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Abstract
We study totally umbilic isometric immersions between Riemannian manifolds. First,
we provide a novel characterization of the totally umbilic isometric immersions with
parallel normalized mean curvature vector, i.e., those having nonzero mean curvature
vector and such that the unit vector in the direction of the mean curvature vector is
parallel in the normal bundle. Such characterization is based on a family of curves,
called planar pseudo-geodesics, representing a natural extrinsic generalization of both
geodesics and Riemannian circles: being planar, their Cartan development in the tan-
gent space is planar in the ordinary sense; being pseudo-geodesics, their geodesic
and normal curvatures satisfy a linear relation. We study these curves in detail and,
in particular, establish their local existence and uniqueness. Moreover, in the case of
codimension-one immersions, we prove the following statement: an isometric immer-
sion ι : M ↪→ Q is totally umbilic if and only if the extrinsic shape of every geodesic
of M is planar. This extends a well-known result about surfaces in R

3.
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1 Introduction andMain Results

Given an isometric immersion ι : M ↪→ Q between Riemannian manifolds M and Q,
a natural problem is to describe the geometry of ι(M) ≡ ι through the extrinsic shape
of simple test curves in M . For example, choosing M-geodesics as test curves, one
proves that ι is totally geodesic if and only if the extrinsic shape of every geodesic of
M is a geodesic of Q. Here, and in the rest of the paper, the extrinsic shape of a curve
γ in M is the curve ι ◦ γ .

Another fundamental result of this sort is the well-known theorem of Nomizu and
Yano [15], characterizing extrinsic spheres, i.e., totally umbilic submanifolds whose
mean curvature vector is parallel in the normal bundle, by the property that the extrinsic
shape of every circle inM is a circle in Q. Recall that a circle in a Riemannianmanifold
is a curve whose Cartan development in the tangent space is an ordinary circle; see
Definition 13.

A concept closely related to extrinsic sphere, first studied by Chen in [3], is that of
totally umbilic submanifold with normalized parallel mean curvature vector. In this
case, only a unit vector field in the direction of the (nonzero) mean curvature vector
is required to be parallel.

A generalization of Nomizu–Yano’s theorem to this broader class of isometric
immersions appeared in [1, 22]. In order to present this generalization, we need some
preliminaries. Let γ be a smooth unit-speed curve in M , and let κ be its geodesic
curvature, i.e., κ = 〈∇γ ′γ ′,∇γ ′γ ′〉1/2, where ∇ denotes the Levi–Civita connection
of M ; moreover, provided κ(s) 	= 0, let P = ∇γ ′γ ′/κ in some neighborhood of s.
Then one says that γ has (proper) order two at the point γ (s) if κ(s) 	= 0 and

{
∇γ ′(t)γ ′|t=s = κ(s)P(s),

∇γ ′(t)P|t=s = −κ(s)γ ′(s).

Theorem 1 ([1, Theorem 4.2]) The following statements are equivalent:

(1) ι is totally umbilic and, away from geodesic points (i.e., on the open subset where
the second fundamental form is nonzero), has parallel normalized mean curvature
vector.

(2) For every p ∈ M and every orthonormal pair of vectors u, v ∈ TpM, there exists
a curve γ , defined in a neighborhood of 0, such that

(a) γ (0) = p, γ ′(0) = u, and ∇γ ′(0)γ ′|t=0 = κ(0)v;
(b) The extrinsic shape ι ◦ γ of γ has order two at ι(p);
(c) κ ′(0)/κ(0) = κ̃ ′(0)/κ̃(0), where κ̃ is the geodesic curvature of ι ◦ γ .

It is clear that Theorem 1 is conceptually rather different than Nomizu–Yano’s
classic result and more difficult to understand geometrically. Here, by selecting an
appropriate family of test curves, we shall offer a simpler characterization of the same
class of submanifolds. These curves are a natural extrinsic extension of both geodesics
and Riemannian circles, called pseudo-geodesics.

