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Abstract
The John–Nirenberg spaces J Np are generalizations of the space of bounded mean
oscillation BMO with J N∞ = BMO . Their vanishing subspaces V J Np and C J Np

are defined in similar ways as V MO and CMO , which are subspaces of BMO . As
our main result, we prove that V J Np and C J Np coincide by showing that certain
Morrey type integrals of J Np functions tend to zero for small and large cubes. We
also show that J Np,q(R

n) = L p(Rn)/R, if p = q.

Keywords John–Nirenberg space · Vanishing subspace · Morrey type integral ·
Euclidean space · Bounded mean oscillation · John–Nirenberg inequality

Mathematics Subject Classification 42B35 · 46E30

1 Introduction

In 1961, John andNirenberg studied thewell-known spaceof boundedmeanoscillation
BMO and proved the profound John–Nirenberg inequality for BMO functions [10].
The space BMO plays a vital role in harmonic analysis and it has been studied very
extensively. For example, a celebrated result of Fefferman and Stein states that BMO
can be characterized as the dual space of the real Hardy space H1 [7]. In [10], John
and Nirenberg also defined a generalization of BMO , which is now known as the
John–Nirenberg space, or J Np, with a parameter 1 < p < ∞, see Definition 2.3
below. In addition, they proved the John–Nirenberg inequality for J Np functions, see
Theorem 2.4 below. From this theorem, it follows that J Np(Q0) ⊂ L p,∞(Q0), where
Q0 ⊂ R

n is a bounded cube. It is also easy to see that L p(Q0) ⊂ J Np(Q0). Both of
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these inclusions are strict; however, this is far from trivial. An example of a function
in J Np \ L p was discovered in 2018 [4]. Thus, the space J Np is a nontrivial space
between L p and L p,∞. However, there are still many unanswered questions related
to the study of John–Nirenberg spaces.

Various John–Nirenberg type spaces have attracted attention in recent years, includ-
ing the dyadic John–Nirenberg space [11], the congruent John–Nirenberg space [9,
22], the John–Nirenberg–Campanato space [17, 19], and the sparse John–Nirenberg
space [5]. The John–Nirenberg space can also be defined with medians instead of
using integral averages [13]. Hurri-Syrjänen et al. established a local-to-global result
for the space J Np(�), where � ⊂ R

n is an open set [8] and Marola and Saari found
similar results for J Np in the setting of metric measure spaces [12].

The spaces V MO and CMO are well-known vanishing subspaces of BMO . They
were introduced by Sarason [16] and Neri [14], respectively. The aforementioned
duality phenomenon of Fefferman and Stein was later complemented by Coifman
and Weiss who showed that H1 is the dual space of CMO [3]. Recently, there has
been research on the J Np counterparts of these spaces, which are denoted by V J Np

and C J Np [20]. Brudnyi and Brudnyi showed that V J Np is a predual to the Hardy-
type space HKp′ among other duality results for a family of related spaces V kλ

pq on a
bounded cube [2]. The space HKp′ was first introduced by Dafni et al. as a predual
to the space J Np [4]. Here, p′ is the conjugate index of p, i.e., 1/p + 1/p′ = 1.
It follows directly from the definitions of V J Np and C J Np that L p ⊆ C J Np ⊆
V J Np ⊆ J Np. Moreover, examples in [18] demonstrate that L p �= C J Np and
V J Np �= J Np. However, it has been an open question whether the set V J Np \
C J Np is nonempty, see [18, 20]. As our main result, we show that V J Np and C J Np

coincide.
Our method is to study Morrey or weak L p type integrals

|Q| 1p −1
ˆ
Q

| f |, (1.1)

where Q is a cube. We prove that if f ∈ J Np, then these integrals tend to zero both
when |Q| → 0 and when |Q| → ∞. See Theorems 3.5 and 3.8 below for precise
statements of these results. Note that L p functions have this property, but weak L p

functions do not. From Theorem 3.5, it follows easily that C J Np = V J Np, see
Corollary 3.7.

In Sect. 2 we briefly study the more general version of the John–Nirenberg type
spaces J Np,q(X), where the L1-norm of the oscillation term is replaced with the Lq -
norm where q ≥ 1. This generalization has been studied in [4, 21, 22]. It has turned
out that in case X is a bounded cube, the J Np,q norm is equivalent with the J Np norm
(for q < p) or Lq norm (for q ≥ p). In case X = R

n , the J Np,q norm is equivalent
with the J Np norm (for q < p), and if q > p, the space contains only functions
that are constant almost everywhere. We complete this picture by showing that in the
borderline case p = q and X = R

n , this space is equivalent with the space L p(Rn)/R,
i.e., the space of functions f for which there is a constant b such that f −b ∈ L p(Rn).
The result answers a question raised in [22, Remark 2.9].
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2 Preliminaries

Throughout this paper by a cube, we mean an open cube with edges parallel to the
coordinate axes. We let X ⊆ R

n be either a bounded cube or the entire space R
n . If

Q is a cube, we denote by l(Q) its side length. For any r > 0, we denote by r Q the
cube with the same center as Q but with side length r · l(Q). For any measurable set
E ⊂ R

n , such that 0 < |E | < ∞, we denote the integral average of a function f over
E by

fE :=
 
E
f := 1

|E |
ˆ
E
f .

Definition 2.1 (Weak L p-spaces) Let 1 ≤ p < ∞. For a measurable function f , we
define

‖ f ‖L p,∞(X) := sup
t>0

t |{x ∈ X : | f (x)| > t}|1/p.

We say that f is a weak L p function, or f ∈ L p,∞(X), if ‖ f ‖L p,∞(X) is finite. We
define

‖ f ‖L p,w(X) := sup
E⊆X

0<|E |<∞
|E |1/p

 
E

| f (x)|dx,

where E is any measurable set. We say that f ∈ L p,w(X), if ‖ f ‖L p,w(X) is finite.

