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Abstract
We consider the problem of finding the best function ϕn : [0, 1] → R such that for
any pair of convex bodies K , L ∈ R

n the following Brunn–Minkowski type inequality
holds

|K +θ L| 1n ≥ ϕn(θ)(|K | 1n + |L| 1n ),

where K +θ L is the θ -convolution body of K and L . We prove a sharp inclusion of
the family of Ball’s bodies of an α-concave function in its super-level sets in order
to provide the best possible function in the range

( 3
4

)n ≤ θ ≤ 1, characterizing the
equality cases.
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1 Introduction

It is well known that for any pair of convex bodies (i.e., compact convex sets with
non-empty interior) K , L ⊆ R

n , their Minkowski sum K + L , defined as

K + L := {x + y : x ∈ K , y ∈ L} = {z ∈ R
n : K ∩ (z − L) �= ∅},

is a convex body whose volume (or n-dimensional Lebesgue measure) | · | verifies, by
Brunn–Minkowski inequality (see [8, Theorem 7.1.1]), that

|K + L| 1n ≥ |K | 1n + |L| 1n . (1.1)

In [2], the authors considered, for any 0 ≤ θ ≤ 1 the θ -convolution bodies of a pair
of convex bodies K , L ⊆ R

n , defined as

K +θ L := {z ∈ K + L : |K ∩ (z − L)| ≥ θM(K , L)},

where M(K , L) = maxz∈Rn |K ∩ (z − L)|, and studied the problem of obtaining
the best possible function ϕn : [0, 1] → R such that for any pair of convex bodies
K , L ⊆ R

n one has the following Brunn–Minkowski type inequality

|K +θ L| 1n ≥ ϕn(θ)(|K | 1n + |L| 1n ). (1.2)

The authors proved that for any pair of convex bodies K+θ L

1−θ
1
n
is an increasing family

of convex bodies in θ and, as a consequence of Brunn–Minkowski inequality,

ϕn(θ) ≥ 1 − θ
1
n

for every θ ∈ [0, 1]. Therefore, for every pair of convex bodies K , L ⊆ R
n

|K +θ L| 1n ≥ (1 − θ
1
n )(|K | 1n + |L| 1n ). (1.3)

It was also shown in [2] that the increasing sequence of convex bodies K+θ L

1−θ
1
n
remains

constant if and only if K = −L is an n-dimensional simplex, in which case there is no
equality in Brunn–Minkowski inequality (1.1). Therefore, inequality (1.3) is not sharp.
We are going to improve the estimate of the function ϕn , proving a sharp analogue of
(1.3) in the range

( 3
4

)n ≤ θ ≤ 1. Namely, we will prove the following:

Theorem 1.1 Let K , L ⊆ R
n be convex bodies. Then, for every

( 3
4

)n ≤ θ ≤ 1 we
have that

|K +θ L| 1n ≥ 1

2

(
2n

n

) 1
n

(1 − θ
1
n )

(
|K | 1n + |L| 1n

)
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and, for every 0 ≤ θ ≤ ( 3
4

)n
,

|K +θ L| 1n ≥
(

1 −
(
4

3
− 1

6

(
2n

n

) 1
n
)

θ
1
n

) (
|K | 1n + |L| 1n

)
.

Moreover, given any
( 3
4

)n ≤ θ < 1 there is equality if and only if K = −L is an
n-dimensional simplex.

Remark The constant 1
2

(2n
n

) 1
n is asymptotically 2, so the result improves on (1.3) for

values of θ close to 1, in which case there is equality whenever K = −L is an

n-dimensional simplex. Besides,

(
4
3 − 1

6

(2n
n

) 1
n

)
is asymptotically 2

3 . Therefore, this

result also improves on (1.3), for small values of θ .

Remark The change of behavior in the estimate at θ0 = ( 3
4

)n
is due to the method

we use in order to prove Theorem 1.1. However, it is clear that the estimate obtained
for the function ϕn(θ) for θ0 ≤ θ ≤ 1 cannot hold in the whole range 0 ≤ θ ≤ 1, as
this would lead, taking limit as θ tends to 0, to Brunn–Minkowski’s inequality (1.1)

with an extra factor 1
2

(2n
n

) 1
n which is asymptotically 2 and such inequality is false if

K = L . We do not have a conjecture on what the behavior of ϕn(θ) is for 0 ≤ θ ≤ θ0.