Pseudo-geodesics were introduced in the literature in 1950 for surfaces embedded
in three-dimensional Euclidean space [25, 26]. A unit-speed curve γ̃ = ι ◦ γ lying on
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a surface is a pseudo-geodesic if the acceleration vector γ̃ ′′ makes a constant angle θ

with the surface normal. Note that the angle is zero precisely when γ is a geodesic.
This definition extends straightforwardly to any Riemannian submanifold; indeed,

it is easy to see that the angle θ is constant if and only if either γ is a geodesic or else
the ratio between the (signed) normal curvature 〈γ̃ ′′, N 〉 and the (signed) geodesic
curvature 〈γ ′′, N × γ ′〉 is constant (Lemma 16). Hence, for the classical definition to
make sense in arbitrary dimension and codimension, one just needs to interpret the
geodesic curvature as κ and the normal curvature as τ = 〈α(γ̃ ′, γ̃ ′), α(γ̃ ′, γ̃ ′)〉1/2,
where α is the second fundamental form. In fact, we shall define pseudo-geodesics in
any Riemannian manifold equipped with a field of vector-valued symmetric bilinear
forms (Definition 17).

On the other hand, in dimension greater than two, given a point p ∈ M , a tangent
vector v ∈ TpM , and a constant c > 0, the initial value problem for the pseudo-
geodesic equation κ = cτ is underdetermined. Thus, in order to have a well-posed
problem, we consider planar pseudo-geodesics, i.e., pseudo-geodesics that—when
κ > 0—have order two at all points; see Definition 10 and Remark 11.More precisely,
pseudo-geodesics whose Cartan development in the tangent space of M lies in a plane
(Proposition 14).

Using them as test curves, we will prove our first result.

Theorem 2 If, for some constant c > 0, the extrinsic shape of every planar c-pseudo-
geodesic of (M, ι∗α) is planar, then ι is totally umbilic and, away from geodesic points,
has parallel normalized mean curvature vector. Conversely, if ι is totally umbilic with
parallel normalized mean curvature vector, then the extrinsic shape of every planar
pseudo-geodesic of (M, ι∗α) is planar.

Corollary 3 If ι is totally umbilic with parallel normalized mean curvature vector, then
the extrinsic shape of every geodesic of M is planar.

Corollary 4 ([14, Theorem 2]) If ι is a non-totally geodesic extrinsic sphere, then the
extrinsic shape of every geodesic of M is a circle.

Remark 5 If ι is a hypersurface, then the normalized mean curvature vector is
automatically parallel.

Remark 6 It is easy to see, by means of the Gauss formula, that (c > 0)-pseudo-
geodesics satisfy the condition κ ′/κ = κ̃ ′/κ̃; cf. Theorem 1(2). Hence the first part
of Theorem 2 may be seen as a direct consequence of the local existence of planar
pseudo-geodesics (Proposition 18).

Remark 7 The assumption in the first part of Theorem 2 can be weakened: it is enough
to assume the extrinsic shape of every planar (c > 0)-pseudo-geodesic to be planar
on any interval where the curvature is strictly positive.

It is well known that if an isometric immersion takes planar curves to planar curves,
then it is totally geodesic [23, Theorem 1]. A natural question, then, is whether it is
possible for the type of immersion considered in Theorem 2 to preserve the planarity of
additional curves without necessarily being totally geodesic. Our next result answers
this question negatively.

123



   53 Page 4 of 16 S. Markvorsen, M. Raffaelli

Proposition 8 Suppose that ι is totally umbilic with parallel normalized mean
curvature vector. If a curve has planar extrinsic shape, then it is a pseudo-geodesic.

An additional problem that Theorem 2 leaves open is to characterize the subman-
ifolds all of whose geodesics have planar extrinsic shape. The particular case where
the ambient manifold is a space form was examined in [2, 4, 5, 8, 20]. Here we shall
give a complete solution when the codimension is one.

Theorem 9 Suppose that M is a hypersurface of Q. If the extrinsic shape of every
geodesic of M is planar, then ι is totally umbilic. In particular, if the extrinsic shape
of every geodesic of M is a circle, then ι is a non-totally geodesic extrinsic sphere.

Theorem 9 extends a classical results about surfaces in R
3; see, for instance, [6,

pp. 211–212].
The paper is organized as follows. The next section presents some preliminaries,

mostly for the sake of fixing relevant notation and terminology. In Sect. 3, motivated
by the notion of Riemannian circle, we introduce planar Riemannian curves, thus
generalizing the standard notion of planarity valid in space forms. In Sect. 4 we then
define pseudo-geodesics; in particular, by restricting our attention to planar pseudo-
geodesics, we establish a local existence and uniqueness result. In Sect. 5 we proceed
with the proofs of Theorem 2, Proposition 8, and Theorem 9; although, by virtue of
Proposition 18, the first part of Theorem 2 could be obtained directly from Theorem 1,
we give an independent proof of Theorem 2. Finally, in Sect. 6 we extend Theorem 9
to submanifolds of arbitrary codimension.