Remark 2.2 The expression ‖·‖L p,∞(X) is not a norm, since the triangle inequality fails
to hold. However, ‖ · ‖L p,w(X) does define a norm. Additionally, if p > 1, ‖ f ‖L p,∞(X)

and ‖ f ‖L p,w(X) are comparable and therefore L p,w(X) = L p,∞(X), see Chap. 2.8.3
in [6].

Definition 2.3 (J Np) Let 1 < p < ∞. A function f is in J Np(X) if f ∈ L1
loc(X)

and there is a constant K < ∞ such that

∞∑

i=1

|Qi |
( 

Qi

| f − fQi |
)p

≤ K p

for all countable collections of pairwise disjoint cubes (Qi )
∞
i=1 in X . We denote the

smallest such number K by ‖ f ‖J Np(X).

The space J Np is related to BMO in the sense that the BMO norm of a function
is the limit of the function’s J Np norm when p tends to infinity. It is easy to see that

‖| f |‖J Np(X) ≤ 2‖ f ‖J Np(X). (2.1)

Likewise, it is clear that L p(X) ⊂ J Np(X), as we get from Hölder’s inequality that
‖ f ‖J Np(X) ≤ 2‖ f ‖L p(X). If X is a bounded cube, then J Np(X) ⊂ L p,∞(X). This is
known as the John–Nirenberg inequality for J Np functions.
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Theorem 2.4 (John–Nirenberg inequality for J Np) Let 1 < p < ∞, Q0 ⊂ R
n a

bounded cube and f ∈ J Np(Q0). Then f ∈ L p,∞(Q0) and

‖ f − fQ0‖L p,∞(Q0) ≤ c‖ f ‖J Np(Q0)

with some constant c = c(n, p).

The proof can be found in [1, 10], for example. In [18], this result was extended
to the space J Np(R

n). Also a more general John–Nirenberg space J Np,q has been
studied, for example, in [4, 21, 22].

Definition 2.5 (J Np,q ) Let 1 ≤ p < ∞ and 1 ≤ q < ∞. A function f is in J Np,q(X)

if f ∈ L1
loc(X), and there is a constant K < ∞ such that

∞∑

i=1

|Qi |
( 

Qi

| f − fQi |q
)p/q

≤ K p

for all countable collections of pairwise disjoint cubes (Qi )
∞
i=1 in X . We denote the

smallest such number K by ‖ f ‖J Np,q (X).

It was shown in [4, Proposition 5.1] that if X is a bounded cube, then J Np,q(X) =
J Np(X), if 1 ≤ q < p and J Np,q(X) = Lq(X) if p ≤ q < ∞. The same proof
also shows us that J Np,q(R

n) = J Np(R
n), if 1 ≤ q < p. It was shown in [22,

Corollary 2.8] that the space J Np,q(R
n) contains only functions that are constant

almost everywhere, if p < q < ∞. However, it was stated in [22, Remark 2.9] that
the situation is unclear if q = p. We complete the picture by showing that J Np,p(R

n)

is equal to L p(Rn) up to a constant. This also answers [21, Question 15].

Proposition 2.6 Let 1 ≤ p < ∞. Then J Np,p(R
n) = L p(Rn)/R and there is a

constant c = c(p) such that for any function f ∈ L1
loc(R

n), we have

1

c
‖ f ‖J Np,p(Rn) ≤ inf

b∈R ‖ f − b‖L p(Rn) ≤ c‖ f ‖J Np,p(Rn).

Proof First assume that f ∈ L p/R, that is there is a constant b such that f − b ∈ L p.
Then for any set of pairwise disjoint cubes Qi ,

∞∑

i=1

ˆ
Qi

| f − fQi |p =
∞∑

i=1

ˆ
Qi

|( f − b) − ( f − b)Qi |p

≤
∞∑

i=1

2p
ˆ
Qi

| f − b|p ≤ 2p
ˆ
Rn

| f − b|p

and therefore f ∈ J Np,p(R
n).
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Now assume that f ∈ J Np,p(R
n). Clearly

ˆ
Q

| f − fQ |p ≤ ‖ f ‖p
J Np,p(Rn)

for every cube Q ⊂ R
n . Let (Qk)

∞
k=1 be a sequence of cubes such that the center of

every cube is the origin and |Qk | = 2k . Then Q1 ⊂ Q2 ⊂ ... and ∪∞
k=1Qk = R

n . We
shall prove that the sequence of integral averages ( fQk )

∞
k=1 is a Cauchy sequence. For

any integer i , we have

| fQi − fQi+1 | ≤
 
Qi

| f − fQi+1 | ≤ 2
 
Qi+1

| f − fQi+1 |.

This means that

| fQi − fQi+1 |p ≤ 2p
( 

Qi+1

| f − fQi+1 |
)p

≤ 2p
 
Qi+1

| f − fQi+1 |p

≤ 2p−i−1‖ f ‖p
J Np,p(Rn)

.

Then for any positive integers m and k, we get

| fQm − fQk | ≤
max(m,k)−1∑

i=min(m,k)

| fQi+1 − fQi | ≤
∞∑

i=min(m,k)

21−
1
p ‖ f ‖J Np,p(Rn)2

−i/p

= c‖ f ‖J Np,p(Rn)2
−min(m,k)/p,

(2.2)

where the constant c depends only on p. Therefore, ( fQk )
∞
k=1 is a Cauchy sequence.