In order to prove Theorem 1.1 we observe that the θ -convolution bodies of two
convex bodies K , L ⊆ R

n are the super-level sets of the function g̃K ,L : R
n → [0, 1]

given by g̃K ,L (z) = |K∩(z−L)|
M(K ,L)

, which is 1
n -concave (i.e., g̃

1
n
K ,L is concave on its support,

K + L) and, in particular, is log-concave. Given any integrable log-concave function
g : R

n → [0,∞) (i.e., log g : R
n → [−∞,∞) is concave) with g(0) �= 0, Ball [3]

defined the following family of convex bodies associated to it (Kp(g))p>0:

Kp(g) :=
{
x ∈ R

n : p
∫ ∞

0
r p−1g(r x)dr ≥ g(0)

}
.

In [1, Lemma 2.3.2, Remark 2.6], the authors proved, following the ideas in [6],
the following inclusion relation between Ball’s bodies and super-level sets of a log-
concave function in a certain range of the parameters involved: If g : R

n → [0,∞)

is an integrable log-concave function with ‖g‖∞ = g(0), then for any p > 0 and any
0 < t <

p
e

t

�(1 + p)
1
p

K p(g) ⊆ {x ∈ R
n : g(x) ≥ e−t‖g‖∞}. (1.4)

We will obtain a sharper inclusion relation between the family Ball’s bodies and the
super-level sets of an α-concave function g (i.e., gα is concave on its support) which
will allow us to prove Theorem 1.1. We will denote, for any 0 ≤ r ≤ 1, by Lr the
super-level set of an α-concave function g given by

Lr (g) = {x ∈ supp(g) : gα(x) ≥ r‖g‖α∞}
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= {x ∈ supp(g) : g(x) ≥ r
1
α ‖g‖∞}. (1.5)

The boundary of the convex body K ⊆ R
n containing the origin in its interior and its

radial function (see definition below) will be denoted by ∂K and by ρK . Besides, for
any x, y > 0 the generalized binomial coefficient

(x
y

)
is defined in terms of the gamma

function as

(
x

y

)
:= �(1 + x)

�(1 + y)�(1 + x − y)
. Using this notation, we will prove the

following:

Theorem 1.2 Let p > 0 and let K ⊆ R
n be a convex bodywith 0 ∈ K and let g : K →

[0,∞) be a continuous α-concave function, with α > 0, such that ‖g‖∞ = g(0) > 0
and such that g(x) = 0 for every x ∈ ∂K. Then, understanding that g(x) = 0 for

every x /∈ K, we have that for every t ∈
[
0, pα

(1+pα)
1+ 1

pα

]

t

(
p + 1

α

p

) 1
p

K p(g) ⊆ L1−t (g).

Moreover, for any t ∈
(
0, pα

(1+pα)
1+ 1

pα

]
there is equality if and only if g(x) =

‖g‖∞ (1 − ‖x‖K )
1
α for every x ∈ K. Furthermore, given u ∈ Sn−1, if there exists

r ∈ [0, ρK (u)] such that g(ru) �= ‖g‖∞ (1 − ‖ru‖K )
1
α , then, there exists ε > 0 such

that for every t ∈
(
0, pα

(1+pα)
1+ 1

pα

]

t

(
p + 1

α

p

) 1
p

(ρKp(g)(u) + ε) ≤ ρL1−t (g)(u).

Thepaper is organised as follows. InSect. 2wewill provide thenecessarydefinitions
and results that we need to prove our results. In Sect. 3 we will provide the proof of
Theorem 1.2. Finally, in Sect. 4 we will prove Theorem 1.1.

2 Preliminaries

2.1 Notation

Given a convex body K ⊆ R
n with 0 ∈ intK , we will denote by ρK the radial function

ρK : Sn−1 → [0,∞) given by ρK (u) = max{λ ≥ 0 : λu ∈ K }, where Sn−1 denotes
the (n−1)-dimensional Euclidean sphere inR

n , that is, Sn−1 = {u ∈ R
n : ‖u‖2 = 1}.