As already indicated, pseudo-geodesics have a rather long history. Their study goes
back to the work of Wunderlich, who defined them in the classical framework of
surfaces in R

3 [24–27]. Pseudo-geodesics were later studied by Simon [21] and, in
more general settings, by Sachs [18] and Sachs–Strommer [19]. Interestingly, they
appear in the theory of developable surfaces with creases; see [17, p. 421] and [7].
It was a surprise to discover that they also play a role in the theory of isometric
immersions.

2 Preliminaries

In this section we recall some basic facts that are used throughout the paper.
To begin with, let Q be a Riemannian manifold and M ⊂ Q an immersed subman-

ifold. Identifying, as customary, the tangent space of M at p with its image under the
differential of the inclusion M ↪→ Q, we have the orthogonal decomposition

TpQ = TpM ⊕ NpM,

where NpM is the normal space of M at p.
Under this identification, every smooth vector field X on M can be considered as a

vector field X along M , that is, a smooth section of the ambient tangent bundle over
M .

Let X(M) and X̄(M) denote the sets of smooth vector fields on and along M ,
respectively. LetX(M)⊥ be the set of normal vector fields along M . Clearly, X̄(M) =
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X(M) ⊕ X(M)⊥. If X ∈ X(M) and X̄ ∈ X̄(M), then

∇̃X X̄ = π� ∇̃X X̄ + π⊥ ∇̃X X̄ ,

where ∇̃ is the Levi–Civita connection of Q,π� andπ⊥ are the orthogonal projections
onto the tangent and normal bundle of M , and where both X and X̄ are extended
arbitrarily to Q.

In particular, if X̄ = Y ∈ X(M), then

∇̃XY = ∇XY + α(X ,Y );

here ∇ is the Levi–Civita connection of (M, ι∗g̃) and α the second fundamental form.
Similarly, if N ∈ X(M)⊥, then, denoting by AN the shape operator of M with

respect to N and by ∇⊥ the normal connection of M ,

∇̃X N = AN (X) + ∇⊥
X N .

The normal connection allows us to introduce a natural covariant differentiation
∇∗ for the second fundamental form, as follows; see [11, p. 231] for more details.
Let F be the smooth vector bundle over M whose fiber at the point p ∈ M is the
set of bilinear maps TpM × TpM → NpM . For any smooth section B of F and any
X ∈ X(M), let ∇∗

X B be the smooth section of F given by

(∇∗
X B

)
(Y , Z) = ∇⊥

X (B(Y , Z)) − B(∇XY , Z) − B(Y ,∇X Z).

It is standard to prove that ∇∗ is a connection in F .
We next turn our attention to totally umbilic submanifolds.
Given any normal vector η ∈ NM , we say that M is umbilic in direction η if

the shape operator Aη is a multiple of the identity. If M is umbilic in every normal
direction, then M is said to be a totally umbilic submanifold of Q.

One can show that M is totally umbilic if and only if, for every pair of vector fields
X ,Y ∈ X(M), the following relation holds between the second fundamental form and
the mean curvature vector H of M :

α(X ,Y ) = 〈X ,Y 〉H .

Recall that the mean curvature vector of M is the normal vector field along M
given by

H = m−1tr(α),

where m = dim M and tr(α) is the trace of α. Equivalently, in terms of a local
orthonormal frame (X1, . . . , Xm) for T M ,

H = m−1
m∑
j=1

α(X j , X j ).
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Among totally umbilic submanifolds, extrinsic spheres are particularly important.
A totally umbilic submanifold is called an extrinsic sphere if the mean curvature
vector is parallel with respect to the normal connection, that is, if ∇⊥

X H = 0 for all
X ∈ X(M). Beware that some authors require H to be nonzero.

Our main interest in this paper lies in the family of totally umbilic submanifolds
with parallel normalized mean curvature vector, which naturally generalizes that of
non-totally geodesic extrinsic spheres.

Suppose that H is always different from zero. Then the unit normal vector field
H/‖H | is well-defined. One says that M has parallel normalized mean curvature
vector if

∇⊥
X (H/‖H |) = 0 for all X ∈ X(M).

3 Planar Curves

In this section we define planar curves in a Riemannian manifold M ≡ (M, 〈·,·〉) and
extend several well-known results about circles.