Then by using (2.2), we get

ˆ
Rn

∣∣∣∣ f − lim
k→∞ fQk

∣∣∣∣
p

= lim
m→∞

ˆ
Qm

∣∣∣∣ f − lim
k→∞ fQk

∣∣∣∣
p

≤ lim
m→∞

ˆ
Qm

2p−1
(

| f − fQm |p +
∣∣∣∣ fQm − lim

k→∞ fQk

∣∣∣∣
p)

≤ lim
m→∞ 2p−1

(
‖ f ‖p

J Np,p(Rn)
+ 2m lim

k→∞
∣∣ fQm − fQk

∣∣p
)

≤ 2p−1‖ f ‖p
J Np,p(Rn)

(
1 + lim

m→∞ 2m lim
k→∞ c2−min(m,k)

)

= 2p−1‖ f ‖p
J Np,p(Rn)

(
1 + lim

m→∞ 2mc2−m
)

= c‖ f ‖p
J Np,p(Rn)

,

where the constant c depends only on p. This means that f − limk→∞ fQk ∈ L p and
therefore f ∈ L p/R. This completes the proof. �

The spaces V J Np and C J Np were studied in [18, 20]. These spaces are J Np

counterparts of the spaces V MO and CMO , which are subspaces of BMO . The
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spaces V J Np andC J Np can also be defined in a bounded cube Q0 instead ofR
n as in

the following definitions. However, in that case, it is clear that the spaces coincide [18,
20]. In this paper, we only define the spaces in R

n and we write V J Np = V J Np(R
n)

and C J Np = C J Np(R
n) to simplify the notation.

Definition 2.7 (V J Np) Let 1 < p < ∞. Then the vanishing subspace V J Np of J Np

is defined by setting

V J Np := Dp(Rn) ∩ J Np
J Np

,

where

Dp(R
n) := { f ∈ C∞(Rn) : |∇ f | ∈ L p(Rn)}.

Definition 2.8 (C J Np) Let 1 < p < ∞. Then the subspace C J Np of J Np is defined
by setting

C J Np := C∞
c (Rn)

J Np
,

where C∞
c (Rn) denotes the set of smooth functions with compact support in R

n .

As in the case of vanishing subspaces of BMO , there exist characterizations of
V J Np and C J Np as J Np functions for which certain integrals vanish, see [20, The-
orems 3.2 and 4.3].

Theorem 2.9 Let 1 < p < ∞. Then f ∈ V J Np if and only if f ∈ J Np and

lim
a→0

sup
Qi⊂R

n

l(Qi )≤a

∞∑

i=1

|Qi |
( 

Qi

| f − fQi |
)p

= 0,

where the supremum is taken over all collections of pairwise disjoint cubes (Qi )
∞
i=1

in R
n, such that the side length of each Qi is at most a.

Theorem 2.10 Let 1 < p < ∞. Then f ∈ C J Np if and only if f ∈ V J Np and

lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q|1/p
 
Q

| f − fQ | = 0,

where the supremum is taken over all cubes Q ⊂ R
n such that the side length of Q is

at least a.

From the definitions, we can see that L p/R ⊆ C J Np ⊆ V J Np ⊆ J Np. It was
shown in [18] that L p/R �= C J Np and V J Np �= J Np. However, the question of
whether C J Np and V J Np coincide remained open.
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3 Equality of VJNp and CJNp

Let 1 < p < ∞. In this section, we prove the equality of V J Np and C J Np by
showing that for any J Np function f , integrals of the type

|Q| 1p
 
Q

| f |

tend to zero both when |Q| → 0 and when |Q| → ∞. This type of integral appears
in the Morrey norm, see for example [15]. Compare it also to the weak L p norm
(Definition 2.1), where the supremum is taken over such integrals with the cube Q
replaced with an arbitrary measurable set.

The aforementioned results follow from Proposition 3.1.

Proposition 3.1 Let X ⊆ R
n be either a bounded cube or the entire space R

n. Let
Q ⊂ X be a cube such that 3Q ⊆ X. Let 1 < p < ∞, 0 < A < ∞ and 0 < ε ≤
ε0(n, p). Suppose that f ∈ L1

loc(X) is a nonnegative function such that

|Q| 1p
 
Q

f ≥ A(1 − ε) (3.1)

and for any cube Q′ ⊂ X with l(Q′) = 2
3 l(Q) or l(Q′) = 4

3 l(Q) we have

|Q′| 1p
 
Q′

f ≤ A(1 + ε). (3.2)

Then there exist two cubes Q1 ⊂ 3Q and Q2 ⊂ 3Q such that for i ∈ {1, 2}, we have

l(Qi ) = 2

3
l(Q) or l(Qi ) = 4

3
l(Q), (3.3)

dist(Q1, Q2) ≥ 1

3
l(Q), and (3.4)

|Qi |
1
p

 
Qi

| f − fQi | ≥ c · A, (3.5)

where c = c(n, p) is a positive constant.

To prove this proposition, we first need to prove Lemmas 3.2 and 3.4.

Lemma 3.2 Let 0 < α < 1 < β. Let Q′ ⊂ Q ⊂ Q̃ ⊂ R
n be cubes such that

l(Q′) = αl(Q) and l(Q̃) = βl(Q). Suppose that f ∈ L1(Q̃) is a nonnegative
function, 1 < p < ∞, 0 < A < ∞ and 0 < ε ≤ ε0(n, p, α, β). Assume also that
(3.1) holds for Q and (3.2) holds for Q′ and Q̃. Then we have

|Q̃ \ Q′| 1p
 
Q̃\Q′

∣∣∣ f − f Q̃\Q′
∣∣∣ ≥ c1 · A,

where c1 = c1(n, p, α, β) is a positive constant.
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Proof From the assumptions of the lemma, we get directly

ˆ
Q̃\Q′

∣∣∣ f − f Q̃\Q′
∣∣∣ ≥

∣∣∣∣∣

ˆ
Q̃\Q

f − |Q̃ \ Q|
|Q̃ \ Q′|

ˆ
Q̃\Q′

f

∣∣∣∣∣ +
∣∣∣∣
ˆ
Q\Q′

f − |Q \ Q′|
|Q̃ \ Q′|

ˆ
Q̃\Q′

f

∣∣∣∣

= 2

∣∣∣∣
ˆ
Q

f − 1 − αn

βn − αn

ˆ
Q̃

f − βn − 1

βn − αn

ˆ
Q′

f

∣∣∣∣

≥ 2

(
A(1 − ε)|Q|1− 1

p − 1 − αn

βn − αn
A(1 + ε)|Q̃|1− 1

p

− βn − 1

βn − αn
A(1 + ε)|Q′|1− 1

p

)

= 2A|Q|1− 1
p

(
1 − ε − 1 − αn

βn − αn
(1 + ε)

(
βn)1− 1

p

− βn − 1

βn − αn
(1 + ε)

(
αn)1− 1

p

)
.