It is well known that given two convex bodies K1, K2 ∈ R
n we have that K1 ⊆ K2 ⇔

ρK1(u) ≤ ρK2(u) for every u ∈ Sn−1. The Minkowski gauge of K is defined as

‖x‖K = inf{λ > 0 : x ∈ λK }.
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Notice that for every u ∈ Sn−1 we have that ‖u‖K = 1
ρK (u)

. χK will denote the
characteristic function of a convex body K and K−K will always denote the difference
body K + (−K ). Whenever K ⊆ R

n is a k-dimensional set contained in an affine
k-dimensional subspace, |K |will denote its k-dimensional Lebesguemeasure. Bn

2 will
stand for the Euclidean unit ball, ‖ · ‖2 for the Euclidean norm and �n will stand for
the regular simplex.

2.2 Ball’s Bodies

A log-concave function g : R
n → [0,∞) is a function of the form g(x) = e−u(x) with

u : R
n → (−∞,∞] a convex function. The family of log-concave functions plays an

extremely important role in the study of problems related to distribution of volume in
convex bodies. In [3], Ball introduced a family of convex bodies (Kp(g))p>0 associ-
ated to log-concave functions verifying g(0) > 0. More precisely, for any measurable
(not necessarily log-concave) g : R

n → [0,∞) such that g(0) > 0 and p > 0, Kp(g)
is defined as

Kp(g) :=
{
x ∈ R

n : p
∫ ∞

0
r p−1g(r x)dr ≥ g(0)

}
.

Kp(g) is a star set with center 0 whose radial function is given by

ρ
p
K p(g)

(u) = p

g(0)

∫ ∞

0
r p−1g(ru)dr , ∀u ∈ Sn−1.

It is well known that for any integrable log-concave function with g(0) > 0, Kp(g)
is convex for every p > 0 and, by integration in polar coordinates, we have that

|Kn(g)| =
∫

Rn

g(x)

g(0)
dx . We refer the reader to [4, Section 2.5] for more information

on Ball’s bodies.

2.3 The Generalized Covariogram Function

Given a convex body K ⊆ R
n , its covariogram function is the function gK : K −K →

[0,∞) given by

gK (z) = |K ∩ (z + K )|.

Through this paper we will consider, given a pair of convex bodies K , L ⊆ R
n , the

generalized covariogram function defined as gK ,L : K + L → [0,∞) given by

gK ,L(z) = |K ∩ (z − L)| = χK ∗ χL(z),

where χK ∗ χL denotes the convolution of the functions χK and χL . Notice that for
any convex body gK = gK ,−K . As a consequence of Brunn–Minkowski inequality

123
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(1.1), we have that for any pair of convex bodies K , L ⊆ R
n , gK ,L is 1

n -concave and
then, for any θ ∈ [0, 1] we have that

K +θ L = L
θ
1
n
(gK ,L),

where L
θ
1
n
(gK ,L) is defined by (1.5). Besides, (see [2, Proposition 2.1]) for any x ∈ R

n

and any θ ∈ [0, 1]

(x + K ) +θ L = x + (K +θ L) (2.1)

and for any pair of convex bodies K , L ⊆ R
n one has that

∫

Rn

gK ,L(z)

‖gK ,L‖∞
dz = |K ||L|

M(K , L)
.

Itwas also proved in [2] that K+θ L

1−θ
1
n
is an increasing family of convexbodies in θ ∈ [0, 1]

and (see [2, Proposition 2.8]) that K +θ L = (1 − θ
1
n )(K + L) for every 0 ≤ θ ≤ 1

if and only if K = −L is a simplex.

2.4 The Polar Projection Body and Zhang’s Inequality

Given a convex body K ⊆ R
n , its polar projection body �∗K is defined as the unit

ball of the norm given by

‖x‖�∗K = ‖x‖2|Px⊥K |.

