanned by the domain D = S

N−1.
As observed in Remark 1.2, the first eigenvalue ν̂1 of the singular eigenvalue prob-

lem (3.20) is always larger than −(N − 1). On the other hand, it is known that the
first nontrivial eigenvalue of the Laplace-Beltrami operator on the whole SN−1 is pre-
cisely N −1. Then any radial solution uB is nondegenerate and we obtain that the pair
(B, uB) is a semistable stationary-point.

4 The Case of the Cylinder

Let ω ⊂ R
N−1 be a smooth bounded domain and let 	ω be the half-cylinder spanned

by ω, namely

	ω := ω × (0,+∞).

We denote by x = (x ′, xN ) the points in 	ω, where x ′ = (x1, . . . , xN−1) ∈ ω and
xN ≥ 0.

In analogywith the case of the cone,we consider domainswhose relative boundaries
are the cartesian graphs of functions in C2(ω). More precisely, for ϕ ∈ C2(ω) we set

�ϕ := {(x ′, xN ) ∈ 	ω : xN = eϕ(x ′)}

and consider domains of the type

�ϕ = {(x ′, xN ) ∈ 	ω : xN < eϕ(x ′)}.

Finally, let

�1,ϕ := (∂�ϕ \ �ϕ).

Observe that the outer unit normal vector on �ϕ at a point (x ′, eϕ(x ′)) is given by

ν = νϕ(x ′) = (−eϕ(x ′)∇RN−1ϕ(x ′), 1)
√
1 + |eϕ(x ′)∇RN−1ϕ(x ′)|2 , (4.1)

where ∇RN−1 denotes the gradient with respect to the variables x1, . . . , xN−1.
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4.1 Energy Functional in Cylindrical Domains

We study the semilinear elliptic problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�u = f (u) in �ϕ

u = 0 on �ϕ

∂u

∂ν
= 0 on �1,ϕ

(4.2)

and consider bounded positive weak solutions of (4.2) in the Sobolev space H1
0 (�ϕ ∪

�1,ϕ), which is the space of functions in H1(�ϕ) whose trace vanishes on �ϕ .
As before, we assume that a bounded nondegenerate positive solution uϕ of (4.2)

exists and belongs toW 1,∞(�ϕ)∩W 2,2(�ϕ), so that we can apply the results of Sect.
2.

We consider variations of the domain �ϕ in the class of cartesian graphs of the
type �ϕ+tv , for v ∈ C2(ω), which amounts to consider a one-parameter family of
diffeomorphisms ξ : (−η, η) × 	ω → 	ω of the type

ξ(t, x) = (x ′, etv(x ′)xN ),

whose inverse, for any fixed t ∈ (−η, η), is given by

ξ(t, x)−1 = (x ′, e−tv(x ′)xN ) = ξ(−t, x).

This one-parameter family of diffeomorphisms is generated by the vector field

V (x) = (0′, v(x ′)xN ), (4.3)

where 0′ := (0, . . . , 0) ∈ R
N−1. Indeed, ξ(0, x) = x for every x ∈ 	ω,

dξ

dt
(t, x) = (0′, etv(x ′)v(x ′)xN ) = V (ξ(t, x)) ∀(t, x) ∈ (−η, η) × 	ω

and ξ(t, x) ∈ ∂	ω, for all (t, x) ∈ (−η, η) × ∂	ω. We also observe that, in view of
(4.1), it holds

〈V , ν〉 =
〈

(0′, veϕ),
(−eϕ∇RN−1ϕ, 1)
√
1 + |eϕ∇RN−1ϕ|2

〉

= veϕ

√
1 + |eϕ∇RN−1ϕ|2 on�ϕ. (4.4)

The energy functional T defined in (2.10) becomes a functional depending only on
functions in C2(ω). More precisely, for every v ∈ C2(ω), in view of Proposition 2.1,
there exists δ > 0 sufficiently small such that for all t ∈ (−δ, δ)

T (ϕ + tv) = T (�ϕ+tv) = J (uϕ+tv),
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is well defined, where uϕ+tv := u�ϕ+tv is the unique positive solution of (4.2) in the

domain �ϕ+tv , in a neighborhood of uϕ ◦ ξ−1
t .