Thus, we have

|Q̃ \ Q′| 1p
 
Q̃\Q′

∣∣∣ f − f Q̃\Q′
∣∣∣

≥ 2
(
βn − αn) 1

p −1
(
1 − ε − 1 − αn

βn − αn
(1 + ε)β

n− n
p − βn − 1

βn − αn
(1 + ε)α

n− n
p

)
A

= C(n, p, α, β, ε)A.

Notice that

lim
ε→0

C(n, p, α, β, ε) = C(n, p, α, β, 0)

= 2
(
βn − αn) 1

p −1
(
1 − 1 − αn

βn − αn
β
n− n

p − βn − 1

βn − αn
α
n− n

p

)
.

This is positive for every n, p, α, and β. Indeed, we have C(n, p, α, β, 0) = 2(βn −
αn)

1
p −1h( 1p ) with

h(x) = 1 − 1 − αn

βn − αn
βn−nx − βn − 1

βn − αn
αn−nx .

We notice that h(0) = h(1) = 0 and the second derivative of h is strictly negative.
Thus h is concave and h(x) > 0 for every 0 < x < 1. In conclusion, if ε is small
enough, we have

C(n, p, α, β, ε) ≥ 1

2
C(n, p, α, β, 0) := c1(n, p, α, β) > 0.

This completes the proof. �
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For the reader’s convenience, we start by giving a proof of Proposition 3.1 in the
special case n = 1 as it is technically much simpler. The idea of the proof is the same
also in the multidimensional case.

Proof of Proposition 3.1 in the case n = 1 Let us assume that Q = [a, a + L]. Define
Q̃ = [

a, a + 4
3 L

]
and Q′ = [

a, a + 2
3 L

]
. We set Q1 := Q̃\Q′ = [

a + 2
3 L, a + 4

3 L
]

and we get from Lemma 3.2 and the assumptions in Proposition 3.1 that

|Q1|
1
p

 
Q1

| f − fQ1 | ≥ c1A,

if ε is small enough. Here c1 = c1(n, p, α, β) with n = 1, α = 2
3 and β = 4

3 .
On the other hand, if we set Q̃ = [

a − 1
3 L, a + L

]
and Q′ = [

a + 1
3 L, a + L

]
and

define Q2 := Q̃\Q′ = [
a − 1

3 L, a + 1
3 L

]
, then we get from Lemma 3.2 that

|Q2|
1
p

 
Q2

| f − fQ2 | ≥ c1A,

if ε is small enough. Finally we notice that the distance between the cubes Q1 and Q2
is 1

3 L . This completes the proof. �
The case n ≥ 2 is more complicated as the set Q̃\Q′ is usually not a cube. Before

the actual proof, we fix some notation about directions and projections.

Definition 3.3 Let {v1, . . . , vn} denote the standard orthonormal basis for R
n . Let

Q1 ⊂ R
n and Q2 ⊂ R

n be cubes. The cubes can be presented as Cartesian products
of intervals as

Q1 = I 11 × I 12 × ... × I 1n and

Q2 = I 21 × I 22 × ... × I 2n .

We say that Pk(Q1) := I 1k is the projection of cube Q1 to the subspace spanned by
the base vector vk . Fix an index k with 1 ≤ k ≤ n. If for every xk ∈ Pk(Q1) and
yk ∈ Pk(Q2) we have xk ≤ yk , then we say that Q2 is located in direction ↑k from
Q1 and Q1 is located in direction ↓k from Q2.

Lemma 3.4 Let Q ⊂ R
n be a cube. Let Q′ ⊂ Q ⊂ Q̃ be cubes with l(Q′) = 2

3 l(Q)

and l(Q̃) = 4
3 l(Q) such that all the cubes share a corner. By symmetry, we may

assume that Q = [0, L]n, Q′ = [
0, 2

3 L
]n

and Q̃ = [
0, 4

3 L
]n
. Let f ∈ L1 ([0, 2 L]n)

be a nonnegative function, 1 < p < ∞, 0 < A < ∞ and 0 < ε ≤ ε0 from Lemma
3.2 with α = 2

3 and β = 4
3 . Suppose also that (3.1) holds for Q and (3.2) holds for

Q′ and Q̃. Then there exists a cube Q̄ ⊂ [0, 2L]n \ Q′ such that either

(a) l(Q̄) = 2
3 L and Q̄ ⊂ Q̃

or
(b) l(Q̄) = 4

3 L and Pk(Q̄) = Pk(Q̃) = [0, 4
3 L] for every 1 ≤ k ≤ n except one

123
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Fig. 1 The cubes Q, Q′, Q̃,

(Qi )
2n−2
i=0 and (Q′

j )
n
j=1, when

n = 2. We have
Q̃ = Q′ ∪ Q0 ∪ Q1 ∪ Q2,
Q0 ∪ Q1 ⊂ Q′

1 and
Q0 ∪ Q2 ⊂ Q′

2

L

2L

L 2L

Q

Q

Q̃

Q0

Q1

Q2

Q1

Q2

and in addition

|Q̄| 1p
 
Q̄

| f − f Q̄ | ≥ c2 · A,

where c2 = c2(n, p) is a positive constant.

Proof Let us divide the cube Q̃ dyadically into 2n subcubes. Then one of them is Q′.
Let us define Q0 = [ 2

3 L, 4
3 L

]n
and let us denote the rest of the subcubes by (Qi )

2n−2
i=1 .

Notice that Q′ does not have an index unlike all the other dyadic subcubes. For any
1 ≤ j ≤ n, we define

Q′
j := I1 × I2 × ... × In,

where

Ik =
{

[ 23 L, 2L], k = j,

[0, 4
3 L], k �= j .