Definition 10 Let γ : I → M be a (smooth) unit-speed curve, and denote by T its
tangent vector. We say that γ is planar if there exist a unit vector field Y along γ and
a function f : I → R such that

{
∇T T = f Y ,

∇T Y = − f T .
(1)

Remark 11
• In dimension two every (unit-speed) curve is planar.
• A geodesic is a planar curve with f = 0.
• A planar curve with constant f > 0 is called a circle [15].
• If M has constant sectional curvature, then a curve in M is planar if and only if it
lies in some two-dimensional, totally geodesic submanifold of M .

• When κ > 0, a curve γ is planar if and only if it has order two at all points.

Hence, planar curves generalize Riemannian circles. Nomizu and Yano proved that
circles are precisely those curves in M that satisfy the differential equation

∇2
T T + κ2T = 0,

where κ = 〈∇T T ,∇T T 〉1/2 is the geodesic curvature. In the case of planar curves, the
following lemma holds.

Lemma 12 ([10, Lemma 2.3]) Suppose that κ > 0. Then γ is planar if and only if

κ ∇2
T T + κ3T − κ ′ ∇T T = 0. (2)
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Proof Let Y = ∇T T /κ . If γ is planar, then

∇2
T T = ∇T (κY ) = κ ∇T Y + T (κ)Y

= −κ2T + κ ′Y

= −κ2T + κ ′ ∇T T

κ
,

which implies (2).
As for the converse, let us compute

∇T Y = ∇T

(∇T T

κ

)
= ∇2

T T

κ
+

(
1

κ

)′
∇T T .

In particular, if (2) holds, then

∇T Y =
κ ′
κ

∇T T − κ2T

κ
+

(
1

κ

)′
∇T T

= −κT ,

as desired. ��
We now characterize planar curves through the notion of development, in the sense

of Cartan. Our result extends Nomizu–Yano’s [15, Proposition 3]. The proof is con-
ceptually the same as the one in [15], but is nevertheless included for the reader’s
convenience.

Definition 13 Let p = γ (u) be an arbitrary point in the image of γ . The Cartan
development of γ in the tangent space TpM is the unique curve γ ∗ : I → TpM such
that

(1) (γ ∗)′(u) = T (u);
(2) for all t ∈ I , the vector (γ ∗)′(t) is parallel—in the Euclidean sense—to the parallel

transport τ tu(T (t)) of T (t) from γ (t) to γ (u) along γ .

Proposition 14 A curve γ is planar if and only if its development γ ∗ in the tangent
space TpM is a regular planar curve in the ordinary Euclidean sense.

Proof Assume that γ is planar so that (1) holds. Let

T ∗(t) = τ tu T (t) and Y ∗(t) = τ tu Y (t).

Since the map τ tu : Tγ (t)M → Tγ (u)M is linear and τ t+h
u = τ tu ◦ τ t+h

t , we obtain

(
T ∗)′

(t) = lim
h→0

T ∗(t + h) − T ∗(t)
h

= lim
h→0

τ tu

(
τ t+h
t T (t + h) − T (t)

)
h
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= τ tu lim
h→0

τ t+h
t T (t + h) − T (t)

h
= τ tu ∇T T (t).

Likewise, we have (
Y ∗)′

(t) = τ tu ∇T Y (t).

By virtue of these identities, (1) implies

(
T ∗)′ = f Y ∗ and

(
Y ∗)′ = − f T ∗. (3)

Clearly, these equations express the fact that γ ∗ is a planar curve in TpM .
Conversely, assume that the development γ ∗ of γ in TpM is a regular planar curve.

Then there exist a unit vector field Y ∗ along γ ∗ and a smooth function f that, together
with T ∗ = (γ ∗)′, satisfy (3). Since τ tu is an isomorphism between Tγ (t)M and Tγ (u)M ,
we obtain (1) from (3). ��

We conclude this section by proving a global existence theorem, which extends
[15, Theorem 1].

Theorem 15 Suppose that M is complete. For any orthonormal pair of vectors x, y ∈
TpM and any smooth function f : R → R, there exists a unique planar curve γ : R →
M satisfying (1) and such that γ (0) = p, T (0) = x, and Y (0) = y.