By the results of Sect. 2 we know that the map t �→ uϕ+tv is differentiable at t = 0,
and the derivative ũ is a weak solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�ũ = f ′(uϕ)̃u in �ϕ

ũ = −∂uϕ

∂ν

veϕ

√
1 + |eϕ∇RN−1ϕ|2 on �ϕ

∂ ũ

∂ν
= 0 on �1,ϕ

(4.5)

We now compute the first derivative of T at �ϕ , i.e., for t = 0, with respect to
variations v ∈ C2(ω).

Lemma 4.1 Let ϕ ∈ C2(ω) and assume that uϕ is a positive nondegenerate solution
of (4.2) which belongs to W 1,∞(�) ∩ W 2,2(�). Then, for any v ∈ C2(ω) we have

T ′(ϕ)[v] = −1

2

∫

ω

(
∂uϕ

∂ν
(x ′, eϕ)

)2

veϕ dx ′. (4.6)

Proof The proof is similar to that of Lemma 3.1. It suffices to observe that for the
parametrization of �ϕ given by x = (x ′, eϕ(x ′)), for x ′ ∈ ω, the induced (N − 1)-
dimensional area element on �ϕ is expressed by

dσ�ϕ =
√

1 + |eϕ∇RN−1ϕ|2 dx ′.

Then the result follows immediately from Proposition 2.2, taking into account (4.4).
��

Lemma 4.2 Let ϕ and uϕ be as in Lemma 4.1. Then for any v,w ∈ C2(ω) it holds

T ′′(ϕ)[v,w] = − 1

2

∫

ω

(
∂uϕ

∂ν
(x ′, eϕ)

)2

eϕvw dx ′

−
∫

ω

∂ ũw

∂ν
(x ′, eϕ)

∂uϕ

∂ν
(x ′, eϕ)eϕv dx ′

−
∫

ω

∂uϕ

∂ν
(x ′, eϕ)[(D2uϕ(x ′, eϕ)(0′, eϕ)) · ν]vw dx ′

+
∫

ω

∂uϕ

∂ν
(x ′, eϕ)e2ϕv

∇uϕ(x ′, eϕ) · (w∇RN−1ϕ + ∇RN−1w, 0)
√
1 + |eϕ∇RN−1ϕ|2 dx ′

+
∫

ω

(
∂uϕ

∂ν
(x ′, eϕ)

)2

e3ϕv
∇RN−1ϕ · (w∇RN−1ϕ + ∇RN−1w)

1 + |eϕ∇RN−1ϕ|2 dx ′,

(4.7)

where ũw is the solution of (4.5), with w in the place of v.
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Proof Let v,w ∈ C2(ω). By definition, Lemma 4.1 and using the Leibniz rule, we
have:

T ′′(ϕ)[v,w] = d

ds

∣
∣
∣
∣
s=0

(

−1

2

∫

ω

(
∂uϕ+sw

∂ν
(x ′, eϕ+sw)

)2

eϕ+swv dx ′
)

= −
∫

ω

eϕv
∂uϕ

∂ν

d

ds

∣
∣
∣
∣
s=0

(
∂uϕ+sw

∂ν
(x ′, eϕ+sw)

)

dx ′

− 1

2

∫

ω

(
∂uϕ

∂ν
(x ′, eϕ)

)2

eϕvw dx ′. (4.8)

To conclude it suffices to compute the derivative in the first integral of the right-hand
side of (4.8). To this end we observe that

d

ds

∣
∣
∣
∣
s=0

(
∂uϕ+sw

∂ν
(x ′, eϕ+sw)

)

= d

ds

∣
∣
∣
∣
s=0

(∇uϕ+sw(x ′, eϕ+sw) · νϕ+sw
)

= d

ds

∣
∣
∣
∣
s=0

(∇uϕ+sw(x ′, eϕ+sw)) · νϕ

+ ∇uϕ(x ′, eϕ) · d

ds

∣
∣
∣
∣
s=0

νϕ+sw (4.9)

where νϕ is given by (4.1) and

νϕ+sw = (−eϕ+sw∇RN−1(ϕ + sw), 1)
√
1 + |eϕ+sw∇RN−1(ϕ + sw)|2 .