See Fig. 1 to see how these cubes are located with respect to each other. It is simple to
check that then

Q0 ⊂ Q′
j ⊂ [0, 2L]n \ Q′ and l(Q′

j ) = 2l(Q0)

for every j . Also for every Qi with 1 ≤ i ≤ 2n − 2, there exists at least one cube Q′
j

such that Qi ⊂ Q′
j . For every Qi , let us denote by Q′

ji
one of these cubes Q′

j .
Let us prove that for at least one of the cubes Qi or Q′

j , we have

|Q̄| 1p
 
Q̄

| f − f Q̄ | ≥ (
2n − 1

)− 1
p

(
1 + 21+n− n

p

(
2n − 2

2n − 1

)2
)−1

c1A, (3.6)
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where c1 = c1(n, p, α, β) is the constant from Lemma 3.2 with α = 2
3 and β = 4

3 .
We prove this by contradiction. Assume that (3.6) does not hold for any Qi or Q′

j . We
get from Lemma 3.2 that

c1A ≤ |Q̃ \ Q′| 1p
 
Q̃\Q′

∣∣∣ f − f Q̃\Q′
∣∣∣

= (
(2n − 1)|Q′|) 1

p −1 ·
2n−2∑

i=0

ˆ
Qi

∣∣∣∣∣∣
f − 1

(2n − 1)|Q′|
2n−2∑

k=0

ˆ
Qk

f

∣∣∣∣∣∣
. (3.7)

We continue estimating one of the integrals in the sum above

ˆ
Qi

∣∣∣∣ f − 1

(2n − 1)|Q′|
2n−2∑

k=0

ˆ
Qk

f

∣∣∣∣

=
ˆ
Qi

∣∣∣∣ f − fQi + 1

(2n − 1)|Q′|
2n−2∑

k=0

(ˆ
Qi

f −
ˆ
Qk

f

) ∣∣∣∣

≤
ˆ
Qi

| f − fQi | + 1

2n − 1

2n−2∑

k=0

∣∣∣∣
ˆ
Qi

f −
ˆ
Qk

f

∣∣∣∣ .

Assume that k ≥ 1. Then because Qk ∪ Q0 ⊂ Q′
jk
and Qk ∩ Q0 = ∅, we have

∣∣∣∣
ˆ
Qk

f −
ˆ
Q0

f

∣∣∣∣ ≤
∣∣∣∣
ˆ
Qk

(
f − fQ′

jk

)∣∣∣∣ +
∣∣∣∣
ˆ
Q0

(
fQ′

jk
− f

)∣∣∣∣ ≤
ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣ .

Thus if i = 0, we get

2n−2∑

k=0

∣∣∣∣
ˆ
Qi

f −
ˆ
Qk

f

∣∣∣∣ ≤
2n−2∑

k=1

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣ .

On the other hand, if i ≥ 1, then

2n−2∑

k=0
k �=i

∣∣∣∣
ˆ
Qi

f −
ˆ
Qk

f

∣∣∣∣ ≤ (2n − 2)

∣∣∣∣
ˆ
Qi

f −
ˆ
Q0

f

∣∣∣∣ +
2n−2∑

k=0
k �=i

∣∣∣∣
ˆ
Q0

f −
ˆ
Qk

f

∣∣∣∣

≤ (2n − 2)
ˆ
Q′

ji

∣∣∣ f − fQ′
ji

∣∣∣ +
2n−2∑

k=1
k �=i

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣ .
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We continue by estimating the sum in (3.7) and we get

2n−2∑

i=0

ˆ
Qi

∣∣∣∣∣∣
f − 1

(2n − 1)|Q′|
2n−2∑

k=0

ˆ
Qk

f

∣∣∣∣∣∣

≤
2n−2∑

i=0

⎛

⎝
ˆ
Qi

| f − fQi | + 1

2n − 1

2n−2∑

k=0

∣∣∣∣
ˆ
Qi

f −
ˆ
Qk

f

∣∣∣∣

⎞

⎠

≤
2n−2∑

i=0

ˆ
Qi

| f − fQi | + 1

2n − 1

2n−2∑

k=1

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣

+
2n−2∑

i=1

⎛

⎜⎜⎝
1

2n − 1

⎛

⎜⎜⎝(2n − 2)
ˆ
Q′

ji

∣∣∣ f − fQ′
ji

∣∣∣ +
2n−2∑

k=1
k �=i

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣

⎞

⎟⎟⎠

⎞

⎟⎟⎠

=
2n−2∑

i=0

ˆ
Qi

| f − fQi | +
2n−2∑

k=1

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣ + 1

2n − 1

2n−2∑

i=1

2n−2∑

k=1
k �=i

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣

=
2n−2∑

i=0

ˆ
Qi

| f − fQi | +
(
1 + 2n − 3

2n − 1

) 2n−2∑

k=1

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣ .

Then finally from our assumption, that (3.6) does not hold, we get

2n−2∑

i=0

ˆ
Qi

| f − fQi | +
(
1 + 2n − 3

2n − 1

) 2n−2∑

k=1

ˆ
Q′

jk

∣∣∣ f − fQ′
jk

∣∣∣

<

2n−2∑

i=0

(
2n − 1

)− 1
p

(
1 + 21+n− n

p

(
2n − 2

2n − 1

)2
)−1

c1A|Qi |1−
1
p

+ 2 · 2
n − 2

2n − 1

2n−2∑

k=1

(
2n − 1

)− 1
p

(
1 + 21+n− n

p

(
2n − 2

2n − 1

)2
)−1

c1A|Q′
jk |1−

1
p

= (
2n − 1

)1− 1
p
(
1 + 21+n− n

p
( 2n−2
2n−1

)2)−1
c1A

(
|Q′|1− 1

p + 2(2n−2)2

(2n−1)2
(
2n|Q′|)1− 1

p

)

= (2n − 1)1−
1
p c1A|Q′|1− 1

p .