Proof By the standard theory of ordinary differential equations, the problem defined
by the system (3) and the initial condition

γ ∗(0) = p, T ∗(0) = x, Y ∗(0) = y,

has a unique global solution γ ∗ in TpM . Since M is complete, it follows from [9,
p. 172, Theorem 4.1] that there is a curve in M whose development in TpM is γ ∗. By
the proof of Proposition 14, this is precisely the desired curve γ . ��

4 Planar Pseudo-geodesics

In [26] Wunderlich considered a natural extrinsic generalization of a geodesic of a
surface ι : S ↪→ R

3. Noting that a curve γ is a geodesic of S if and only if the ambient
acceleration γ̃ ′′ = (ι ◦ γ )′′ is parallel to the surface unit normal N , he called a curve
γ̃ in ι(S) a pseudo-geodesic if the angle θ between γ̃ ′′ and N is constant.

The next lemma characterizes pseudo-geodesics in terms of curvature.

Lemma 16 A curve γ̃ in ι(S) is a pseudo-geodesic if and only if, for some constant
c ∈ R, the signed geodesic curvature κs and the signed normal curvature τs satisfy
κs = cτs .

On the basis of this result, we reinterpret (and extend) Wunderlich’s definition as
follows.
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Definition 17 LetM be aRiemannianmanifold, letΣ be ametric vector bundle of rank
n over M , and let σ be a smooth field of symmetric bilinear forms TpM×TpM → Σp

on M . A unit-speed curve γ : I → M is a (c-)pseudo-geodesic of (M, σ ) if there exist
a unit vector field Y along γ and a constant c ≥ 0 such that

∇T T = c‖σ(T , T )‖Y .

Now, a fundamental property of geodesics is that, for any tangent vector x ∈ TpM ,
there exists a geodesic, defined for |t | < ε for some ε > 0, such that γx (0) =
p and γ ′

x (0) = x . Unfortunately, unless dim M = 2, one cannot expect pseudo-
geodesics to enjoy the same property, as the corresponding initial value problem is
underdetermined. Thus, in order to have awell-posed problem,we restrict our attention
to planar pseudo-geodesics. In that case, we can prove the following proposition.

Proposition 18 Let p ∈ M. For any orthonormal pair of vectors x, y ∈ TpM and
for any constant c ≥ 0, there exists a unique planar pseudo-geodesic γx,y of (M, σ ),
defined for |t | < ε for some ε > 0, such that

γx,y(0) = p, Tx,y(0) = x, ∇Tx,y Tx,y(0) = c‖σ(x, x)‖y,

where Tx,y = γ ′
x,y .

Proof Let γ : I → M be a unit-speed curve in M , and let Y be a unit vector field
along γ . By Definition 10, it is clear that γ is a planar pseudo-geodesic of (M, σ ) if
and only if there exists c ≥ 0 such that

∇T T = c‖σ(T , T )‖Y ,

∇T Y = −c‖σ(T , T )‖T .

We shall explore how these equations look in coordinates.
To begin with, the statement of the proposition being local, we may assume that Σ

is trivial and let (E1, . . . , En) be a smooth orthonormal frame for Σ . Then there are
symmetric two-tensors σ 1, . . . , σ n on M such that

σ = σ 1E1 + · · · + σ n En .

It follows that

‖σ(T , T )‖ = 〈σ(T , T ), σ (T , T )〉1/2
= 〈

σ s(T , T )Es, σ
s(T , T )Es

〉1/2
=

((
σ 1(T , T )

)2 + · · · + (
σ n(T , T )

)2)1/2

;

here (and in the rest of this proof), the Einstein summation convention is used.

123



   53 Page 10 of 16 S. Markvorsen, M. Raffaelli

Now, suppose that γ is contained in the domain of a smooth chart (u1, . . . , um)

for M around p. Expanding T and Y in terms of the coordinate frame
(∂1 = ∂/∂u1, . . . , ∂m = ∂/∂um), we obtain

T = T j∂ j ,

Y = Y j∂ j .

Using [11, Proposition 4.6], we compute

∇T T = Ṫ k∂k + T i T jΓ k
i j∂k,

∇T Y = Ẏ k∂k + T iY jΓ k
i j∂k,

where a dot indicates differentiationwith respect to t andΓ k
i j is assumed to be evaluated

along γ .
Likewise, expressing σ s in terms of the coordinate coframe (du1, . . . , dum), we

get
σ s = σ s

i j du
i ⊗ du j .

It follows that
σ s(T (t), T (t)) = σ s

i j (γ (t))T i (t)T j (t).