Now, for the first term in the right-hand side of (4.9), thanks to the argument presented
in [17, Lemma 3.2], we have

d

ds
(∇uϕ+sw) = ∇

(
d

ds
uϕ+sw

)

,

and thus we obtain

d

ds

∣
∣
∣
∣
s=0

(∇uϕ+sw(x ′, eϕ+sw)) = ∇ũw(x ′, eϕ) + D2uϕ(x ′, eϕ)(0′, weϕ). (4.10)

On the other hand, for the last term in (4.9), we check that

d

ds

∣
∣
∣
∣
s=0

νϕ+sw = − eϕ

√
1 + |eϕ∇RN−1ϕ|2 (∇RN−1w + w∇RN−1ϕ, 0)

− (eϕ)2(w|∇RN−1ϕ|2 + ∇RN−1ϕ · ∇RN−1w)

1 + |eϕ∇RN−1ϕ|2 νϕ (4.11)

Finally, substituting (4.9)–(4.11) into (4.8) we obtain (4.7). ��
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As in Sect. 3, in view of Definition 2.4, we consider a volume constraint. In the
case of cartesian graphs, the volume of the domain �ϕ associated to ϕ ∈ C2(ω) is
expressed by

V(ϕ) = |�ϕ | =
∫

ω

eϕ dx ′. (4.12)

The functional V is of class C2 and for every v,w ∈ C2(ω) it holds

V ′(ϕ)[v] =
∫

ω

eϕv dx ′, V ′′(ϕ)[v,w] =
∫

ω

eϕvw dx ′. (4.13)

For c > 0 we define the manifold

M :=
{

ϕ ∈ C2(ω) :
∫

ω

eϕ dx ′ = c

}

,

whose tangent space at any point ϕ ∈ M is given by

TϕM =
{

v ∈ C2(ω) :
∫

ω

eϕv dx ′ = 0

}

. (4.14)

We consider the restricted functional

I (ϕ) = T |M (ϕ), ϕ ∈ M .

As before, if ϕ ∈ M is a critical point for I , then there exists a Lagrange multiplier
μ ∈ R such that

T ′(ϕ) = μI ′(ϕ).

Results analogous to Proposition 3.3 and Lemma 3.4 hold with the same proofs. In
particular, we point out that for an energy stationary pair (�ϕ, uϕ) under a volume
constraint the function uϕ has constant normal derivative on �ϕ . For the reader’s
convenience, we restate here these results.

Proposition 4.3 Let ϕ ∈ M and let (�ϕ, uϕ) be energy-stationary under a volume
constraint. Then the Lagrange multiplier μ is negative and

∂uϕ

∂ν
= −√−2μ on �ϕ.

Proof The same as in [17, Lemma 4.1] ��
For the second derivative of I we have
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Lemma 4.4 Let ϕ ∈ M and let v,w ∈ TϕM. If (�ϕ, uϕ) is energy-stationary under a
volume constraint, then

I ′′(ϕ)[v,w] = T ′′(ϕ)[v,w] − μV ′′(ϕ)[v,w]. (4.15)

Proof The same as in [17, Lemma 4.3] ��

4.2 The Case' ≡ 0 and One-Dimensional Solutions

When ϕ ≡ 0 (that is, �ϕ = �0 is the intersection of the cylinder with the plane
xN = 1), the domain �0 is just the finite cylinder

�ω := ω × (0, 1).

Then, if f is a locally Lipschitz continuous function, any weak solution of (4.2) is also
a classical solution up to the boundary, i.e., it belongs toC2(�ω). This follows by stan-
dard regularity theory by considering the boundary conditions and that ∂�ω is made
by the union of three (N − 1)-dimensional manifolds (with boundary) intersecting
orthogonally (see also [20, Proposition 6.1]).

In �ω, for suitable nonlinearities, we can find a solution of (4.2) in �ω which
depends only on xN in the following way: first, we can apply some variational method
to find a solution u of the ordinary differential equation

{
−u′′ = f (u) in (0, 1)

u′(0) = u(1) = 0
(4.16)

and then set

uω(x ′, xN ) := u(xN ), (x ′, xN ) ∈ �ω.