It is well known that for any convex body, |K |n−1|�∗K | is an affine invariant quantity
that verifies Petty projection inequality [7] (also known as the affine isoperimetric
inequality):

|K |n−1|�∗K | ≤ |Bn
2 |n−1|�∗Bn

2 |,

with equality if and only if K is an ellipsoid. In [10], Zhang proved the following
reverse inequality for any convex body K ⊆ R

n :

|K |n−1|�∗K | ≥ |�n|n−1|�∗�n| = 1

nn

(
2n

n

)
, (2.2)

with equality if and only if K is a simplex (see also [5] for another proof).
In [9], Tsolomitis studied the existence and the behavior of limiting convolution

bodies

Cα(K , L) := lim
θ→1−

K +θ L

(1 − θ)α
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for symmetric convex bodies K and L , and some exponent α. He also gave some
regularity conditions under which the above limit is non-degenerated for some specific
value α. Taking into account that for any convex body K ⊆ R

n , C1(K ,−K ) =
|K |�∗K , in [2, Theorem 4.6], the authors showed that Zhang’s inequality can be
extended to

|C1(K , L)| ≥ 1

nn

(
2n

n

) |K ||L|
M(K , L)

, (2.3)

for any pair of convex bodies K , L ⊆ R
n such that M(K , L) = |K ∩ (−L)|, with

equality if and only if K = −L is a simplex.

3 An Inclusion Relation Between Ball’s Bodies and Superlevel Sets

In this section we are going to prove Theorem 1.2, fromwhich wewill derive Theorem
1.1 in the following section.

Proof of Theorem 1.2 Let us assume,without loss of generality that ‖g‖∞ = g(0) = 1.
Otherwise, consider the function g

‖g‖∞ . Let us denote, for any u ∈ Sn−1, lu = sup{r >

0 : g(ru) > 0} = ρK (u), vu : [0, lu] → [0, 1] the function defined as vu(r) =
gα(ru), which is concave on [0, lu], and, for any q > 0, let φu : [0, lu] → [0,∞) the
function defined as

φu(r) = rqαvu(r) = rqαgα(ru).

Notice that since logφu is strictly concave on (0, lu), lim
r→0+ logφu(r) = −∞, and

lim
r→l−u

logφu(r) = −∞, φu attains a unique maximum at some r0 = r0(q) ∈ (0, lu).

Therefore, denoting by (φu)−(r0) and (φu)+(r0) the lateral derivatives of φu at r0 we
have that

• 0 ≤ (φu)−(r0) = rqα
0

(
qα
r0

vu(r0) + (vu)−(r0)
)
,

• 0 ≥ (φu)+(r0) = rqα
0

(
qα
r0

vu(r0) + (vu)+(r0)
)
.

Then,

• (vu)−(r0) ≥ − qα
r0

vu(r0),
• (vu)+(r0) ≤ − qα

r0
vu(r0).

Notice that if vu is an affine function then necessarily for every q > 0 we have that

vu(r) = vu(r0)
(
1 − qα

r0
(r − r0)

)
. We will denote this affine function by

τu,q(r) = vu(r0(q))

(
1 − qα

r0(q)
(r − r0(q))

)
, ∀r ∈ [0, lu].
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For any q > 0, the graph of the function τu,q is a supporting line of the hypograph
of vu and then

vu(r) ≤ τu,q(r) = vu(r0)

(
1 − qα

r0
(r − r0)

)
, ∀r ∈ [0, lu].

Thus, for any p, q > 0

ρ
p
K p(g)

(u) = p
∫ ∞

0
r p−1g(ru)dr = p

∫ lu

0
r p−1v

1
α
u (r)dr

≤ pv
1
α
u (r0)

∫ lu

0
r p−1

(
1 − qα

r0
(r − r0)

) 1
α

dr

≤ pg(r0u)

∫ (
1+ 1

qα

)
r0

0
r p−1

(
1 − qα

r0
(r − r0)

) 1
α

dr

= pg(r0u) (1 + qα)
1
α

(
1 + 1

qα

)p

r p0

∫ 1

0
s p−1 (1 − s)

1
α ds

= pg(r0u)
(1 + qα)p+ 1

α

(qα)p
r p0 β

(
p, 1 + 1

α

)
. (3.1)