In conclusion, γ is a planar pseudo-geodesic of (M, σ ) if and only if, for some
c ≥ 0 and every k = 1, . . . ,m, the following two equations hold:

Ṫ k = c

((
σ 1
i j T

i T j
)2 + · · · +

(
σ n
i j T

i T j
)2)1/2

Y k − Γ k
i j T

i T j , (4)

Ẏ k = Γ k
i j T

iY j − c

((
σ 1
i j T

i T j
)2 + · · · +

(
σ n
i j T

i T j
)2)1/2

T k . (5)

Together with u̇k = T k , Eqs. (4) and (5) define a system of 3m ordinary differential
equations in the 3m unknown functions (uk, T k,Y k)mk=1, which admits a unique local
solution for any initial condition (uk(0), T k(0),Y k(0))mk=1. ��

5 Proofs of theMain Results

Here we prove the new results presented in Sect. 1, starting with Theorem 2. Having
already verified that the initial value problem for planar pseudo-geodesics is well-
posed, the first part of Theorem 2 may be obtained as a corollary of Theorem 1.
However, we decided to include an independent proof for the benefit of the reader.

To begin with, it is useful to establish a lemma.

Lemma 19 Suppose that, for each orthonormal pair of tangent vectors x, y in TpM,
either α(x, y) = 0 or α(x, x) = α(y, y) = 0. Then the following conclusions hold:

(1) α(x, x) = ±α(y, y) for any orthonormal x, y in TpM.
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(2) If α(x, x) = 0 for some x in TpM, then α vanishes at p.

Proof We first prove (1). If (x, y) is orthonormal, then so is 2−1/2(x + y, x − y).
Thus, assuming the hypothesis of the lemma, either α(x + y, x − y) = 0 or else
α(x + y, x + y) = α(x − y, x − y) = 0. It is easy to check, using bilinearity and
symmetry, that the first condition implies α(x, x) = α(y, y), whereas the second
implies α(x, x) = −α(y, y).

Now we prove (2). Suppose that there is a unit vector x1 in TpM such that
α(x1, x1) = 0, and let (x1, . . . , xm) be an orthonormal basis of TpM . Noting that
the vectors 2−1/2(x j + xk) and xh are orthonormal when h 	= j, k, we deduce from
statement (1) that bothα(x j , x j ) andα(x j+xk, x j+xk) vanish for all j, k = 1, . . . ,m.
Since

α(x j + xk, x j + xk) = 2α(x j , xk),

we conclude that α(x j , xk) = 0 for all j and k. Hence, by bilinearity, α vanishes at p.
��

Proof of Theorem 2 By Lemma 12, the extrinsic shape of γ is a planar curve in Q
precisely when

κ̃ ∇̃2
T T + κ̃3T − κ̃ ′ ∇̃T T = 0, (6)

where κ̃ = 〈∇̃T T , ∇̃T T 〉1/2 > 0, and where we identified T̃ = (ι ◦ γ )′ with T .
Since ∇̃T T = ∇T T + α(T , T ), denoting by τ the length of α(T , T ), it follows that
κ̃ = √

κ2 + τ 2.
Let p ∈ M . If all directions are asymptotic at p, then we have a geodesic point. On

the other hand, if x is a nonasymptotic vector at p, then, for every curve γ such that
γ (0) = p and γ ′(0) = x , there exists an open interval (−ε, ε) such that τ(t) 	= 0 in
(−ε, ε).

Assume that x is not asymptotic. Then, in (−ε, ε),

κ̃ ′ = 2κκ ′ + 2ττ ′

2κ̃
= κ̃

(
κκ ′ + ττ ′)
κ2 + τ 2

,

so that Eq. (6) becomes

∇̃2
T T + κ̃2T − κκ ′ + ττ ′

κ2 + τ 2
∇̃T T = 0. (7)

Moreover, by computing

∇̃T T = ∇T T + α(T , T ),

∇̃2
T T = ∇2

T T + α(T ,∇T T ) + ∇̃Tα(T , T ),

we see that (7) is equivalent to

∇2
T T + α(T ,∇T T ) + ∇̃Tα(T , T ) + κ̃2T − κκ ′ + ττ ′

κ2 + τ 2
(∇T T + α(T , T )) = 0.
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Decomposing into tangent and normal components, we finally obtain

∇2
T T + Aα(T ,T )T +

(
κ2 + τ 2

)
T − κκ ′ + ττ ′

κ2 + τ 2
∇T T = 0, (8)

α(T ,∇T T ) + ∇⊥
T α(T , T ) − κκ ′ + ττ ′

κ2 + τ 2
α(T , T ) = 0. (9)

In particular, if κ = cτ for some c > 0 and γ is planar, then (8) and (9) simplify to

Aα(T ,T )T + τ 2T = 0,

α(T ,∇T T ) + ∇⊥
T α(T , T ) − τ ′

τ
α(T , T ) = 0. (10)

Using (∇∗
Tα

)
(T , T ) = ∇⊥

T α(T , T ) − 2α(∇T T , T ),

we rewrite (10) as

3α(T ,∇T T ) + (∇∗
Tα

)
(T , T ) − τ ′

τ
α(T , T ) = 0.