Recall that, in one dimension, there is no critical Sobolev exponent for the embedding
into L p. So one example of a suitable nonlinearity is f (u) = u p with 1 < p < ∞,
or those of Proposition 3.5 with the only caution that in (iii), for N ≥ 2 we can take
1 < p < ∞.

For our purposes we need to consider one-dimensional solutions uω of (4.2) in �ω

that are nondegenerate, which means that the linearized operator

Luω = −� − f ′(uω)
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does not admit zero as an eigenvalue. In other words, uω is nondegenerate if there are
no nontrivial weak solutions φ ∈ H1

0 (�ω ∪ �1,0) of the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�φ − f ′(uω)φ = 0 in �ω

φ = 0 on �0

∂φ

∂ν
= 0 on �1,0

(4.17)

To analyze the spectrum of Luω it is convenient to consider the following auxiliary
one-dimensional eigenvalue problem:

{
−z′′ − f ′(uω)z = αz in (0, 1)

z′(0) = z(1) = 0
(4.18)

We denote the eigenvalues of (4.18) by αi , for i ∈ N. Clearly, they correspond to
the eigenvalues of the linear operator

L̂uω(z) = −z′′ − f ′(uω)z (4.19)

with the boundary conditions of (4.18).
We also consider the following Neumann eigenvalue problem in the domain ω ⊂

R
N−1:

⎧
⎨

⎩

−�RN−1ψ = λψ in ω

∂ψ

∂ν∂ω

= 0 on ∂ω
(4.20)

where −�RN−1 = −∑N−1
i=1

∂2

∂x2i
is the Laplacian in R

N−1, i.e. with respect to the

variables x1, . . . , xN−1. We denote its eigenvalues by

0 = λ0(ω) < λ1(ω) ≤ λ2(ω) ≤ . . . . (4.21)

It is well-known that λ j (ω) ↗ +∞ as j → ∞ and that the normalized eigenfunctions
form a basis (ψ j ) j of the tangent space T0M defined in (4.14) when ϕ ≡ 0.

Lemma 4.5 The spectra of Luω , L̂uω and−�RN−1 with respect to the above boundary
conditions are related by

σ(Luω) = σ(L̂uω) + σ(−�RN−1). (4.22)

Proof We begin by showing that σ(Luω) ⊂ σ(L̂uω) + σ(−�RN−1). Let τ ∈ σ(Luω)

and let φ ∈ H1
0 (�ω ∪�1,0) be an associated eigenfunction, that is, φ is a weak solution
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of

⎧
⎪⎪⎨

⎪⎪⎩

−�φ − f ′(uω)φ = τφ in �ω

φ = 0 on �0

∂φ

∂ν
= 0 on �1,0

(4.23)

As observed at the beginning of this subsection for the the nonlinear problem (4.2), by
the shape of �ω and the boundary conditions, since f ∈ C1,α(R), by standard elliptic
regularity, we have that φ is a classical solution of (4.23) in �ω.

Letλbe an eigenvalue of−�RN−1 with homogeneousNeumannboundary condition
on ω and let ψ be an associated eigenfunction. Define

z(xN ) :=
∫

ω

φ(x ′, xN )ψ(x ′) dx ′. (4.24)

Then, differentiating with respect to xN , using Green’s formulas and the boundary
conditions we have

−z′′ =
∫

ω

− ∂2φ

∂x2N
ψ dx ′

=
∫

ω

(−�φ + �RN−1φ)ψ dx ′

=
∫

ω

f ′(uω)φψ dx ′ +
∫

ω

τφψ dx ′ +
∫

ω

�RN−1ψφ dx ′

= f ′(uω)z + τ z − λz.

Thus (τ − λ) ∈ σ(L̂uω) and hence τ = (τ − λ) + λ ∈ σ(L̂uω) + σ(−�RN−1).
To show the reverse inclusion, let α ∈ σ(L̂uω), λ ∈ σ(−�RN−1) and let z, ψ be,

respectively, the associated eigenfunctions. Setting for x = (x ′, xN ) ∈ �ω

φ(x ′, xN ) := z(xN )ψ(x ′),

we note that

−�φ = −z′′ψ − �RN−1ψz

= f ′(uω)zψ + αzψ + λzψ

= f ′(uω)φ + (α + λ)φ. (4.25)

Finally, by construction, we easily check that φ satisfies the boundary conditions of
(4.23). As a consequence, we deduce that

α + λ ∈ σ(Luω)

and this concludes the proof. ��
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Corollary 4.6 The problem (4.17) admits zero as an eigenvalue if and only if there exist
i ∈ N

+ and j ∈ N such that

αi + λ j (ω) = 0

holds.