Moreover, for any q > 0, the previous inequality is an equality if and only if lu =(
1 + 1

qα

)
r0 and vu(r) = τu,q(r) for every 0 ≤ r ≤ lu =

(
1 + 1

qα

)
r0. That is, if vu

is an affine function such that vu(lu) = 0.
Consequently, for any p, q > 0

qα

(1 + qα)
1+ 1

pα

(
p + 1

α

p

) 1
p

ρKp(g)(u) ≤ g(r0u)
1
p r0,

with equality if and only if vu is an affine function such that vu(lu) = 0.
On the one hand, since vu is concave on [0, lu] and ‖g‖∞ = g(0) = 1, we have

that

gα
(
g

1
p (r0u)r0u

)
= vu

(
g

1
p (r0u)r0

)
≥ g

1
p (r0u)vu(r0) +

(
1 − g

1
p (r0u)

)
vu(0)

= g
1
p (r0u)gα(r0u) + 1 − g

1
p (r0u)

= 1 − (
gα(r0u)

) 1
pα

(
1 − gα(r0u)

)
,

with equality if and only if vu is affine on [0, r0] and then vu(r) = τu,q(r) for every
0 ≤ r ≤ r0. On the other hand, since vu is concave on [0, lu], we have that (vu)− is
decreasing on [0, lu] and then

vu(r0) = vu(0) +
∫ r0

0
(vu)−(r)dr ≥ vu(0) + (vu)−(r0)r0 ≥ vu(0) − qαvu(r0)
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= 1 − qαvu(r0).

Therefore,

gα(r0u) = vu(r0) ≥ 1

1 + qα
,

with equality if and only if (vu)− = − qα
r0

vu(r0) for every 0 ≤ r < r0, in which case

vu(r) = τu,q(r) for every 0 ≤ r < r0. Since the function h(x) = 1 − x
1
pα (1 − x) is

decreasing in
[
0, 1

1+pα

]
and is increasing in

[
1

1+pα , 1
]
, we have that if 1

1+pα ≤ 1
1+qα

(which happens whenever 0 < q ≤ p)

gα
(
g

1
p (r0u)r0u

)
≥ 1 − (

gα(r0u)
) 1
pα

(
1 − gα(r0u)

) = h(gα(r0u)) ≥ h

(
1

1 + qα

)

= 1 −
(

1

1 + qα

) 1
pα

(
1 − 1

1 + qα

)

= 1 − qα

(1 + qα)
1+ 1

pα

.

Besides, there is equality if and only if vu(r) = τu,q(r) for every 0 ≤ r ≤ r0 and

gα(r0u) = vu(r0) = 1

1 + qα
,

which also happens if and only if vu(r) = τu,q(r) for every 0 ≤ r < r0.
Therefore, calling t(p, q, α) := qα

(1+qα)
1+ 1

pα
, if 0 < q ≤ p, we have that

g
1
p (r0u)r0u ∈ L1−t(p,q,α)(g) and, since 0 ∈ L1−t(p,q,α)(g) as ‖g‖∞ = g(0) = 1

and L1−t(p,q,α)(g) is convex, we have that

g
1
p (r0u)r0 ≤ ρL1−t(p,q,α)

(u),

with equality if and only if g
1
p (r0u)r0u ∈ ∂L1−t(p,q,α), which happens if and only if

vu(r) = τu,q(r) for every 0 ≤ r ≤ r0. Thus, if 0 < q ≤ p

t(p, q, α)

(
p + 1

α

p

) 1
p

ρKp(g)(u) ≤ ρL1−t(p,q,α)
(u),

with equality if and only vu(r) = τu,q(r) for every 0 ≤ r ≤ lu =
(
1 + 1

qα

)
r0, i.e., if

vu is an affine function such that vu(lu) = 0. Since this happens for every u ∈ Sn−1,

t(p, q, α)

(
p + 1

α

p

) 1
p

K p(g) ⊆ L1−t(p,q,α)(g)
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and, for any 0 < q ≤ p, there is equality equality if and only if for every
direction u ∈ Sn−1 vu is an affine function such that vu(lu) = 0. That is, if
g(x) = ‖g‖∞ (1 − ‖x‖K )

1
α for every x ∈ K . Since the function h1(x) = x

(1+x)
1+ 1

pα

is continuous and increasing in [0, pα], it attains every value in [0, t(p, p, α)], where
t(p, q, α) lies if 0 < q ≤ p. Therefore, we have that for every t ∈ [0, t(p, p, α)].

t

(
p + 1

α

p

) 1
p

K p(g) ⊆ L1−t (g)

and, for any t ∈ [0, t(p, p, α)], there is equality if and only if g(x) =
‖g‖∞ (1 − ‖x‖K )

1
α .