In conclusion, we have

c1A ≤ |Q̃ \ Q′| 1p
 
Q̃\Q′

∣∣∣ f − f Q̃\Q′
∣∣∣

<
(
(2n − 1)|Q′|) 1

p −1 · (2n − 1)1−
1
p c1A|Q′|1− 1

p = c1A,
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which is a contradiction. Hence, there is at least one cube Q̄ ⊂ [0, 2 L]n\Q′ that
satisfies the conditions of the lemma and

|Q̄| 1p
 
Q̄

| f − f Q̄ | ≥ (
2n − 1

)− 1
p

(
1 + 21+n− n

p

(
2n − 2

2n − 1

)2
)−1

c1A = c2A,

where c2 = c2(n, p) is a positive constant. This completes the proof. �
Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1 in the case n ≥ 2 Let 0 < ε ≤ ε0 fromLemma 3.2 with α = 2
3

and β = 4
3 . We apply Lemma 3.4 2n times to each corner of Q and obtain 2n sets of

cubes Q′, Q̃ and Q̄. Here, every Q̄ satisfies (3.3) and (3.5). No matter which corner
the cubes Q′, Q and Q̃ share, we always have 1

3Q ⊂ Q′. Since Q̄ and Q′ are disjoint,
we get that Q̄ and 1

3Q are also disjoint and thus each Q̄ is located in at least one
direction from 1

3Q in the sense of Definition 3.3.
Because Q′ is in the corner of Q̃, there is one direction for each k ∈ {1, 2, ..., n}

such that Q̄ cannot be located in that direction from 1
3Q. For example, if Q = [0, L]n ,

Q′ = [0, 2
3 L]n and Q̃ = [0, 4

3 L]n , then the possible directions where Q̄ may be
located in from 1

3Q are ↑1, ↑2,... and ↑n . The cube Q̄ cannot be located in any of
the directions ↓1, ↓2,... and ↓n from 1

3Q. Thus, for each cube Q̄, there are n possible
directions and for any two cubes Q̄, the sets of possible directions do not coincide.

If one cube Q̄ is located in direction ↑k from 1
3Q and another is located in direction

↓k , then the distance between those two cubes is at least 1
3 l(Q) – thus the proposition

is true. Therefore let us assume by contradiction that no two cubes Q̄ are located in
opposite directions.

Let S be the set of all directions in which all the cubes Q̄ are located from 1
3Q. Then

we clearly have |S| ≤ n, because by our assumption, there is at most one direction in
S for each k ∈ {1, 2, ..., n}. However, there is always at least one cube Q̄ for which
the possible directions are all exactly opposite to the directions in S. If for example
the directions in S are ↑1, ↑2,... and ↑m for some m ≤ n, then there is no direction
in S for the cube Q̄ for which the possible directions are only ↓1, ↓2,... and ↓n . This
contradicts with the assumption that the directions of all Q̄ are represented in S. Thus,
we conclude that there must be two cubes Q̄ in opposite directions. This completes
the proof. �

Now we can show that the Morrey type integral (1.1) vanishes as the measure of
the cube tends to infinity.

Theorem 3.5 Let 1 < p < ∞ and suppose that f ∈ J Np(R
n). Then there is a

constant b such that

lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q|1/p
 
Q

| f − b| = 0, (3.8)
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where the supremum is taken over all cubes Q ⊂ R
n such that the side length of Q is

at least a.

Proof Assume first that f ∈ J Np(R
n) ∩ L p,∞(Rn) and f is nonnegative. Let

lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q|1/p
 
Q

f = A,

where A ≥ 0. The limit exists as this sequence is decreasing, the elements are finite –
this follows from Remark 2.2 because f ∈ L p,∞(Rn) – and the sequence is bounded
from below by 0.

Let us assume that A > 0. Let 0 < ε ≤ ε0(n, p) as in Proposition 3.1. Then there
exists a number N < ∞ such that (3.2) holds for every cube Q where l(Q) ≥ N . Also
for any number M < ∞, there exists a cube Q such that l(Q) ≥ M and (3.1) holds.
This means that we can find a sequence of cubes (Qi )

∞
i=1 such that l(Q1) ≥ 3

2N ,
l(Qi+1) > l(Qi ), limi→∞ l(Qi ) = ∞ and

|Qi |1/p
 
Qi

f ≥ A(1 − ε)

for every i ∈ N.
Let Qi be one of these cubes. According to Proposition 3.1, there exist two cubes

Qi,1 ⊂ 3Qi and Qi,2 ⊂ 3Qi that satisfy (3.3), (3.4) and (3.5). The cubes (Qi,1)
∞
i=1

may not be pairwise disjoint. However, for every cube Qi , we have two cubes to
choose from.

Let us construct a new sequence of cubes (Q′
i j
)∞j=1 iteratively.We start with Qi1 :=

Q1 and choose Q′
i1

:= Q1,1. Let Qi2 , i2 > 1, be the smallest cube in the sequence

(Qi )
∞
i=1 such that

1
3 l(Qi2) ≥ l(Q′

i1
). Then at least one of the cubes Qi2,1 and Qi2,2 is

pairwise disjoint with Q′
i1
. Let’s say that Qi2,1 is the disjoint one and set Q

′
i2

:= Qi2,1.
Let us denote by Q the smallest cube such that Q′

i1
∪ Q′

i2
⊂ Q. Let Qi3 , i3 > i2,

be the smallest cube in the sequence (Qi )
∞
i=1 such that

1
3 l(Qi3) ≥ l(Q). Then at least

one of the cubes Qi3,1 and Qi3,2 is pairwise disjoint with both Q′
i1
and Q′

i2
.

By repeating this process and taking a subsequence of (Qi )
∞
i=1, if necessary, we

get infinitely many pairwise disjoint cubes (Q′
i j
)∞j=1. Then we get

∞∑

j=1

|Q′
i j |

⎛

⎝
 
Q′
i j

∣∣∣∣ f − fQ′
i j

∣∣∣∣

⎞

⎠
p

≥
∞∑

j=1

c(n, p)Ap = ∞.