Proof It follows immediately from Lemma 4.5. ��
Corollary 4.7 A one-dimensional solution of (4.2) is nondegenerate if both the follow-
ing conditions are satisfied:

(i) the eigenvalue problem (4.18) in (0, 1) does not admit zero as an eigenvalue;
(ii) λ1(ω) > −α1.

Proof Analogous to the proof of Corollary 3.7. ��

4.3 Stability/Instability of the Pair (Ä!, u!)

In this subsection, we prove a general stability/instability theorem for the pair
(�ω, uω). We begin with some preliminary results.

Firstly, we recall that when ϕ ≡ 0 the tangent space T0M is given by

T0M =
{

v ∈ C2(ω) :
∫

ω

v dx ′ = 0

}

. (4.26)

Since uω depends on xN only, in order to simplify the notations, we denote with a
prime the derivative with respect to xN , and thus we write

u′
ω(xN ) = u′

ω(x ′, xN ) := ∂uω

∂xN
(x ′, xN ).

Then, for v ∈ T0M , we have that the function ũ (see (4.5)), which belongs to H1(�ω),
is a weak solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�ũ = f ′(uω)̃u in �ω

ũ = −u′
ω(1)v on �0

∂ ũ

∂ν
= 0 on �1,0

(4.27)

As before, by elliptic regularity we know that ũ is regular in �ω, and thus it is a
classical solution. We also note that, by the nondegeneracy of uω, there exists a unique
solution of (4.27).

Lemma 4.8 Let λ j > 0 be any positive eigenvalue for the Neumann problem (4.20)
and let ψ j be any normalized eigenfunction associated to λ j . Let ũ j ∈ H1(�ω) be
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the solution of (4.27) with v = ψ j . Then the function

h j (xN ) :=
∫

ω

ũ j (x
′, xN )ψ j (x

′) dx ′, xN ∈ (0, 1] (4.28)

satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−h′′
j − f ′(uω)h j = −λ j h j in (0, 1)

h j (1) = −u′
ω(1)

h′
j (0) = 0

(4.29)

Proof For simplicity of notation we drop the index j and simply write ũ, h, ψ and λ

instead of ũ j , h j , ψ j and λ j .
First observe that, as ũ = −u′

ω(1)ψ on �0, we have

h(1) =
∫

ω

−u′
ω(1)ψ2 dx ′ = −u′

ω(1).

Now, differentiating with respect to xN under the integral sign and using Green’s
formula, taking into account the boundary conditions, we have

−h′′ =
∫

ω

− ∂2ũ

∂x2N
ψ dx ′ =

∫

ω

(−�ũ + �RN−1 ũ)ψ dx ′

=
∫

ω

f ′(uω)̃uψ dx ′ +
∫

ω

�RN−1 ũψ dx ′

= f ′(uω)h +
∫

ω

ũ�RN−1ψ dx ′

= f ′(uω)h − λ

∫

ω

ũψ dx ′ = f ′(uω)h − λh.

Finally, exploiting the Neumann condition for ũ on �1,0, we check that h′(0) = 0.
��

Remark 4.9 Note that for ũ j , h j as in Lemma 4.8 we have that

ũ j (x
′, xN ) = h j (xN )ψ j (x

′).

Indeed:

−�(h j (xN )ψ j (x
′)) = −h j (xN )�RN−1ψ j (x

′) − h′′
j (xN )ψ j (x

′)
= λ j h j (xN )ψ j (x

′) + f ′(uω)h j (xN )ψ j (x
′) − λ j h j (xN )ψ j (x

′)
= f ′(uω)̃u j .
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Moreover, by (4.29) and (4.20), the function h jψ j satisfies the boundary conditions
in (4.27), so that h jψ j is the unique solution of (4.27) and thus coincides with ũ j .