At t = 0, since (∇T T )t=0 = cτ(0)Y (0), the last equation specializes to

α(T (0),Y (0)) = 1

3cτ(0)

(
τ ′(0)
τ (0)

α(T (0), T (0)) − (∇∗
Tα

)
(T (0), T (0))

)
.

This equation implies that, given a unit vector x ∈ TpM that is not asymptotic,
the value α(x, y) does not depend on y ∈ TpM so long as 〈x, y〉 = 0. In fact,
since α(x,−y) = −α(x, y), it is clear that α(x, y) = 0 for every x and y such that
〈x, y〉 = 0.

If, on the other hand, x is asymptotic, then, for each y in the orthogonal complement
of x in TpM , either α(x, y) = 0 or α(y, y) = 0; indeed, if α(y, y) 	= 0, then
α(y, x) = 0 by the previous argument.

Summing up, we have shown that if (10) holds for every nonasymptotic x ∈ TpM ,
then, for each orthogonal pair of vectors x, y in TpM , either α(x, y) = 0 or α(x, x) =
α(y, y) = 0. Hence, by Lemma 19, if there is x ∈ TpM such that α(x, x) = 0, then
p is a geodesic point.

Assume that there is no such vector. It follows by continuity that there exists a
neighborhood U of p in M whose points are nongeodesic. Applying the lemma in
[15, p. 168], we deduce that if the assumption of the first part of Theorem 2 holds,
then M is totally umbilic in U and the normalized mean curvature vector coincides
with α = α(T , T )/τ along ι ◦ γ . Equation (10) therefore simplifies to

∇⊥
T α(T , T ) − τ ′

τ
α(T , T ) = 0.

123



Planar Pseudo-geodesics and Totally Umbilic Submanifolds Page 13 of 16    53 

Substituting α(T , T ) = τα, this becomes

∇⊥
T α = 0,

as desired.
Conversely, suppose that ι is totally umbilic and the mean curvature vector never

vanishes. It follows that α(T ,∇T T ) = 0 and α = α(T , T )/τ coincides with the
normalized mean curvature vector along ι ◦ γ . Moreover,

π� ∇̃Tα = 〈∇̃Tα, T 〉T = −〈α, ∇̃T T 〉 = −τT .

A straightforward computation reveals that Eqs. (8) and (9) are now equivalent to

∇2
T T + κ2T − κκ ′ + ττ ′

κ2 + τ 2
∇T T = 0,

τ ∇⊥
T α + τ ′α − τ

κκ ′ + ττ ′

κ2 + τ 2
α = 0. (11)

Suppose that γ is a c-pseudo-geodesic. If c = 0, then γ is a geodesic. In that case
the first equation gives an identity whereas the second reduces to ∇⊥

T α = 0. On the
other hand, if c > 0, then substituting τ = κ/c in the first and κ = cτ in the second
gives

κ ∇2
T T + κ3T − κ ′ ∇T T = 0,

∇⊥
T α = 0.

Evidently, these two are fulfilled exactly when γ is planar and the normalized mean
curvature vector α is parallel. ��
Proof of Proposition 8 Assume the hypothesis of the proposition. Then, for ∇⊥

T α = 0,
Eq. (11) is equivalent to

κ
(
τ ′κ − τκ ′) = 0.