This contradicts with the assumption that f ∈ J Np(R
n). Thus, we conclude that

A = 0.
Now assume only that f ∈ J Np(R

n). From [18, Theorem 5.2], we get that there is
a constant b such that f − b ∈ L p,∞(Rn). Obviously f − b ∈ J Np(R

n). Then from
(2.1), we get that | f − b| ∈ J Np(R

n) ∩ L p,∞(Rn). Finally by the same reasoning as
before, we conclude that
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lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q|1/p
 
Q

| f − b| = 0.

This completes the proof. �
Remark 3.6 Naturally Theorem 3.5 implies that the result holds also for L p functions
with p > 1, but this can also be seen easily by considering the Hardy-Littlewood
maximal function. Indeed assume by contradiction that

lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q| 1p
 
Q

| f | = A > 0.

Then for any number a < ∞, there exists a cube Q such that l(Q) ≥ a and

|Q| 1p
 
Q

| f | ≥ A

2
.

Thus for every x ∈ Q, we have M f (x) ≥ A
2 |Q|− 1

p , where M f is the non-centered
Hardy-Littlewood maximal function. Thus M f (x) /∈ L p and consequently f /∈ L p.

Clearly the theorem does not hold for weak L p functions. For example let n = 1
and f (x) = x−1/p, when x > 0. Then we have f ∈ L p,∞(R) but (3.8) does not hold
for any b. The same function shows us that Theorem 3.8 does not hold for weak L p

functions.
As a corollary from Theorem 3.5, we get that V J Np and C J Np coincide. This

answers a question that was posed in [18] and it answers [20, Question 5.6] and [21,
Question 17].

Corollary 3.7 Let 1 < p < ∞. Then C J Np(R
n) = V J Np(R

n).

Proof It is clear that C J Np ⊆ V J Np. Let f ∈ V J Np ⊂ J Np. Then we get from
Theorem 3.5 that there is a constant b such that

lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q|1/p
 
Q

| f − fQ | = lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q|1/p
 
Q

| f − b − ( f − b)Q |

≤ lim
a→∞ sup

Q⊂R
n

l(Q)≥a

|Q|1/p2
 
Q

| f − b| = 0.

Then by Theorem 2.10, we get that f ∈ C J Np. This completes the proof. �
From the following result, we can infer that the additional condition in [18, Lemma

5.8] is not necessary, answering the question posed in [18].
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Theorem 3.8 Let X ⊆ R
n be either a bounded cube or the entire space R

n and
1 < p < ∞. Suppose that f ∈ J Np(X). Then

lim
a→0

sup
Q⊆X
l(Q)≤a

|Q|1/p
 
Q

| f | = 0, (3.9)

where the supremum is taken over all cubes Q ⊆ X, such that the side length of Q is
at most a.

Remark 3.9 The theorem implies that L p functions also satisfy (3.9). However, in that
case, the result is well known as it follows simply from Hölder’s inequality and the
dominated convergence theorem. Notice that for L p functions, (3.9) holds also when
p = 1, whereas in Remark 3.6, it is necessary that p > 1.

Remark 3.10 In particular, this result implies that for any 1 < p < ∞ and bounded
cube X ⊂ R

n , the John–Nirenberg space J Np(X) is a subspace of the vanishing

Morrey space V L1,n− n
p (X) as defined in [15].

Proof of Theorem 3.8 The proof is similar to the proof of Theorem 3.5, but we have to
take into account the possibility that we might have 3Q � X , even though Q ⊆ X .

Let f ∈ J Np(X). Let us assume first that f is nonnegative and f ∈ L p,∞(X). Let

lim
a→0

sup
Q⊆X
l(Q)≤a

|Q|1/p
 
Q

f = A. (3.10)

The limit exists as the sequence is decreasing and bounded from below by 0.
Assume that A > 0. Let 0 < ε ≤ ε0(n, p) as in Proposition 3.1. Then there is a

number δ > 0 such that (3.2) holds for any cube Q where l(Q) ≤ δ. Also because of
(3.10), we know that for every a > 0, there exists a cube Q ⊆ X such that l(Q) ≤ a
and (3.1) holds for Q. Therefore, we can find a sequence of cubes (Qi )

∞
i=1 such that

l(Q1) ≤ 3
4δ, l(Qi+1) < l(Qi ), limi→∞ l(Qi ) = 0 and

|Qi |1/p
 
Qi

f ≥ A(1 − ε).

for every i ≥ 1.
Case 1: There are infinitely many cubes Qi in the sequence such that 3Qi ⊆ X .
By taking a subsequence, we may assume that 3Qi ⊆ X for every i . Let Qi be one

of these cubes. Then according to Proposition 3.1, there exist two cubes Qi,1 ⊂ 3Qi

and Qi,2 ⊂ 3Qi that satisfy (3.3), (3.4) and (3.5). The cubes (Qi,1)
∞
i=1 may not be

pairwise disjoint. However, for every cube Qi , we have two cubes to choose from.
Let us construct a new sequence of cubes (Q′

i j
)∞j=1 iteratively.We start with Qi1 :=

Q1. Then there exist infinitely many cubes Qi in the sequence such that Q1,1∩3Qi =
∅ for every i or Q1,2 ∩ 3Qi = ∅ for every i . This is true because dist(Q1,1, Q1,2) ≥
l(Q1)/3 and limi→∞ l(Qi ) = 0. Without loss of generality, we may assume that
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Q1,1 ∩ 3Qi = ∅ for infinitely many i > 1. We set Q′
i1

:= Q1,1. Let Qi2 , i2 > 1, be
the first cube in the sequence (Qi )

∞
i=1 such that Q

′
i1

∩ 3Qi2 = ∅. Then the cubes Q′
i1
,

Qi2,1 and Qi2,2 are all pairwise disjoint. Thus, we can continue by choosing one of
the cubes Qi2,1 and Qi2,2 such that there are still infinitely many cubes 3Qi , i > i2,
that are pairwise disjoint with both the chosen cube and Q′

i1
.