Proposition 4.10 Let j ≥ 1, λ j be a positive Neumann eigenvalue of −�RN−1 in ω,
and let h j be the solution of (4.29). Assume that −α1 < λ j , where α1 is the smallest
eigenvalue of (4.18). Then it holds that

h j > 0 in [0, 1].

Proof We can reflect h j by parity with respect to 0 to have a solution of the linear
problem

{−h′′
j − f ′(uω)h j + λ j h j = 0 in (−1, 1)

h j (−1) = h j (1) = −u′
ω(1) > 0.

(4.30)

By reflection and (4.18), the first eigenvalue of the linear operator

z′′ − f ′(uω)z in (0, 1)

with the boundary condition z(−1) = z(1) = 0 is exactly α1. Therefore the first
eigenvalue of the linear operator

L̃uωg = −g′′ − f ′(uω)g + λ j g

with zero boundary condition in (−1, 1) is β1 = α1 + λ j .
It is well-known that L̃uω satisfies the maximum principle whenever β1 > 0, i.e.,

when λ j > −α1. Therefore, by (4.30), the function h j satisfies h j ≥ 0 in (−1, 1),
and by the strong maximum principle we conclude that h j > 0 in (−1, 1). ��

We can now state and prove the main result of this section.

Theorem 4.11 Let ω ⊂ R
N−1 be a smooth bounded domain. Let f ∈ C1,α

loc (R) such
that there exists a positive one-dimensional non-degenerate solution uω of (1.1) in
�ω, and let h1 be the solution to (4.29) with j = 1. Let λ1 = λ1(ω) be the first
non-trivial eigenvalue of −�RN−1 with homogeneous Neumann conditions, let α1 be
the first-eigenvalue of (1.10) and let ρ be the number defined by

ρ := − f (uω(0))h1(0) − λ1

∫ 1

0
h1u

′
ω dxN . (4.31)

Assume that λ1 > −α1. Then

(i) if ρ < 0, then (�ω, uω) is an unstable energy-stationary pair;
(ii) if ρ > 0, then (�ω, uω) is a stable energy stationary pair.
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Proof We first observe that since ∂uω

∂ν
is constant on �0 then, by the analogous of

Proposition 3.3 for cylinders, we infer that the pair (�ω, uω) is an energy-stationary
pair.

Let w ∈ T0M and assume without loss of generality that
∫

ω
w2 dx ′ = 1. In order

to prove (i)-(i i) we first determine a suitable expression for I ′′(0)[w,w]. To this end,
for each j ∈ N

+, let ũ j be the solution of (4.27) with v = ψ j and let h j be the solution
of (4.29). Then we can write

w =
∞∑

j=1

(w,ψ j )ψ j

where (·, ·) is the inner product in L2(ω). Moreover, we can check that

ũ =
∞∑

j=1

(w,ψ j )̃u j

is the solution of (4.27) corresponding tow. Then, takingϕ = 0 in Lemma 4.2, exploit-
ing Lemma 4.4, taking into account that by Proposition 4.3 the Lagrange multiplier μ

is given by

μ = −1

2
(u′

ω(1))2,

by Remark 4.9 and observing that ∇uω ⊥ (∇RN−1w, 0), we infer that

I ′′(0)[w,w] = −1

2

∫

ω

(u′
ω(1))2w2 dx ′

−
∫

ω

u′
ω(1)

⎛

⎝
∞∑

j=1

(w,ψ j )h
′
j (1)ψ j

⎞

⎠

( ∞∑

k=1

(w,ψk)ψk

)

dx ′

−
∫

ω

u′
ω(1)u′′

ω(1)w2 dx ′ + 1

2
(u′

ω(1))2
∫

ω

w2 dx ′

= −u′
ω(1)

∫

ω

⎛

⎝
∞∑

j=1

(w,ψ j )
2h′

j (1)ψ
2
j

⎞

⎠ dx ′ − u′
ω(1)u′′

ω(1)

Finally, since uω is a solution to (4.16) we deduce that

I ′′(0)[w,w] = −u′
ω(1)

∫

ω

⎛

⎝
∞∑

j=1

(w,ψ j )
2h′

j (1)ψ
2
j

⎞

⎠ dx ′ + u′
ω(1) f (0). (4.32)

In particular, choosing w = ψ1 and plugging it into (4.32) we infer that

I ′′(0)[ψ1, ψ1] = −u′
ω(1)h′

1(1) + u′
ω(1) f (0). (4.33)
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Multiplying the equation in (4.29) (with j = 1) by u′
ω and integrating by parts we get

−(h′
1u

′
ω)
∣
∣1
0 +

∫ 1

0
h′
1u

′′
ω dxN =

∫ 1

0
( f ′(uω) − λ1)h1u

′
ω dxN .