Assume that ι ◦ γ is planar. Then, on the open subset where κ(t) 	= 0,

(τ

κ

)′ = 0,

which implies that γ is a pseudo-geodesic, as desired. ��
Proof of Theorem 9 Suppose that M is a hypersurface of Q, and let N be a unit normal
vector field along M . Clearly, if γ is a geodesic, then κ̃ = τ and

∇̃T T = α(T , T ),

so that, away from any zero of τ , Eq. (6) reads

τ ∇̃Tα(T , T ) + τ 3T − τ ′α(T , T ) = 0. (12)
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In particular, if τ is strictly positive, thenα(T , T ) = ±τN , and therefore (12) becomes

± τ 2A(T ) + τ 3T = 0, (13)

being A the shape operator.
Let Sm−1

p be the unit sphere in TpM , and denote by h the quadratic form h(x) =
〈α(x, x), N 〉. Assume that Equ. (13) holds for all unit-speed geodesics originating
from p with nonasymptotic tangent vector. Then every such vector is an eigenvector
of A. We first show that if x, y ∈ S

m−1
p are linearly independent and nonasymptotic,

then h(x) = ±h(y). Indeed, if h(x + y) 	= 0, then

h(x + y)(x + y) = A(x + y) = A(x) + A(y) = h(x)x + h(y)y,

which implies h(x) = h(y). On the contrary, if x + y is asymptotic, then

0 = 〈A(x + y), x + y〉 = (h(x) + h(y))(1 + 〈x, y〉),

implying h(x) = −h(y). We conclude that Sm−1
p can be decomposed as the union of

the subsets

{x ∈ S
m−1
p | 〈A(x), x〉 = 0},

{x ∈ S
m−1
p | 〈A(x), x〉 = h(y)},

{x ∈ S
m−1
p | 〈A(x), x〉 = −h(y)}.

It is clear that, since x �→ 〈A(x), x〉 is a continuous function Sm−1
p → R, only one of

these sets can be nonempty. This proves that M is umbilic at p. ��

6 A Generalization of Theorem 9

Wefinally present a generalization of Theorem 9 to arbitrary codimension. To this end,
let us first recall the notion of (totally) isotropic immersion, as introduced by O’Neill
in [16].

Definition 20 Let ι : M ↪→ Q be an isometric immersion. We say that ι is isotropic
at p ∈ M if 〈α(x, x), α(x, x)〉 = λp for all unit vectors x ∈ TpM . In particular, if
ι is isotropic at every point p ∈ M , then ι is called a totally isotropic immersion. A
totally isotropic immersion is constant isotropic if λp is constant on M .

Theorem 21 If the extrinsic shape of every geodesic of M is planar, then ι is totally
isotropic. In particular, if the extrinsic shape of every geodesic of M is a circle, then
ι is a non-totally geodesic constant isotropic immersion.

Remark 22 The second part of this theorem is not new. In fact,Maeda and Sato showed
that ι is a non-totally geodesic constant isotropic immersion exactly when the extrinsic
shape of every geodesic of M is a circle and (∇∗

Xα)(X , X) = 0 for all X ∈ X(M) [13,
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Proposition 3.1]. More generally, constant isotropic immersions are characterized
by the property that the extrinsic shape of every circle in M has constant geodesic
curvature [12].

Remark 23 In a space form, if the extrinsic shape of every geodesic of M is planar,
then ι is constant isotropic, and thereby any such extrinsic shape is either a geodesic
or a circle; see [20].

Proof of Theorem 21 By [16, Lemma 1], ι is isotropic at p exactly when
〈α(x, x), α(x, y)〉 = 0 for every orthonormal pair of vectors x, y in TpM . Obvi-
ously, if α(x, x) = 0, then 〈α(x, x), α(x, y)〉 = 0 for every y, and so we may assume
that x is not asymptotic.

Let γ be the unit-speed geodesic originating from p with tangent vector T (0) = x ,
and let Y be the parallel transport of y along γ . Then

〈α(x, x), α(x, y)〉 = 〈α(T , T ), α(T ,Y )〉(0)
= 〈α(T , T ), ∇̃T Y 〉(0)
= −〈∇̃Tα(T , T ),Y 〉(0);

here we have used the Gauss formula as well as orthogonality of Y and α(T , T ).
We now show that 〈∇̃Tα(T , T ),Y 〉 = 0 if ι ◦ γ is planar. Indeed, since γ is a

geodesic, Eq. (6) gives

τ ∇̃Tα(T , T ) = −τ 3T + τ ′α(T , T ), (14)

which implies 〈∇̃Tα(T , T ),Y 〉 = 0. This proves the first part of the theorem.
For the second part, assume that ι ◦ γ is a circle, so that τ > 0 and τ ′ = 0. Then

(14) implies

−〈∇̃Tα(T , T ), T 〉 = 〈α(T , T ), ∇̃T T 〉 = 〈α(T , T ), α(T , T )〉 = τ 2.

The last equality shows that 〈α(T , T ), α(T , T )〉 is constant along γ , and from here
the statement follows easily. ��
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