By repeating this process and taking a subsequence of (Qi )
∞
i=1, if necessary, we

get infinitely many pairwise disjoint cubes (Q′
i j
)∞j=1 in X that all satisfy (3.5).

Case 2: There are only finitely many cubes Qi in the sequence such that 3Qi ⊆ X .
This can only happen if X is a bounded cube. In this case, we shall also construct a
new sequence of pairwise disjoint cubes (Q′

i j
)∞j=1 iteratively. By taking a subsequence

of (Qi )
∞
i=1, we may assume that l(Q1) ≤ 1

4 l(X) and l(Qi+1) ≤ 2
9 l(Qi ). Assume that

3Qi �⊂ X . Thenweknow that for any k ∈ {1, 2, ..., n}, the projection Pk(3Qi ) can only
intersect one of the endpoints of Pk(X). Let m be the number of base vectors vk such
that Pk(3Qi ) ⊂ Pk(X). Then 0 ≤ m < n and there exist 2m cubes Q̄i ⊂ X∩3Qi\ 1

3Qi

as they are defined in Lemma 3.4.
Every such cube Q̄i is located in some direction from the cube 1

3Qi , in a similar way
as in the proof of Proposition 3.1. Without loss of generality, we may assume that the
possible directions for these cubes are ↑1, ↓1, ↑2, ↓2,..., ↑m , ↓m , ↓m+1, ↓m+2,..., ↓n ,
but for each Q̄i there is naturally only one possible direction for each k ∈ {1, 2, ..., n}.
If one of the cubes is located in direction ↑k and another is in direction ↓k , k ≤ m,
then the distance between these two cubes is at least 1

3 l(Qi ). Thus, we can choose one
of these cubes into the sequence (Q′

i j
)∞j=1 the same way as in the first case and there

are still infinitely many cubes Ql , l > i , such that 3Ql ∩ Q̄i = ∅.
Let us assume that there are no two cubes Q̄i that are located in opposite directions

from 1
3Qi . Then by similar reasoning as in the proof of Proposition 3.1, we know that

at least one of the cubes Q̄i must be located in direction ↓k for some k > m. Let us
denote such a cube by Qi,1. If there are infinitely many cubes Ql , l > i , such that
3Ql ∩ Qi,1 = ∅, then we may choose Qi,1 into the sequence (Q′

i j
)∞j=1.

Assume that there are only finitelymany cubes Ql , l > i , such that 3Ql∩Qi,1 = ∅.
Then there are infinitely many cubes Ql , l > i , such that 3Ql ∩ Qi,1 �= ∅. Let Ql be
one of these cubes. Because l(Ql) ≤ 2

9 l(Qi ), we know that Pk(3Ql) ⊂ Pk(X). This
is because the distance from Pk(Qi,1) to ∂Pk(X) is at least 2

3 l(Qi ).
In addition for every 1 ≤ s ≤ m, we have Ps(3Ql) ⊂ Ps(X). This is because

of how the cube Q̄ was chosen in Lemma 3.4. Because the cube Qi,1 is located in
direction ↓k from the cube 1

3Qi , we have either Qi,1 ⊂ Q̃i (where Q̃i is as in Lemma
3.4) or the projection of Q̃i and the projection of Qi,1 coincide for every base vector
except vk . Thus Ps(Qi,1) ⊂ Ps(Q̃i ). Because Ps(3Qi ) ⊂ Ps(X) for every 1 ≤ s ≤ m,
we get that the distance from Ps(Q̃i ) to ∂Ps(X) is at least 2

3 l(Qi ). See Fig. 2 to get a
better understanding of the situation.

In conclusion, if 3Qi �⊂ X and there are m base vectors vs such that Ps(3Qi ) ⊂
Ps(X), then we can find a cube Qi,1 ⊂ X ∩ 3Qi such that (3.5) holds and there are
infinitely many cubes Ql , l > i , such that Qi,1 ∩ 3Ql = ∅, or, if the first option is
not possible, there exist infinitely many cubes Ql , l > i , such that Ps(3Ql) ⊂ Ps(X)

for at least m + 1 base vectors vs . Because there are only n base vectors in total, this
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Fig. 2 An example of how the
cubes X , Qi , Q̃i , Qi,1 and Ql
may be situated with respect to
each other. In the picture, we
have the projections of these
cubes to the mk-plane. The cube
Qi,1 is located in direction ↓k

from 1
3 Qi . Therefore, we have

either Qi,1 as shown in the
picture or Qi,1 ⊂ Q̃i

k

m

X

Qi

3Qi

Q̃i

Qi,1

3Ql

latter option can only happen at most n times. Thus we can always find infinitely many
pairwise disjoint cubes (Q′

i j
)∞j=1 in X that all satisfy (3.5).

In both cases, we get

∞∑

j=1

|Q′
i j |

⎛

⎝
 
Q′
i j

∣∣∣∣ f − fQ′
i j

∣∣∣∣

⎞

⎠
p

≥
∞∑

j=1

c(n, p)Ap = ∞.

This contradicts with the fact that f ∈ J Np(X). Therefore, we conclude that A = 0.
Now assume only that f ∈ J Np(X). Then there is a constant b such that f − b ∈

L p,∞(X). Also from (2.1), we get that | f − b| ∈ J Np(X) ∩ L p,∞(X). Then using
the same argument as earlier, we get

lim
a→0

sup
Q⊆X
l(Q)≤a

|Q|1/p
 
Q

| f | ≤ lim
a→0

sup
Q⊆X
l(Q)≤a

|Q|1/p
 
Q

| f − b|

+ lim
a→0

sup
Q⊆X
l(Q)≤a

|Q|1/p
 
Q

|b| = 0.

This completes the proof. �
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