Exploiting (4.16), integrating by parts and taking into account that h1(1) = −u′
ω(1)

we obtain

−h′
1(1)u

′
ω(1) −

∫ 1

0
h′
1 f (uω) dxN

=
∫ 1

0
f ′(uω)u′

ωh1 dxN − λ1

∫ 1

0
h1u

′
ω dxN

= ( f (uω)h1)
∣
∣1
0 −

∫ 1

0
f (uω)h′

1 dxN − λ1

∫ 1

0
h1u

′
ω dxN

= − f (0)u′
ω(1) − f (uω(0))h1(0) −

∫ 1

0
f (uω)h′

1 dxN − λ1

∫ 1

0
h1u

′
ω dxN

(4.34)

Hence, we deduce that

− h′
1(1)u

′
ω(1) = − f (0)u′

ω(1) − f (uω(0))h1(0) − λ1

∫ 1

0
h1u

′
ω dxN (4.35)

In the end, from (4.33), (4.35) and recalling (4.31), we obtain

I ′′(0)[ψ1, ψ1] = − f (uω(0))h1(0) − λ1

∫ 1

0
h1u

′
ω dxN = ρ.

Therefore, if ρ < 0 then I ′′(0)[ψ1, ψ1] < 0, i.e., (�ω, uω) is an unstable energy-
stationary pair, and this proves (i).

Let us prove (ii). Let w ∈ T0M such that
∫

ω
w2 dx ′ = 1. From (4.32) we know

that I ′′(0)[w,w] = −u′
ω(1)

∫

ω

(∑∞
j=1(w,ψ j )

2h′
j (1)ψ

2
j

)
dx ′ + u′

ω(1) f (0). Thanks

to the assumption λ1 > −α1 the following holds true.
Claim: if k > j , then

h′
k(1)≥h′

j (1), (4.36)

and actually h′
k(1) > h′

j (1) if λk > λ j .
Indeed, by definition hk , h j satisfy, respectively, the following:

− h′′
k − f ′(uω)hk = −λkhk, (4.37)

− h′′
j − f ′(uω)h j = −λ j h j . (4.38)

Multiplying (4.37) by h j and integrating on (0, 1) we obtain

∫ 1

0
−h′′

k h j dxN =
∫ 1

0
h′
kh

′
j dxN − (h′

kh j )
∣
∣1
0
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=
∫ 1

0
f ′(uω)h j hk dxN − λk

∫ 1

0
h j hk dxN (4.39)

Similarly, multiplying (4.38) by hk , integrating on (0, 1) and then subtracting the result
from (4.39), we obtain

− (h′
kh j − h′

j hk)(1) = (λ j − λk)

∫ 1

0
h j hk dxN ≤ 0, (4.40)

because h j > 0 and hk > 0 (see Proposition 4.10, which holds true for any j ∈ N
+

because λ1 > −α1). Now, since h j (1) = hk(1) = −uω(1), then by (4.40) we deduce
that

u′
ω(1)(h′

k(1) − h′
j (1)) ≤ 0.

Hence, as u′
ω(1) < 0, Claim (4.36) easily follows.

Now, thanks to (4.32) and Claim (4.36), recalling again that u′
ω(1) < 0 and exploit-

ing (4.35) it follows that

I ′′(0)[w,w] ≥ −u′
ω(1)h′

1(1)
∫

ω

⎛

⎝
∞∑

j=1

(w,ψ j )
2ψ2

j

⎞

⎠ dx ′ + u′
ω(1) f (0)

= −u′
ω(1)h′

1(1) + u′
ω(1) f (0)

= − f (uω(0))h1(0) − λ1

∫ 1

0
h1u

′
ω dxN = ρ.