Assume now that for some u ∈ Sn−1 there exists r ∈ [0, ρK (u)] such that g(ru) �=
‖g‖∞ (1 − ‖ru‖K )

1
α . Therefore, vu is not an affine function.

We first notice that the function r0(q) is continuous on q ∈ (0,∞). Indeed, let
(qk)∞k=1 ⊆ (0,∞) be a sequence converging to some q ∈ (0,∞). Let (qki )

∞
i=1 be any

convergent subsequence of (qk)∞k=1 such that r0(qki ) converges to some r ∈ [0, lu],
which exist since (r0(qk))∞k=1 ⊆ (0, lu). Since for every i ∈ N, we have, by the
definition of r0(qki ), that

r0(q)qki vu(r0(q)) ≤ r0(qki )
qki vu(r0(qki )),

taking limits as i tends to ∞ we obtain that

r0(q)qvu(r0(q)) ≤ rqvu(r).

Therefore, by the definition of r0(q), r = r0(q). Therefore,

lim inf
k→∞ r0(qk) = lim sup

k→∞
r0(qk) = r0(q)

and then r0(qk) converges to r0(q). Thus r0(q) is continuous on q ∈ (0,∞). Besides,
if (qk)∞k=1 ⊆ (0,∞) is a sequence converging to 0 and for some subsequence r0(qki )
converges to lu we would have that for every r ∈ [0, lu]

vu(r) ≤ τu,qki
(r) = vu(r0(qki ))

(
1 − qki α

r0(qki )
(r − r0(qki ))

)
,

leading to vu(r) ≤ 0, which is a contradiction. Therefore, for any p > 0 we have that
s := sup{r0(q) : q ∈ (0, p]} < lu and then, for every p > 0 and every 0 < q ≤ p
we have that qα

r0(q)
vu(r0(q)) ≤ −(vu)+(r0(q)) ≤ −(vu)+(s) and then qα

r0(q)
vu(r0(q))

is bounded in q ∈ (0, p].
Assume that there is no ε > 0 such that for every 0 < q ≤ p we have that

ε < p
∫ (

1+ 1
qα

)
r0(q)

0
r p−1τ

1
α
u,q(r)dr − p

∫ lu

0
r p−1v

1
α
u (r)dr .
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Then, we can find a sequence (qk)∞k=1 ⊆ (0, p] and, if necessary, extract from it further
subsequences which we denote in the same way, such that

lim
k→∞ p

∫ ∞

0
r p−1

(
τ

1
α
u,qk (r)χ

[
0,

(
1+ 1

qkα

)
r0(qk)

](r) − v
1
α
u (r)χ[0,lu ](r)

)
dr = 0,

(qk)∞k=1 converges to some q ∈ [0, p], r0(qk) converges to some r ∈ [0, lu], and
qkα

r0(qk )
vu(r0) converges to some λ ∈ [0,∞). Since for every r ∈ [0,∞) we have that

for every k ∈ N

vu(r)χ[0,lu ](r) ≤ τu,qk (r)χ
[
0,

(
1+ 1

qkα

)
r0(qk )

](r)

= vu(r0(qk))

(
1 − qkα

r0(qk)
(r − r0(qk))

)
χ[

0,
(
1+ 1

qkα

)
r0(qk)

](r),

taking limits as k → ∞ we obtain that for almost every r ∈ [0,∞)

vu(r)χ[0,lu ](r) ≤ (vu(r) − λ(r − r)) χ[
0,

(
1+ 1

qα

)
r
](r)

and then, by Fatou’s lemma,

p
∫ ∞

0
r p−1

⎛

⎜
⎝(vu(r) − λ(r − r)) χ[

0,
(
1+ 1

qα

) 1
α
r

](r) − vu(r)
1
α χ[0,lu ](r)

⎞

⎟
⎠ dr

≤ lim
k→∞ p

∫ ∞

0
r p−1

(
τ

1
α
u,qk (r)χ

[
0,

(
1+ 1

qkα

)
r0(qk)

](r) − v
1
α
u (r)χ[0,lu ](r)

)
dr = 0.