(4.41)

Hence, if ρ > 0 we have that I ′′(0)[w,w] > 0 for all w ∈ T0M , i.e., (�ω, uω) is a
stable energy-stationary pair, and this proves (ii). The proof is complete. ��

As a simple corollary of Theorem 4.11 we can now prove the stability/instability
result of Theorem 1.4, which concerns the case of the torsional energy, i.e. when
f ≡ 1.

Proof of Theorem 1.4

When f ≡ 1 the eigenvalue problem (4.18) has only positive eigenvalues and therefore
the condition λ1 > −α1 is automatically satisfied. The only solution of

⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1 in �ω

u = 0 on �0

∂u

∂ν
= 0 on �1,0

(4.42)
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is the one-dimensional positive function given by

uω(xN ) = 1 − x2N
2

. (4.43)

Clearly, as u′
ω(1) = −1 and f ≡ 1, then for any j ∈ N

+ (4.29) reduces to

⎧
⎪⎪⎨

⎪⎪⎩

−h′′
j + λ j h j = 0 in (0, 1)

h j (1) = −u′
ω(1)

h′
j (0) = 0

whose unique solution is given by

h j (xN ) = 1

cosh(
√

λ j )
cosh(

√
λ j xN ).

In particular, taking j = 1 and exploiting (4.43) we can compute explicitly the number
ρ in (4.31), namely

ρ = − 1

cosh(
√

λ1)
+ λ1

cosh(
√

λ1)

∫ 1

0
cosh(

√
λ1xN )xN dxN .

Integrating by parts we readily check that

∫ 1

0
cosh(

√
λ1xN )xN dxN = sinh(

√
λ1)√

λ1
− cosh(

√
λ1)

λ1
+ 1

λ1
,

and thus we obtain

ρ = √
λ1 tanh(

√
λ1) − 1. (4.44)

Let us consider the function g : [0,+∞[→ R, defined by g(t) = √
t tanh(

√
t) − 1.

Clearly g(0) = −1 and g(t) → +∞ as t → +∞ and by monotonicity we infer that
g has a unique zero in ]0,+∞[. We denote it by β and from the previous argument
and (4.44) we infer that ρ < 0 if and only if λ1 < β. Then, by Theorem 4.11-(i) we
get that (�ω, uω) is an unstable energy-stationary pair, and this proves (i).

Analogously, as ρ > 0 if and only if λ1 > β, from Theorem 4.11-(ii) we obtain
that (�ω, uω) is a stable energy-stationary pair. The proof is complete. ��

We conclude this section with the proof of Theorem 1.5.

Proof of Theorem 1.5

Let w ∈ T0M such that
∫

ω
w2 dx ′ = 1. Since λ1 > −α1, we can argue as in the

proof of Theorem 4.11-(ii), in particular, from the first two lines of (4.41), taking into
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account that, by assumption, f (0) = 0, we have

I ′′(0)[w,w] ≥ −u′
ω(1)h′

1(1). (4.45)

Now, since h′′
1 = (λ1 − f ′(uω))h1 in (0, 1) and h1 > 0 in [0, 1] by Proposition 4.10,

then, thanks to the assumption λ1 > supxN∈(0,1) | f ′(uω(xN ))| we infer that h′′
1 > 0 in

[0, 1]. In particular, as h′
1(0) = 0 we deduce that

h′
1(1) > 0. (4.46)

Finally, combining (4.45) and (4.46) we obtain that I ′′(0)[w,w] > 0 for allw ∈ T0M ,
which means that (�ω, uω) is a stable energy-stationary pair. ��
Remark 4.12 We notice that, if f is a non-negative monotone increasing function,
as in the case of the Lane-Emden nonlinearity (1.3), then by the Gidas-Ni-Nirenberg
theorem ( [15]) and by themonotonicity of f we infer that supxN∈(0,1) | f ′(uω(xN ))| =
f ′(uω(0)). Thus the stability condition of Theorem 1.5 reduces to

λ1 > f ′(uω(0)).

Remark 4.13 In the case of the Lane-Emden nonlinearity f (u) = u p, at least for some
integer values of p, it is possible to compute the solution uω numerically, as well as
the eigenvalue α1 and the function h1 for different values of λ1(ω). This allows to
compute ρ numerically, so that, plotting the result for ρ as a function of λ1(ω), we
obtain a region of instability for λ1(ω) close to −α1.
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