Since the integrand in the first integral is non-negative, by continuity of the following
functions, we have that for every r ∈ [0,∞)

vu(r)χ[0,lu ](r) = (vu(r) − λ(r − r)) χ[
0,

(
1+ 1

qα

)
r
](r)

and then vu is an affine function. Therefore, if vu is not linear, there exists ε > 0 such
that for every 0 < q ≤ p

p
∫ lu

0
r p−1v

1
α
u (r)dr + ε ≤ pg(r0u)

(1 + qα)p+ 1
α

(qα)p
r p0 β

(
p, 1 + 1

α

)

and then there exists ε > 0 such that for every 0 < q ≤ p

t(p, q, α)

(
p + 1

α

p

) 1
p (

ρKp(g)(u) + ε
) ≤ t(p, q, α)

(
p + 1

α

p

) 1
p (

ρ
p
K p(g)

(u) + ε
) 1

p

≤ g(r0u)
1
p r0,

123



58 Page 12 of 15 D. Alonso-Gutiérrez, J. M. Goñi

Proceeding now as in the proof of the inequality we obtain the result. ��

4 Brunn–Minkowski Inequality for �-Convolution Bodies

In this section we are going to prove Theorem 1.1.

Proof of Theorem 1.1 Let K , L ⊆ R
n be a pair of convex bodies. By (2.1) we can

assume, without loss of generality, that

M(K , L) = max
z∈Rn

|K ∩ (z − L)| = |K ∩ (−L)|.

Then, the function gK ,L : K+L → [0,∞) given by gK ,L (z) = |K∩(z−L)|, which is
a continuous 1

n -concave function, verifies that ‖gK ,L‖∞ = gK ,L(0) and gK ,L(z) = 0
for every z ∈ ∂(K + L).

By Theorem 1.2 with p = n, we have that for every 0 ≤ t ≤ 1
4

t

(
2n

n

) 1
n

Kn(gK ,L) ⊆ L1−t (gK ,L).

Equivalently, taking t = 1 − θ
1
n we have that if

( 3
4

)n ≤ θ < 1

(
2n

n

) 1
n

Kn(gK ,L) ⊆
L

θ
1
n
(gK ,L)

1 − θ
1
n

= K +θ L

1 − θ
1
n

.

Taking volumes, and noticing that

|Kn(gK ,L)| =
∫

Rn

gK ,L(x)

gK ,L(0)
dx =

∫

Rn

gK ,L(x)

‖gK ,L‖∞
dx = |K ||L|

M(K , L)

we obtain that for every
( 3
4

)n ≤ θ < 1

∣∣
∣∣∣
K +θ L

1 − θ
1
n

∣∣
∣∣∣

1
n

≥
(
2n

n

) 1
n |Kn(gK ,L)| 1n =

(
2n

n

) 1
n |K | 1n |L| 1n
M(K , L)

1
n

≥
(
2n

n

) 1
n |K | 1n |L| 1n
min{|K | 1n , |L| 1n }

=
(
2n

n

) 1
n

max{|K | 1n , |L| 1n } ≥ 1

2

(
2n

n

) 1
n

(|K | 1n + |L| 1n ).

Assume that there is equality for some
( 3
4

)n ≤ θ0 < 1. Then, by the equality cases in
Theorem 1.2, we have that

gK ,L(x) = M(K , L) (1 − ‖x‖K+L)n ∀x ∈ K + L.
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Otherwise, we have that for every 0 ≤ t ≤ 1
4

t

(
2n

n

) 1
n

Kn(gK ,L) � L1−t (gK ,L).

or, equivalently, taking t = 1 − θ
1
n we have that for every

( 3
4

)n ≤ θ < 1

(
2n

n

) 1
n

Kn(gK ,L) �

L
θ
1
n
(gK ,L)

1 − θ
1
n

= K +θ L

1 − θ
1
n

.

and then, in particular,

∣∣∣∣∣
∣

K +θ0 L

1 − θ
1
n
0

∣∣∣∣∣
∣

1
n

>

(
2n

n

) 1
n |Kn(gK ,L)| 1n ≥ 1

2

(
2n

n

) 1
n

(|K | 1n + |L| 1n ),

which contradicts the equality at θ0.
Therefore, if there is equality for some

( 3
4

)n ≤ θ0 ≤ 1, we have that for every
0 ≤ θ < 1

K +θ L = (1 − θ
1
n )(K + L)

and then, as mentioned in Sect. 2.3, K = −L is a simplex.

For any 0 ≤ θ ≤ ( 3
4

)n
we have that 0 ≤ θ

1
n ≤ 3

4 and

θ
1
n =

(
4

3
θ

1
n

)
3

4
+

(
1 − 4

3
θ

1
n

)
0.

Since g
1
n
K ,L is concave on K + L , we have that

K +θ L = L
θ
1
n
(gK ,L) ⊇ 4

3
θ

1
n L 3

4
(gK ,L) +

(
1 − 4

3
θ

1
n

)
L0(gK ,L)

⊇ 1

3
θ

1
n

(
2n

n

) 1
n

Kn(gK ,L) +
(
1 − 4

3
θ

1
n

)
(K + L),

where the last inclusion relation is a consequence of Theorem 1.2. Taking volumes
and using Brunn–Minkowski inequality we obtain that

|K +θ L| 1n ≥ 1

3
θ

1
n

(
2n

n

) 1
n |Kn(gK ,L)| 1n +

(
1 − 4

3
θ

1
n

)
|K + L| 1n

≥ 1

3
θ

1
n

(
2n

n

) 1
n |K | 1n |L| 1n
M(K , L)

1
n

+
(
1 − 4

3
θ

1
n

)(
|K | 1n + |L| 1n

)
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≥ 1

3
θ

1
n

(
2n

n

) 1
n

max{|K | 1n , |L| 1n } +
(
1 − 4

3
θ

1
n

) (
|K | 1n + |L| 1n

)

≥ 1

6
θ

1
n

(
2n

n

) 1
n (

|K | 1n + |L| 1n
)

+
(
1 − 4

3
θ

1
n

)(
|K | 1n + |L| 1n

)

=
(

1 −
(
4

3
− 1

6

(
2n

n

) 1
n
)

θ
1
n

)
(
|K | 1n + |L| 1n

)
.

��
Finally, let us point out that, as a consequence of the estimates obtained in the proof

of Theorem 1.1, we can obtain another proof of inequality (2.3):

Corollary 4.1 Let K , L ⊆ R
n be a pair of convex bodies such that M(K , L) = |K ∩

(−L)|. Then

|C1(K , L)| 1n ≥ 1

n

(
2n

n

) 1
n |K | 1n |L| 1n
M(K , L)

1
n

,

with equality if and only if K = −L is a simplex.

Proof We have seen in the previous proof that for every
( 3
4

)n ≤ θ < 1

∣
∣∣∣∣
K +θ L

1 − θ
1
n

∣
∣∣∣∣

1
n

≥
(
2n

n

) 1
n |K | 1n |L| 1n
M(K , L)

1
n

.

Taking limit as θ → 1−, since K+θ L

1−θ
1
n
is an increasing family of convex bodies in θ

such that

lim
θ→1−

K +θ L

1 − θ
1
n

= lim
θ→1−

1 − θ

1 − θ
1
n

K +θ L

1 − θ
= nC1(K , L),

we obtain the result. Moreover, if K = −L , the inequality above becomes Zhang’s
inequality (2.2), where there is equality if and only if K = −L is a simplex. On the
other hand, if there is equality, by the equality case in Theorem 1.2, then necessarily
gK ,L = M(K , L)(1 − ‖x‖K+L)n . Therefore, for every θ ∈ [0, 1] we have that

K +θ L = (1 − θ
1
n )(K + L)

and then K = −L is a simplex. ��
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